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Abstract
This short paper introduces a new approach to finding ray–
patch intersections with triangular Bernstein–Bézier
patches of arbitrary degree. Unlike a previous approach
based on a combination of hierarchical subdivision and a
Newton–like iteration scheme [7], this work extends the
concept of Bézier clipping to the triangular domain.

The problem of reporting wrong intersections, inherent
to the original Bézier clipping algorithm [5], is investi-
gated and opposed to the triangular case. It turns out that
reporting wrong hits is very improbable, even close to
impossible, in the triangular set-up.

1   Introduction and related work
The basic requirement for ray tracing of objects is the com-
putation of intersections between a ray and the surface
description. For free-form surfaces, this task is referred to
as the ray–patch intersection problem. This short paper
describes a new approach to this problem for triangular
Bézier patches of arbitrary degree [3] based on Bézier
clipping [5]. For a full version of this paper, please see [6].

In general, the ray–patch intersection problem with free-
form surfaces must be solved iteratively. Methods used to
find parametric intersections divide into two categories:

• nested bounding volumes: bounding spheres, axes-
aligned bounding boxes, oriented slabs,
parallelepipeds [1], Chebyshev boxing [4], bounding
volume hierarchy [2]

• parameter interval iteration: Bézier clipping [5, 2]
Only Stürzlinger addressed the problem of ray tracing tri-
angular free-form surfaces [7]. His algorithm must be
attributed to the class of nested bounding volumes using
skewed triangular prisms as bounding primitives and New-
ton iteration similar to [1]. The next section presents an
extension of Bézier clipping to the triangular domain.

2   Triangular Bézier Clipping
We denote a triangular (barycentric) Bézier patch as:

(1)

with Bernstein polynomials
and on the assumption that .

The ray–patch intersection problem refers to the task of
finding the intersections of a ray

. (2)

with a Bézier patch according to (1). As do [5] we repre-
sent the ray as the intersection of two orthogonal planes
given by their normalized implicit equations

(3)

with  (see Fig. 1a).

In complete analogy to [5, 2] the problem of finding an
intersection can be reduced from three to
two dimensions even if the patch is rational. This is
accomplished by substituting (1) into (3) which yields

(4)

with

and the coordinates of the control points of
the patch. The components 0 and 1 (in the remainder
referred to as x and y) of geometrically represent the
distance of the point to plane 0 and 1, respectively (see Fig.
1b). The problem now reduces to finding the roots of (4).

Bézier clipping basically clips away regions in the para-
metric domain which are known not to intersect the patch.
For tensor product surfaces, Nishita et al. in [5] determine
both and of the parametric candi-
date region for an intersection with the ray (see Fig. 2a).

A similar approach on the triangular domain of the bary-
centric coordinates r, s and t in general yields a complex
non-triangular candidate region (see Fig. 2b, striped
region). A triangular upper bound of this region can be
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Fig. 1: (a) Representation of a ray by two orthogonal planes
(b) Problem reduction and distances drij to Lr
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found using only , and (see Fig. 2b, shaded
region). In the following, the procedure of finding on
the example of a cubic patch will be illustrated.

Firstly, we determine a line parallel to the vector
from to through the origin. Expressing this line in
its implicit form

(5)
yields the distances of the control points
to the line  as

(6)

with  since the line touches the origin (see Fig. 1b).
The distance  of arbitrary points to  becomes

(7)

This distance function can be regarded as a
functional surface over the triangular domain with control
points and equidistant and

for . In a next step, the functional sur-
face is projected along . The clipping value can
now be found by intersecting the convex hull of the pro-
jected distances with the r coordinate axis. The steps for

 and  follow from symmetry.
For parametric values below those minima there cannot

be an intersection due to the convex hull property of Bézier
patches. Further, the ray does not intersect the patch if

(8)

If the parametric candidate domain is not yet small
enough to assure sub-pixel accuracy, the patch is subdi-
vided according to the minima found and the clipping pro-
cedure continues on the resulting sub-patch. Otherwise, the
centroid of , and is taken as the parametric
point of intersection.

3   Reporting of wrong hits
The original Bézier clipping algorithm can report wrong
intersections whenever the convex hull of projected dis-
tances intersects the corresponding parameter axis even if
the patch actually does not [2, 6]. A potentially wrong
intersection is reported if this happens for both tensor prod-
uct directions u and v or if the other candidate domain col-
lapses because the projection converts to a line.

There are several reasons why a similar situation for tri-
angular patches is difficult to construct. First and possibly
most important, the algorithm only makes use of the min-
ima , and . Second, distances are computed
with respect to three coordinate directions, which due to
the barycentric setting are linearly dependent and thus to
some respect redundant. Consequently, wrong intersections
can only occur if both of the following conditions hold:

• In at least one projective view of distances, one non-
interpolating control point lies above or below the
respective axis and the others do not.

• The minima , and accidentally sum up to
approximately but not more than 1.

It is the second condition that makes triangular Bézier clip-
ping far less error-prone. Please see [6] for the details.

4   Results
In order to test the implementation, we converted the Utah
teapot from 32 bicubic tensor product patches to 64 sextic
triangular Bézier patches. Fig. 3 shows the sextic control
net and corresponding ray traced images. Pairs of red and
blue triangular patches represent original bicubic patches.

Since the cost of the clipping operation grows with the
cube of the patch’s degree, ray tracing of sextic patches
using Bézier clipping is roughly ten times slower than
using nested bounding volumes. For patches of lower
degree, the efficiency of Bézier clipping improves.
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Fig. 2: Parametric candidate region (shaded) of tensor product do-
main (a) and barycentric domain (b)
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Fig. 3: (a) Control net of Utah teapot made of 64 triangular sextic
Bézier patches. (b),(c) Corresponding ray traced images
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