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ABSTRACT

In this paper, we present a new hierarchical clustering and visual-
ization algorithm called H-BLOB, which groups and visualizes
cluster hierarchies at multiple levels-of-detail. Our method is fun-
damentally different to conventional clustering algorithms, such as
C-means, K-means, or linkage methods that are primarily designed
to partition a collection of objects into subsets sharing similar
attributes. These approaches usually lack an efficient level-of-
detail strategy that breaks down the visual complexity of very large
datasets for visualization. In contrast, our method combines group-
ing and visualization in a two stage process constructing a hierar-
chical setting. In the first stage a cluster tree is computed making
use of an edge contraction operator. Exploiting the inherent hierar-
chical structure of this tree, a second stage visualizes the clusters
by computing a hierarchy of implicit surfaces. We believe that H-
BLOB is especially suited for the visualization of very large
datasets and for visual decision making in information visualiza-
tion. The versatility of the algorithm is demonstrated using exam-
ples from visual data mining.

keywords: clustering, categorization, partitioning, information
visualization, non-linear dimensionality reduction, physics-based
graph layout, cluster visualization, multidimensional information
visualization.

1 INTRODUCTION

The term clustering refers to the process of grouping similar
objects, where similarity is captured by a metric function [2], [1].

Clustering methods have been a hot topic in different research
fields such as: statistics, pattern recognition, machine learning, etc.
Because of the constantly increasing size of datasets over the last
years, clustering also has advanced to a key technology in the area
of information visualization and data mining. In fact, with the use
of today’s technology for data generation and collection, typical
datasets have grown by magnitudes. Since the human cognitive
system is limited to recognize only a very small number of objects
at once (around 7 objects) as well as due to performance restric-
tions of today’s graphics hardware we are forced to the use an effi-
cient level-of-detail strategy. Consequently, literature describes
various interesting data clustering approaches including their effi-
cient and refined implementations [5], [8], [11], [12], [16], [17],
[24].

Because our main interest lies in visualizing clusters, we focus
on the problem of clustering large data sets in coordinate space
[7], also referred to as the Euclidian space, in which data objects
can be represented as vectors . Unlike data sets in a dis-
tance space [7], also referred to as the data domain or the arbitrary
metric space, the vector representation gives access to various effi-
ciently implemented vector operations (e.g. addition, multiplica-
tion, dot-product, etc.), which enables one to calculate simplified
representations of complex data subregions at interactive rates.
Similar operations are not defined in distance space. The only pos-

sible operation is the computation of a distance function between
two data objects, thus rendering the problem of clustering much
more complex.

Since many problems in information visualization are located
in distance space, and thus non-accessible for our methods, a pro-
jection from distance space into coordinate space has to be
defined. Such a projection operator maps each data object from
distance space to an -dimensional vector in coordinate space
while preserving relative distances between objects. Thereafter,
vector-based clustering methods may be applied and their results
can be visualized in 2D or 3D space.

This approach entails an additional advantage. Once the pro-
jection operator has been applied, the objects have become data-
independent, i.e. the clustering algorithm operating on those
objects is highly reusable for a large variety of data clustering
tasks.

There exist several techniques for topology-preserving trans-
formations [19]. One of them is called multidimensional scaling
(MDS) [23]. Other widely spread methods are employing with
neural networks, namely with topology-preserving Kohonen net-
works [18], [9], which belong to the group of self-organizing fea-
tures maps (SOM). As a third technique spring-embedding systems
(SES) perform the desired transformation by running a physics-
based simulation process [4], [14].

Our clustering research activities take place in the context of
the IVORY project, where we develop a JAVA-based framework
for physics-based visualization and analysis of multidimensional
data relations [5], [6]. The system is based on quantifying the sim-
ilarity of related objects, which governs the parameters of a spring-
embedding system. Since the spring stiffnesses correspond to the
computed similarity measures, the system will converge into an
energy minimum, which reveals multidimensional relations and
adjacencies in terms of spatial neighborhood. In our research work,
IVORY serves as a versatile information visualization environ-
ment to explore visual metaphors and advanced interaction para-
digms.

In order to simplify the geometry and topology of complex
object setups, IVORY already provides a set of clustering algo-
rithms for postprocessing. In contrast to many other cluster-based
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Figure 1: Clustering of a subset of objects performed with BLOBS. a) Ini-
tial object layout b) Clustered configuration with enclosing
BLOB surface.
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systems, IVORY not only calculates clustered object layouts
including corresponding one-level partitions (as a group of clut-
tered single objects) but also computes an enfolding surface (ellip-
soids, BLOBS (implicit surfaces), etc.) for each cluster [5], [6].
Aiming at a reduction of complexity, such a surface can replace a
large group of single objects in a higher level of representation.
Without losing significant visual information, the scene can drasti-
cally diminish in complexity. At the same time, the visual distinct-
ness increases.

In this paper we introduce the concept of H-BLOB clustering.
Our new technique discovers and visualizes clusters by a two-stage
procedure. During the first stage, an agglomerative hierarchical
algorithm computes a cluster tree, partitioning data objects into a
nested sequence of subsets. This is what we call the analytical
clustering step. In a second stage, the intrinsic visualization takes
place. We compute a single enclosing shape for each cluster which
approximates the outline of the included data objects as closely as
possible. For the visualization we propose a new technique called
H-BLOBS, which is a direct improvement to the BLOB clustering
algorithm presented in [5].

The remainder of the paper is organized as follows. In
Section 2, we discuss related work on clustering and some of our
initial approaches. In Section 3, we present the technique we use
for fast analytical clustering and introduce the H-BLOB algorithm
dedicated to visualize cluster hierarchies using implicit surfaces.
The paper closes with Section 4 describing the implementation
issues and its versatility on the basis of a real world example.

2 RELATED WORK AND FUNDAMENTAL
APPROACHES

Clustering algorithms can be roughly divided into two categories:
partitioning and hierarchical methods. In the following two sub-
sections we present a variety of widely used partitioning, respec-
tively hierarchical clustering algorithms, followed by a description
of different advanced cluster visualization techniques.

The following list is far from being complete, but it should
point out the main clustering techniques, most of today’s clustering
algorithm are based upon. Mainly, this section conduces to set our
work into context and better understand our approach.

2.1 Partitioning Methods
Partitioning cluster methods (PCM) attempt to analytically subdi-
vide a set of data objects into a certain number of clusters, where-
upon they assume that clusters are of hyper-ellipsoidal shape and
of similar size. Like other centroid-based techniques they generally
fail, if clusters differ significantly in shape or size. We will have a
closer look at two representative algorithms and their qualities.

C-Means
The basic idea of the C-means method is to join an object obji to a
cluster clustj if the distance between the position xi of the data
object obji and the center cj of the cluster clustj is less than a
threshold value :

(1)

The center position cj of cluster clustj is defined by the arithmetic
average of the positions of all data objects xi enclosed by cluster
clustj

(2)

where N designates the number of data objects within the current
cluster.

The C-means algorithm iterates over all data objects obji and
verifies for each object obji if there exists a cluster clustj the center
cj of which is closer to xi than . If there are such clusters the
object will be added to the cluster that is closest to the object. Oth-
erwise a new cluster is generated with the object xi as its only
member. After assigning the object to the cluster’s center position
will be updated, i.e. the center will shift.

A major disadvantage of the C-means method is the user
defined selection of the cluster threshold value . Eventually, the
determination of a proper value for could be very difficult. With
too large a value clusters will contain objects which do not corre-
spond. On the other hand, too small a value will result in clusters
each holding only one single object. Another drawback is the sen-
sitivity of the algorithm to the order of traversal of given objects.
In particular, the choice of the starting object has a great influence
on the resulting cluster distribution.

The cost of the C-means algorithm is of order O(n2) being
defined by the worst case scenario, with each object located in its
own cluster. But due to the very simple operations the C-means
method relies on, it is very fast in general.

K-Means
K-means belongs to the class of iterative clustering techniques.
Choosing the K-means method we have to preselect the number k
of clusters, the algorithm would generate.

First k initial cluster centers are defined. An object obji is
assigned to the cluster clustj when its center cj is closest to the
object position xi. In such a way, all objects are associated to
exactly one cluster. At the beginning of the next iteration, the clus-
ter centers cj of all k clusters are updated to the arithmetical aver-
age of all positions xi of associated objects. Thereafter, another
assignment round starts using the recently computed cluster cen-
ters. The iteration loop stops if all cluster centers have converged
into a stable position.

The K-means method poses a problem concerning the selec-
tion of the initial positioning of the k Clusters. A unlucky choice
could have great influence on the resulting object clustering.

K-means’ iterative behavior and the apriori unknown number
of iterations makes the cost estimation more difficult than for the
C-means algorithm. In each step, the algorithm calculates the dis-
tances between all n object and the k cluster centers, i.e. calculates
nk distances. Since k is constant, the costs are of order O(n) per
iteration step.
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Figure 2: a) Partitioning using C-means method with threshold , where
the assignment of object x is undetermined. Object y, on the other
hand, could not be assigned to any existing cluster. Therefore, it
generates a new one. b) Completely clustered scene.

Figure 3: The same scene as in fig. 2 clustered with the K-means
algorithm a) The iteration steps for the 3 cluster centroids. b)
Resulting clustered layout.
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2.2 Hierarchical Methods
Hierarchical clustering methods (HCM) are commonly used in the
area of information visualization and data mining. In contrast to
partitional clustering methods, that subdivide a set of objects into a
certain number of clusters, hierarchical clustering generates a
nested sequence of partitions. We call this a cluster tree (as shown
in fig. 4).

An agglomerative hierarchical clustering algorithm starts with n
atomic clusters, each containing exactly one object. At each step,
the algorithm merges the two most similar1 clusters and thus
decreases the total number of clusters by one. These steps recur
until only one single cluster, containing all objects, remains. Any
two clusters generated by such a procedure are either nested or dis-
joint. In contrast, divisive hierarchical clustering reverses the pro-
cess by starting with a single cluster holding all objects and
subdividing it into smaller sets [16].

Many variants of agglomerative hierarchical clustering meth-
ods are known, mainly differing in the definition of the metric
applied in updating the similarity between existing and merged
clusters.

Along with the incremental algorithms mentioned above, there
is a group of non-incremental clustering methods (e.g. CLUS-
TER/S [22]). The discussion of those algorithms is beyond the
scope of this paper, and their methods are not considered in the fol-
lowing.

In the remainer of the section we shall discuss two different
hierarchical clustering methods: the single linkage method and the
complete linkage method. For an in-depth description we refer to
[25].

Single Linkage Method
Another straightforward and quick clustering technique is called
single linkage method (SLM) or nearest neighbor technique. For
this algorithm we define the distance between two clusters as the
minimal spacing between two arbitrary objects, each located in
two different clusters. Assume that dij is the distance between
object obji from cluster clusti and object objj from cluster clustj.
Then, the distance Dij between clusters clusti and clustj is defined
as

. (3)

That means we measure distances between two clusters as the dis-
tance of the closest pair of objects each belonging to a different
cluster. The SLM synthesizes clusters analogous to the general
description found at the beginning of this section.
A problem of SLM is the algorithm’s tendence to generously
accept object chains as clusters. Assume we have an object config-
uration like the one shown in fig. 5. The SLM would string objects
between A and B to a chain. Thus, objects A and B will be

assigned to the same cluster. SLM generates three clusters (drawn
with a solid line). Building only two clusters (shown with a dotted
line) would be a superior solution.

Unlike centroid-based algorithms, this method could discover
clusters of arbitrary shape and different size. Unfortunately, the
procedure is highly susceptible to noise and outliers.

To build up the cluster tree, the single linkage method has to
compute the pairwise distance between every two objects, i.e. sup-
posed we have n objects, we have to perform dis-
tance evaluations per iteration, which dearly is of order
over all n iteration steps.

Complete Linkage Method

Another clustering method, the complete linkage method (CLM),
takes into account the chain formation and defines the distance
between two clusters Dij as the maximal distance between two of
their objects

(4)

Supposed we run the CLM on an object topology that already con-
tains two shorter cluster chains, the distance between the two clus-
ters is now defined by the two furthest away objects not located in
the same cluster. This is equal to the distance of the outermost
object on the one side of a chain and the outermost object on the
other side of the other chain. Thus, chain formation is suppressed.

As mentioned at the beginning of this section, there are many other
well known clustering algorithms, i.e. BIRCH [24], which is basi-
cally an extension of the K-means clustering, but adequately
addresses the problem of large datasets. CURE [11] remedies the
drawback of single centroid representation by taking advantage of
a multi-centroid representation of clusters. Hence this algorithm is
more robust to outliers and identifies clusters varying in size and
having non-spherical shapes. A recent approach is called CHAME-
LEON [17], a hierarchical clustering algorithm that measures
inter-cluster similarity based on a dynamic model. In addition to
other algorithms, CHAMELEON clustering is based not only on
vicinity of objects but also considers corresponding connectivity
information. This combination results in a robust handling of data
that consists of clusters being of different shape, size or density.

2.3 Cluster Visualization Methods

There is quite a large number of algorithms and systems treating
the subject of cluster visualization. Practically all of them take the
problem of cluster visualization simply as a layout problem, thus
focusing on optimizing the computation and spatial grouping of
crowds of single data objects. The visualization then is limited to
drawing just a simple shape (dot, icon, glyph, etc.) for each data

Figure 4: a) Probable object arrangement with 8 objects. b) Corresponding
cluster tree with 4 levels generated by an agglomerative, hierar-
chical clustering algorithm

1In the current context similarity of two objects is defined by the
inverse of their distance. Thus the algorithm merges the two
closest clusters in each step.
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object (shown in fig. 6a). Thus, the actual visual clustering process
is rather done by the user’s perceptual system than by the visual-
ization system itself.

There are two reasons to go a step further: first today’s graph-
ics hardware, though current progress in this area is tremendous, is
not yet ready for the data volumes we would like to address with
present data management systems (i.e. data warehouses). Second,
the user’s perceptual system should be relieved of gathering single
points to a cluster object. In order to speed up the decision making
process and to increase the decision’s quality, cluster visualization
has to take the step to the next higher level of visual representation.

Only a few approaches make an effort in this direction. Some
of the systems attempt to break down complexity by running a pre-
clustering algorithm on the initial dataset. Afterwards the system
confines itself to displaying only objects on a chosen clustering
level, where clusters are represented by a simple shape at the posi-
tion of their centroids. Doing so, we lose most of the information
contained in a cluster. Only the cluster’s position is visible to the
user. Information about the internal object distribution, including
size, orientation and variation is visually not available to the user.

Initial work about a more powerful visualization method is
reported in [13], where wrapping hyperspheres accomplish the
clustering of data objects. Furthermore, some of the authors of this
paper proposed a PCA-based technique in [20] where the basic
idea was to wrap ellipsoids around each object group whose shape
is controlled by the principal components of the respective cluster
(shown in fig. 6b). In either approach restriction to a quadric sur-
face representation of the clustering hull represents an unnecessary
restriction. The internal object distribution is only rough approxi-
mated, as well in size as in orientation. This drawback gets
addressed by an algorithm called BLOB-clustering [20], the funda-
mental idea of which is to use blob functions combined with a
marching cube [3] algorithm to represent the enfolding cluster sur-
face (see fig. 6c). The generated shape represents the distribution
of the included data objects in the best possible manner.

However, all of the cluster visualization methods mentioned
above are limited to work only based on partitioning clustering
algorithms. Non of them takes advantage of the hierarchical infor-
mation cluster structures inherently contain. Therefore, we propose
a new simple and fast clustering technique that has its strength in
the visualization of hierarchical clustering structures, say cluster
trees.

3 H-BLOB: HIERARCHICAL CLUSTER
VISUALIZATION USING ISOSURFACES

The H-BLOB (Hierarchical BLOB) algorithm is considered to be a
direct derivative of the BLOB clustering method, extended by the
capability to handle hierarchical settings. In fact, it is a combina-

tion of techniques and algorithms described in preceding sections,
each one applied on a preferable subtask corresponding to their
strengths.

The algorithm can be split into two stages, starting with an
analytical clustering process building up a cluster tree, which is
followed by the hierarchical cluster surface computation in combi-
nation with the visualization process.

3.1 Stage I: Edge Collapse Clustering 
Inspired by the persuasive idea of the edge collapsing algorithm
presented in [15], we propose a new simple and efficient clustering
method, called edge collapse clustering (ECC).

The algorithm we present, belongs to the category of agglom-
erative hierarchical clustering methods. Thus, the general struc-
ture is very similar to the methods presented in Section 2.2.

In contrast to the linkage methods the ECC bases on centroids;
hence, it only works in coordinate space. We define the distance
Dij between two clusters clusti and clustj as the distance between
their centroids ci and cj

. (5)

The process of cluster merging works analogous to the process
shown in Section 2.2, but with the following extension:

All clusters clusti obtain a weight wi corresponding to the num-
ber of objects contained in clusti. The weight wi is initialized with a
value of one. With each iteration, the algorithm merges the two
closest clusters, i.e. the pair of clusters with minimal distance Dij,
into a new one, called clustnew with centroid cnew. At the same
time, the parameters of the new cluster are updated corresponding
to the formulas below:

(6)

(7)

If the two clusters are of different weight, the new cluster will
be located closer to the heavier, i.e. larger cluster, which is desir-
able in praxis.

Fig. 7 illustrates the algorithm by means of an example with 5
objects spread on a plane. Each iteration step is shown on a sepa-
rate line, with the actual object arrangement in the left half and the
current cluster tree on the opposite side. Starting with 5 single
objects, the ECC algorithm merges them into a single cluster after
the same number of iteration steps. The thicker line, highlights the
edge to be collapsed next.

Since each cluster is defined by its centroid only and as the dis-
tance metric depends only on the centroid’s coordinates, every two
clusters are virtually interconnected with exactly one edge of
length Dij. Consequently, ECC takes advantage of the inherent

b)a) c)

Figure 6: Different techniques to visualize clusters of data objects. a) cluster represented by a cluttered group of single objects b) visualization with ellipsoidal
surfaces wrapped around clusters c) objects visually combined by a BLOB surface.
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hierarchical structure of a cluster tree. The computational com-
plexity for each iteration step is defined by the corresponding num-
ber of clusters. This is an advantage compared to the linkage
algorithms, which always operate on the initial set of all single
objects. Hence, the ECC algorithm is computational less complex
than linkage methods.

The disadvantages concerning the fragile user-driven parame-
ter preselection of the C- and K-means methods do not apply for
ECC. Although this technique is partly based on centroids, it is
more stable with respect to unconstrained shapes and different
cluster sizes than C- and K-means. The effect of chain formation
does not occur for ECC.

Unfortunately, the ECC is still in the same polynomial order as
the linkage techniques. It also preforms n iterations steps and com-
putes in each of the steps distances. Since ECC
computes distances based on centroids we get a triangular cost
scheme over all iterations, which results in an complexity of order

regarding the number of computed distances.

3.2 Stage II: Cluster Tree Visualization

The cluster tree generated as a result of the first stage must now be
visualized, Each hierarchy level should be handled separately, i.e.
we compute a separate surrounding surface for each cluster at a
specific hierarchy level.

As a basic idea we devote resources to the BLOB algorithm
described in [10]. The fundamental idea of BLOB clustering is to
give each object a spatial extension by attaching a spherical primi-
tive to its center. In general a primitive is a working model com-
prising a parameterized oriented shape and a corresponding 3D
field function . Primitives and their parameterization
will be explained in more detail in the next section.

To compute a BLOB surface, we superimpose all field func-
tions in space and accordingly run a marching cube
algorithm [3] to extract the implicit surface at a given isovalue.
The subsequent sections explain how we extend this algorithm in
order to handle hierarchical cluster structures efficiently.

Visualization using BLOBS
As a straightforward approach to visualize a single cluster on a

given cluster level, we could assume a scenario where a primitive
is attached to each of the cluster’s objects. Supposed we choose a
skillful parameterization of those primitives, we could accomplish
an isosurface, that fully encloses all objects and the visualization
problem would be superficially solved.

Even if this approach results in fair visual results, it has a tre-
mendous handicap. For very large clusters holding a huge number
of single objects the computational cost rises excessively. That
effect occurs because in order to perform an isosurface extraction
we have to evaluate the superimposed field at given points in space
which involves the evaluation of the field equation for every single
primitive. The problem could be eased if we find a way to limit the
number of primitives during visualization.

We consider the cluster tree shown in fig. 8, subdivided into 3
hierarchical levels. The topmost cluster on level I contains all 5
objects (ABCDE). If we intend to visualize this cluster, we have to
take into account five different primitives – one for each object.

To limit the number of primitives we propose the following
approach: instead of attaching primitives to every single object, we
just consider the objects one level below the level of interest. Thus,
in order to visualize the cluster in level I we attach primitives to the
level II cluster objects, i.e. to the clusters (ABC), (D) and (E). Or,
if we aim to visualize clusters of level II, we utilize cluster objects
from level III and so forth.

To provide for satisfactory results, we need to extend the char-
acteristics of the primitives used, which – in the original BLOB
paper [10] – were restricted to be of radial symmetric shape. This
is due to the fact that in contrast to the previous BLOB clustering
algorithm primitives now have to account for the properties of a
whole object set rather than of only one single object. We suggest
the extension of our concept of a primitive to an elliptical feature,
the so called ellipsoidal primitive. The following sections will give
a more exact definition.

Extension to Ellipsoidal Primitives
Ellipsoidal primitives are a direct extension to the common primi-
tives determined in [10]. The characteristics of an ellipsoidal prim-
itive is specified by an ellipsoidal shape and the field function .
For the definition of the shape and the computation of its size, ori-
entation and position we refer to [20]. The definition of is

(8)

Figure 7: a) - e) Progressive edge-collapse algorithm. Red line indicates
edge to be collapsed next. Current cluster tree levels (I-V) are
shown on the righthand side.
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Figure 8: Cluster tree with three levels. It is a condensed view on the cor-
responding tree shown in fig. 7e without displaying level II and
IV.
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where is the distance to ellipsoidal surface,
defines the maximal magnitude of the function inside the ellipsoid,
and influences the descent of the field function.

Fig. 9 compares the fields of a spherical symmetric primitive
to the field of a new ellipsoidal primitive defined by eqn. (8) on the
basis of their isolines. Inside the red area the field has a value of

.

The field of a single ellipsoidal primitive could be
described as follows: for all points inside the ellipsoid the value of
the field is uniformly . Starting at the surface of the ellipsoid the
field descents exponentially and monotonously as a function of the
distance to the surface.

Computation of Ellipsoidal Gaussian Fields
An ellipsoid is defined by its scaling matrix S, its rotation matrix R
and its center . From the diagonal elements of the scaling matrix
result the three half axes , and .

Transforming the ellipsoid into the origin will simplify subse-
quent formulas. In order to compute the value of the field function

at a point from eqn. (8), the coordinates of
have to be transformed: first, is translated by the negative

values of vector according to

. (9)

Then, is rotated by the inverse rotation matrix R:

(10)

To gather the distance between the transformed point and
the surface of the ellipsoid, it is necessary to intersect the connect-
ing line between the center of the ellipsoid – which is equal to the
origin – and the point with the ellipsoidal surface. To this aim
the line is parametrized with running from 0 to 1.

(11)

A point is located on the surface of the ellipsoid, if the
ellipsoidal equation evaluates to 1:

(12)

Substituting eqn. (11) into eqn. (12) yields for the intersection
point :

(13)

If , then the point lies within the ellipsoid.

With it could be computed using transformed coordinates:

(14)

Parameter Definition for Ellipsoidal Primitives
The ellipsoidal primitives contain the two parameters and ,
which control the descent and magnitude of the corresponding
field function. These two parameters should be determined auto-
matically, because a configuration by the user may be longsome
and instable. Whenever possible, the algorithm should disburden
the user from such decisions.

The simplest approach would be a static setting for these two
parameters. Unfortunately, this idea is not acceptable because the
visualized clusters vary too much in both scale and position. Thus,
it is impossible to find values that delivering satisfactory results
under all circumstances. The parameters have to set in context with
the underlying ellipsoid. We will discuss two possible approaches
solving this problem:

1. The heavier a cluster is, i.e. the more objects it contains,
the larger becomes the value of the magnitude of the
ellipsoid primitive’s field function.

2. The larger the maximum extension of the ellipsoid is, the
weaker becomes the descent of the ellipsoid primitive’s
field function.

Experiments have shown, rule one can lead to very big BLOB
surfaces, e.g. if the object distribution in space is dense. Hence,
this rule was dropped and a fixed value is assigned to (e.g.

=1.0).

The second rule on the other hand is considered to provide an
relevant visual feedback. The parameter is defined as

(15)

where the value for the constant factor must be determined
experimentally, yet.

Determination of Isovalues to ensure connected 
BLOB-Surfaces
According to [10] a BLOB’s shape is strongly influenced by the
corresponding isovalue . The smaller this value, the larger
the BLOB’s extension will get. In order to ensure that a BLOB
encloses all its objects the correct choice of c is crucial. In this sec-
tion, heuristics for the automatic determination of isovalues is pre-
sented.

Take the example of fig. 10a where an enclosing BLOB sur-
face for three objects A, B and C has to be computed. The indi-
cated number on the connecting edges illustrates the minimal value
of the superimposed field along the edge. In order to assure as tight
a BLOB as possible we have to look for the largest iso-value which
still guarantees that the BLOB does not break apart.

Fig. 11 shows three possible cases for the choice of an iso-
value. On the left hand side, the chosen value results in the illus-
trated split-up into two subclusters because is bigger than
the minimal field value on edges AB and BC. On the right hand
side, too small an isovalue does not provide for a distinctive shape.

Figure 9: Isolines of a) a spherical, symmetric primitive and b) a new el-
lipsoidal primitive.
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Figure 10:a) Three objects for which an enclosing tight BLOB surface has
to be found. b) Objects of a cluster with so-called outlier objects.
The interconnecting lines between outliers and the cluster center
are marked in red.
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The case illustrated in the middle seems ideal. Choosing
– bigger than the minimum on edge AB but smaller than the mini-
mal value on BC – results in a tight single BLOB surface enclosing
all objects.

This example shows how to find an ideal isovalue: look for the
biggest value that still guarantees for a single enclosing surface.
This is equivalent to choosing a value such that all objects are con-
nected by edges with minimal field value bigger or equal to the
isovalue.

There are two problems in this approach: first, graph theory
shows that it is very expensive to find a minimal spanning tree, at
least if cluster sizes approach several hundred objects. Second,
finding the minimal field value on interconnecting lines is expen-
sive too, as it is impossible to find an analytic solution for arbi-
trarily superimposed fields. In the remainder of the section, we
present an approach which in most cases yields suited isovalues.

Fig. 10b shows a constellation of several objects of a cluster
for which an enclosing BLOB surface has to be found. The red dot
marks the center of the cluster. Intuitively, objects close to cluster
center will not cause problems. In contrast thereof, it is trouble-
some to account for outliers – objects which are far apart from the
cluster’s center. Instead of looking for a minimal spanning tree for
all of the cluster’s objects we concentrate on the outliers. There-
fore, we look for the minimal field value on the interconnecting
lines between the outlier and the cluster center. Fig. 10b shows
these lines highlighted in red. The smallest value found is regarded
as a good approximation to the ideal isovalue.

We are left with the problem of finding the minimal field value
on the lines between outliers and the cluster center. To this aim, we
employ a Newton iteration scheme in order to find the zero cross-
ings of the first derivative of the superimposed field function with
regard to parametrization t of the interconnecting line

. (16)

The corresponding Newton iteration step is given by

. (17)

As it is hardly possible to find symbolic expressions for the
first and second derivative of the field function f, they are approxi-
mated in terms of central differences as follows:

(18)

As the reader may have noticed, this procedure is not guaran-
teed to find the global minimum but is highly dependent on the
choice of a favorable initial value . In order to find a good value
for , we sample the value of the field function on equidistant
points on the interconnecting line and choose to be the smallest
value found during the sampling procedure. As a matter of fact, the

outlined procedure still does not provide for finding the global
minimum. However, practice has shown, that it yields suitable
isovalues for non-pathological cases. For clusters of less than five
objects the minimal spanning tree is computed which guarantees
for the optimal isovalue.

4 IMPLEMENTATION AND RESULTS
This section documents a concrete implementation of the H-BLOB
algorithm in the context of our information visualization research
project, called IVORY. Following, on the basis of two examples
we illustrate the visual performance and versatility of our
approach.

4.1 Implementation
The algorithm has been fully implemented as a class library in
Java2. For the domain of 3D visualization we apply Java3D in the
version 1.1.2. All computational work is done on a standard PC
completed with a hardware accelerated graphics subsystem (Open
GL). Even for more complex examples we still get interactive
frame rates.

Concerning an implementation of the H-BLOB algorithm there
are two main issues. The first one affects the data structure used for
the edge collapse clustering. Since this stage of the algorithm
makes heavy use of point-to-point distance calculations and cluster
merging, together with the higher order characteristic of the prob-
lem, makes a good choice difficult. Employing standard data struc-
tures quickly leads to a performance bottleneck, mostly because of
memory shortage. Some promising work addressing this type of
problems could be found in [6]

The second issue is about the isosurface extraction. In spite of
the multi-resolution approach it remains the most time consuming
part of the algorithm. Implicit surfaces may provide very nice
shapes, but are computational very expensive. There are many
sources available to this topic, but for our prototype implementa-
tion our choice was [3].

4.2 Small World Example
This first and small example illustrates the basic properties of the
H-BLOB clustering algorithm. The scene consists of 5 single
objects each represented by a colored sphere. We present two snap-
shots of the cluster tree buildup sequence including the corre-
sponding implicit cluster surfaces generated by the H-BLOB algo-
rithm.

4.3 Document Retrieval Visualization
This example is a from a real document retrieval research project.
We applied our new technique to a hit list (result list) originate
from an intranet document query. The number of single objects is
100. For the clustering stage a maximum of 20 clusters has been

Figure 11:left: iso-value too big, BLOB breaks apart
middle: optimal iso-value, tight BLOB enclosing all objects
right: iso-value too small, non-distinctive shape
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Figure 12:Small example showing the clustering process by means of
5 simple objects. Snapshot with 4 and 2 clusters are shown. Level
indicates the hierarchy level in respect to the cluster tree.
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defined. From one picture to the next we respectively merge 50%
of the clusters, what results in 6 hierarchy levels with 20, 10, 5, 3,
2, and 1 clusters. We show 4 selected images from this session.

5 CONCLUSION
The main contributions of this paper is a new hierarchical cluster-
ing algorithm called H-BLOB, which provides an efficient level-
of-detail strategy and is consequently capable to cluster and visual-
ize very large and complex data volumes. The algorithm is subdi-
vided into two stages: Firstly, a simple and fast clustering strategy
– based on edge collapsing – computes a cluster hierarchy. Sec-
ondly, improving this hierarchical structure, the next stage visual-
izes the clusters with nested implicit shapes. The key concept is an
efficient multi-resolution setup, breaking down the structural and
visual complexity of scenes. We have shown the algorithm’s versa-
tility by experimental results, demonstrating H-BLOB’s capability
to simplify and enhance the feasibility of cluster visualization.
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