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Multiresolution Methods for Non-Manifolds Models

Andreas Hubeli, Markus Gross, Associate Member, IEEE

Abstract - The concept of fairing applied to triangular meshes with irregular connectivity has become more and more important. 
Previous contributions proposed a variety of fairing operators for manifolds and applied them to design multiresolution representa-
tions and editing tools for meshes. In this paper, we generalize these powerful techniques to handle non-manifold models. We pro-
pose a method to construct fairing operators for non-manifolds which is based on standard operators for the manifold setting. 
Furthermore, we describe novel approaches to guarantee volume preservation. We introduce various multiresolution techniques 
that allow us to represent, smooth and edit non-manifold models efficiently. Finally, we discuss a semi-automatic feature preserva-
tion strategy to retain important model information during the fairing process.

Index Terms - Boundary Representations, Surface Representations, Non-manifold, Fairing, Geometric Modeling, Triangle Deci-
mation, Multiresolution Models.

1 Introduction

1.1 Motivation: Model-Centric Graphics
In recent years, with ubiquitous low-priced, high-performance
graphics hardware conquering the desktop, the models of many
graphics applications are becoming ever more complex. Driven by
the need to manage model complexity there has been a conver-
gence of computer graphics and modeling technologies. Rather
than maintaining separate representations for modeling and render-
ing, researchers strive towards model-centric graphics, the benefits
of which include improved workflows and reduced data loss [1],
[16]. 

Most core fields of computer graphics, such as animation, have
concentrated their efforts on working with manifold surfaces, since
they can be handled more easily: non-manifold models are inher-
ently more complex to construct and to maintain. The rationale
behind this choice has been that the visual quality of a product is of
paramount importance, and other considerations, such as the topo-
logical consistency of a model, were not thought of as priorities.
By taking a model-centric view we free the artist from concerns
about topological inconsistencies and construct automatisms that
allow him to concentrate on the creative part of his work. We advo-
cate the use of non-manifold models, as built in an advanced mod-
eling framework. As an example, consider figure 1.a that depicts a
non-manifold graphics model, where the water, the land, the col-
umns, the top and bottom of the shrine and the bunny were mod-
eled separately as manifold surfaces. If these manifolds are faired
independently (figure 1.b), severe artifacts become visible. For
instance, the water does not wash against the terrain and the top
and bottom of the shrine are not connected to the columns. If the
same model is faired in a non-manifold model-centric setting (fig-
ure 1.c), the topological type of the model is preserved, and some
of its features, such as the shape of the top of the shrine, are pre-
served more accurately.

A significant step towards model-centric graphics are editing
frameworks that build multiresolution hierarchies directly from tri-
angle meshes. As a core feature, users can interactively edit and
manipulate meshes at different levels of resolution. A key ingredi-
ent of these frameworks is discrete mesh fairing, applying signal
processing techniques to meshes. However, advanced modeling
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frameworks typically build non-manifold models. We address the
issue of generalizing fairing to non-manifold models. 

In order to further understand the problem of non-manifold fair-
ing, consider the example given in figure 2.a, where two triangular
meshes intersect. Applying an adaptation of a manifold fairing
method will either remove the intersection completely, depicted in
figure 2.b, or it will generate a non-smooth model, as shown in fig-
ure 2.c. Our non-manifold fairing method, by contrast, smooths the
entire model including the two partial surfaces and the intersection
line, as presented in figure 2.d. This example will be discussed fur-
ther in section 2.3.

By extending conventional fairing operators to non-manifolds
we provide a framework that can be used to build advanced multi-
resolution and model-centric graphics representations supporting
constraints and other useful functionalities. In fairing non-mani-
fold models we approach a system capable of automation.

1.2 Related Work
Among the most popular concepts of multiresolution editing
frameworks we mention [24]. The authors used Loop subdivision
for the estimation of the high resolution mesh from the coarse rep-
resentation. Another elegant system was devised by [15], who was
the first to demonstrate the advantages of a discrete fairing method
for mesh editing. He combined a very fast multilevel smoother
with a progressive mesh algorithm for mesh simplification. These
two examples show that the key ingredients to design multiresolu-
tion mesh representations include both a fairing or subdivision
method and a mesh reduction algorithm.

Of the variety of mesh reduction methods, the most popular ones
encompass the progressive mesh of [11] that computes a sequence
of progressively refineable meshes by successive application of an
edge collapse operator. In combination with appropriate data struc-
tures [12] and error metrics [7] this method provides a very power-
ful representation for triangle meshes. Other popular methods
comprise [20] who proposes a vertex removal strategy with a local
remeshing method to successively simplify an initially dense
mesh.

In order to build such multiresolution mesh hierarchies effi-
ciently, mesh fairing has often been used as a core technology to
enhance the smoothness of a mesh. Unlike geometrically moti-
vated approaches to fairing involving the costly minimization of
fairing functionals, [23] pioneered a signal processing approach to
mesh fairing. This approach generalizes the notion of �frequency�
to meshes of arbitrary connectivity by taking the eigenfunctions of
the discretized Laplacian. Hence, mesh smoothing can be accom-
plished by attenuation of the eigenvalues associated with the �high
frequencies� of the mesh. This type of �low-pass� filtering band-
limits the mesh and produces visually appealing models. Since the
storage and computational costs are linear in the number of verti-
ces, this approach has become popular for mesh filtering. While
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Figure 1: Fairing of an artificial scene:
a) Original input scene.
b) Scene faired in the two-manifold setting: the intersections between water and land and between the columns and the top/bottom of the shrine are lost.
c) Scene faired in the non-manifold setting: the topological type of the scene is preserved and the model is smooth both along and across intersection curves.

a) b) c)

mesh fairing can be considered as a diffusion of the perturbations
over the mesh surface, [4] proposed a fast and robust implicit fair-
ing scheme using a backwards Euler integration. Another impor-
tant aspect relates to the quality of the estimation of the surface
curvature. Rather than using discretized Laplacians [4] proposed a
discrete curvature flow operator. A further important extension of
the signal processing approach to triangle meshes has been given
in [10]. They elegantly combined non-uniform subdivision with a
fairing algorithm to transform an arbitrary mesh into a multiresolu-
tion representation, where the details influence the mesh on an
increasingly coarse scale. By manipulation of individual scales,
they obtain low-, high-, and bandpass behavior, with very impres-
sive results.

We note, however, that most of the described research has been
directed towards the handling of arbitrary, but two-manifold,
meshes. In contrast, relatively little work has been conducted
towards multiresolution editing of non-manifold models. By aban-
doning topologically simple models, such as spheres and mani-
folds, and by tolerating non-manifold geometry, we obtain a new
dimension of modeling features and bring in more of the classical
Computer Aided Design functionality into graphics modeling.
Although non-manifold representations are being widely used in
modeling, there has not been any framework for multiresolution
editing of non-manifolds introduced so far.

Figure 2: The problem of non-manifold fairing:
a) Initial model.
b -c) Results obtained using simple adaptations of manifold smoothers.
d) Smooth model computed with our framework.

a) b)

c) d)

In order to devise such a framework, the described key compo-
nents have to be extended to tolerate non-manifold geometry. In
fact, multiresolution meshes in principle can accommodate topo-
logical changes [7] and extend to multidimensional simplices [18].
We are, however, not aware of any fairing framework for non-
manifolds.

1.3 Our Contribution
In this paper we present a framework to construct and interact with
non-manifold models. We demonstrate the usefulness of our tech-
niques by taking various examples including subsurface models
from the domain of geoscience. The framework comprises the fol-
lowing components:
� A novel representation for non-manifold models which allows

us to describe a large class of models and to define the semantics
of the model.

� A set of multiresolution techniques enabling users to interact
with large models. A multiresolution representation allows us to
construct topologically consistent continuous level-of-detail
approximations of our models. Based on existing fairing opera-
tors for two-manifolds we design a multilevel fairing algorithm
to remove high frequency noise for models [13]. Finally, we
construct a multiresolution editing tool for non-manifolds.

� The underlying boundary representation data structure lends
itself to model basic constraints, such as boundary conditions,
as well as seams and limits. These constraints are usually
extracted automatically from our models, but they can also be
specified manually by the user.

� The proposed data structure, in conjunction with the fairing
algorithm, enables us to define complex constraints, such as vol-
ume and feature preservation, more easily. Our volume preser-
vation strategy is applied locally. Thus, we can define volumes
in the model in a simple and consistent manner. Features are
preserved by freezing parts of the model without degrading the
quality of the fairing process.

Section 2 stresses the difference between surfaces and models and
briefly reviews the core concepts of conventional mesh fairing.
Section 3 describes the data structure used to represent non-mani-
fold models. Section 4 introduces our novel non-manifold fairing
scheme and discusses a new approach to guarantee volume preser-
vation. The multiresolution techniques built into our framework
are discussed in section 5. Finally, we outline a feature preserva-
tion strategy in section 6.

2 Surfaces versus Models
In this section we briefly review some of the existing fairing meth-
ods for manifolds. All of the algorithms being described can be
extended for usage within our smoothing framework for non-man-
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ifold models. In addition we will introduce the notions of two-
manifold and non-manifold models and stress the specifics of non-
manifold fairing.

2.1 Fairing Methods for Manifolds
We start our survey of fairing strategies by presenting a one-

dimensional fairing operator. In this setting a parameterization is
always available and thus the construction of a fairing operator is
simplified. As [4] noted, the standard 1D Laplacian assumes the
distance between the three vertices ,  and  as being
constant. If the distance between individual vertices varies sub-
stantially, the Laplacian can be improved by using, for instance,
generalized divided differences or other concepts from numerical
analysis [22] resulting in

(1)

where  and 1.
The fairing of two-dimensional triangular meshes is inherently

more complex, since in general meshes are not regular. In the fol-
lowing we summarize the most popular fairing operators that have
been proposed in recent years.

In his pioneering work [23] generalized the fairing concepts
known from signal processing to smooth irregular meshes. He
essentially constructed a matrix  providing a discrete approxi-
mation of the Laplacian for all the mesh vertices 

(2)

and he proposed to smooth the mesh  using an iterative Gaussian
filtering method:

(3)

where  is the identity matrix and  is an appropriately
selected scalar value. The construction of the matrix  determines
the properties of the fairing operator.

[15] constructed a multiresolution editing framework for meshes
with arbitrary connectivity. In order to edit surfaces effectively
they used a fairing method to remove high frequencies from the
mesh. Their fairing algorithm combines a Gaussian smoother with
an umbrella operator to approximate the Laplacian . A varia-
tional formulation states the fairing problem as a minimization of a
membrane energy and a thin plate energy of a �mesh-function�. In
order to discretize the variational formulation using divided differ-
ences the authors assumed that the vertices in the one-neighbor-
hood of every vertex  have a regular parametrization. Under this
assumption we can construct the following two operators:

(4)

corresponding to a discretization of the Laplacian  and

(5)

which corresponds to the discretization of . In (4) and in (5)
the vertices  lie in the one-neighborhood  of , and 
denotes the number of vertices in .

[4] proposed two new, improved operators to smooth two-mani-
fold surfaces. The first one extends equation (4) to better handle
meshes with differently sized triangles. To this end, each vertex 

in the one-neighborhood of  is weighted with the length  of
the edge  between  and  yielding:

 with (6)

The second operator introduced in [4] is based on the concept of
curvature flow. Surfaces are faired by moving the vertices  in the
mesh along their normals  with a speed equal to their mean cur-
vature . Hence,

(7)

The right hand side of equation (7) can be computed efficiently
for triangular meshes as

(8)

where the  and  are the angles opposite to the edge  in the
two triangles sharing , and  is the sum of the areas of the tri-
angles in the one-neighborhood of .

The authors also presented a more efficient solution of the under-
lying diffusion equation than (3) by using implicit integration. Fur-
thermore, they devised a strategy for global volume preservation
during the fairing process.

Finally, [10] described a new fairing algorithm that relies on the
minimization of second order differences  defined at every
edge e in the mesh. The new position of a vertex  is chosen to
minimize the sum of the squares of the second order differences
within the support of the vertex . From this formulation it is pos-
sible to compute a discretized Laplacian of type

, with (9)

where  stands for the extended one-neighborhood of  with
flaps, and the  are a set of coefficients depending on the geo-
metric position of the mesh vertices. More details can be found in
[10].

Figure 3 depicts the results obtained by applying the four fairing
techniques discussed in this section to a closed two-manifold sur-
face. The surface has been built with triangles of different size and
with noise added to portions of the mesh. The umbrella and
improved umbrella operators generate the results displayed in fig-
ure 3.b-c. The high frequency noise has been removed from the
mesh, but undesired tangential drifts generated triangles of similar
size. By contrast, the curvature flow and second order difference
operators produced the results illustrated in figure 3.d-e. In addi-
tion to removing high frequency noise, they preserved the relative
size of the triangles, i.e. vertices were not allowed to drift in
parameter space. 

2.2 Manifolds and Non-Manifolds
In order to better understand what follows, let us first consider the
definition of an n-manifold and a non-manifold surface [17].

Definition: an n-dimensional surface is an n-manifold if all of its
points have an open neighborhood homeomorphic to .

Definition: a n-dimensional surface is an n-manifold with bound-
aries, if every point has an open neighborhood homeomorphic to
either  or .1 Note that for  (1) corresponds to the standard Laplacian

using second order divided differences.
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Definition: a surface that does not satisfy either of the previous
definitions is called a non-manifold.

Examples of non-manifold surfaces include self-intersecting sur-
faces and T-junctions2. Various structures can be used to represent
non-manifolds. In our framework we constructed an extension of
the boundary representation data structure [19], which describes a
model using a graph: 3D volumes are bounded by 2D surfaces,
which in turn are bounded by 1D curves. Finally, 1D lines are
bounded by zero-dimensional vertices. The specifics of our repre-
sentation will be discussed in section 3.

Throughout the paper, we will also assume that the non-manifold
models are simplicial complexes, that is, the intersection of two
simplices is either empty or a simplex. An n-simplex is the convex
hull of n+1 affine independent vertices: a 0-simplex is a point, a 1-
simplex is a line segment, a 2-simplex is a triangle, and so on.

A consequence of this assumption is that models are not simply
defined as a collection of manifold surfaces. Instead, when a sur-
face is inserted into a model, the representation must be updated in
order to guarantee that the new intersection curves are represented
by sets of simplices. This boolean operation is performed by iden-
tifying the simplices involved in the intersections and by splitting
them as needed.

2.3 Why Manifold Fairing Fail on Non-Manifolds
Unfortunately, a non-manifold model cannot be smoothed by
straightforward application of the previously described operators
to all its two-manifold surfaces. The operators from section 2.1
assume that the neighborhood of a vertex  is homeomorphic to

 and, as a consequence, they are not defined at non-manifold
singularities. Naively, one could envision straightforward exten-
sions of the manifold operators to adapt them to non-manifold
models. In the following we discuss two of them using the model
illustrated in figure 2.a.

The first approach might consist in smoothing the model by fair-
ing each surface separately. In this case, both the green and the yel-
low simplicial complexes store their own geometric information.
Hence, the position of the non-manifold vertices defined on the
intersection curve would be replicated in the two complexes. Fig-
ure 2.b depicts the result when fairing this representation of the
input model. Since the green and yellow surfaces have been faired
separately and since the intersection curve has not been utilized in

the smoothing process, the resulting model is �optimally� smooth.
However, the intersection has been removed from the model. That
is, this approach does not preserve the topology information of the
intersections. Furthermore, the smooth model is no longer a sim-
plicial complex. Therefore, the model needs to be reconstructed
explicitly - a costly computational burden that has to be avoided.

A second straightforward approach consists in re-defining the
neighborhood of every non-manifold vertex  as being the union
of all the neighborhoods of  in all the simplicial complexes in
which  is defined. This definition enables us to apply simple
fairing operators to the whole model. Figure 2.c presents the
results obtained when using this approach. The model was not
smoothed at all. The problem is that the Laplacian of the non-man-
ifold vertices on the intersection is equal to zero, since the Lapla-
cians of these vertices in the yellow and green simplicial
complexes have the same magnitude, but opposite directions.

Figure 2.d illustrates what we consider a meaningful result. First
of all, the intersection curve has to be preserved. This is a key
requirement, since we do not accept to change the topology of the
model during the fairing process. Furthermore, the two 2D simpli-
cial complexes in the model are smooth, especially across the
intersection curve. Finally, all the 1D simplices in the model are
smooth, and the ten 0D simplices, represented by the green
spheres, are interpolated.

In this example we used the Umbrella operator to estimate the
Laplacian, and we avoided the shrinking problem by defining the
boundaries of the model to be 1D simplices.

3 Model Representation & Data Structure
In this section we describe the data structure we chose to represent
models. We start with a discussion of the requirements that our
representation must satisfy. We then present the data structure
implemented in our framework and conclude with a discussion of
its capabilities.

3.1 Requirements
When designing complex geometric structures, different and possi-
bly opposing requirements can be formulated. On the one hand, a
representation has to be as general as possible thus allowing us to
describe a large collection of non-manifold models. On the other
hand, we need to implement all necessary operators efficiently.
The following list summarizes the most important requirements, in
order of importance:
� Non-manifolds: A useful representation must be able to repre-

sent non-manifold models as introduced in section 2.2. This is a
strong requirement, since most of our models are non-mani-
folds.

� Operators: It must be possible to implement important opera-
tors efficiently, minimizing the storage and computational costs.
In particular, we want to define a set of efficient operators to
navigate through models.

� Semantics: The representation should allow users to describe
the semantics associated with a model. By semantics we denote
any information which is not inherently defined by the geometry
and topology of the model. For instance, the description of the
embedding of a curve into a surface should contain both the syn-
tactical information and the meaning of the embedding. Further
examples of semantics will be given in section 3.3.

� Dimension independence: The representation should be able to
describe models of arbitrary dimension. This last requirement
has been established for the following reasons: first, when
extending the boundary representation data structure, dimension
independence should be preserved. Second, many of our opera-
tors are dimension independent. Third, some of our models have

Figure 3: Fairing of manifold models:
a) Input model.
b) Fairing using the umbrella operator.
c) Fairing using the improved umbrella operator.
d) Fairing using the curvature flow operator.
e) Fairing using the second order difference operator.

2 Note that a T-junction, as presented in figure 5, can be considered
as a special case of an intersection of two manifolds.

a) b) c)

d) e)

xi
ℜ2
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xi
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components of different dimensionality that we want to repre-
sent using the same data structure.

3.2 Data Structure
Our representation is an extension of the boundary representation
introduced in [19]. The advantage of using this philosophy is that it
automatically satisfies two of the requirements expressed in sec-
tion 3.1: it is dimension independent and it describes non-manifold
models. The data structure we implemented in our framework to
represent models is summarized by the following pseudo-code
fragment:

class Model {
vector< NVertex > geometry;
vector< NFeature > features;
vector< NCell > cells;
vector< NGeometricRealization > realizations;

}

class NFeature {
vector< NGeometricRealization > realizations;

}

class NCell {
vector< NSimplex > simplices;
vector< NGeometricRealization > realizations;
vector< Embedding > embeddings;

}

class NGeometricRealization {
vector< int > localMap;

}

class Embedding {
short embeddingType;
NCell lowDimCell;
vector< NGeometricRealization > lowDimRealizations;
vector< NCell > highDimCells;
vector< NGeometricRealization > highDimRealizations;

}

A model is defined by four structures. The first is the geometry
vector storing the spatial position of every vertex in the model. By
keeping this information at the model level potential problems
caused by replication, which are common during operations such
as fairing, are avoided entirely. Next, a model is comprised of sets
of n-features, n-cells and geometric realizations, its building
blocks. We will describe each of them in the next few subsections.

N-Cells
The basic building block of a model is the n-cell. An n-cell stores

the topological structure of the elements of a model - its n-dimen-
sional simplicial complexes.

The connectivity information of the complex is encoded by the
vector of n-dimensional simplices. The indices that define a sim-
plex are not indices pointing to the geometry vector of the model,
but rather generic local indices of the n-cell. This is important
since it allows us to distinguish between the geometric and topo-
logical information of a complex.

The vector of embeddings is used to specify how the cell is
embedded into the model. For instance, it defines how and in
which higher dimensional complexes it is embedded. This data
structure will be discussed in detail subsequently.

Finally, an n-cell contains a vector of references to geometric
realizations which are used to store the geometric positions of the
n-cell in space. 

Definition: a vertex that belongs to an n-cell but to no other m-
cells, with , is called an n-vertex.

Geometric Realizations
The second building block of the model is the n-dimensional

geometric realization. This structure is used to describe an instance
of an n-cell in space. Since the simplices that make up a simplicial
complex are already defined in the n-cell, the realization only

needs to store a local map. This map relates the local indices of the
simplices to indices in the geometry vector of the model.

As we have seen in the previous section an n-cell contains the
reference to a vector of geometric realizations. Therefore, the same
topological entity can be located at different spatial positions. We
will explain in the next sections how this structure can be used to
construct general models.

N-Features
The last building block of a model is the n-feature. An n-feature

is defined as a collection of n-cells. In our case, n-features repre-
sent the original input surfaces that were used to build the model.
During the construction process any input surface can be split into
a collection of n-cells. This type of model semantics is stored in
the n-features.

In cases where no model semantics is needed n-features could
actually be left out since they do not store any geometric or topo-
logical information.

Embeddings
The embedding structure defines how an n-cell of lower dimen-

sion (which by definition is an n-manifold) is embedded into a set
of m-cells of higher dimension (which are m-manifolds). In partic-
ular, the embedding of an n-cell into a set of m-cells, 
defines the complete neighborhood of the vertices of the n-cell in
the higher dimensional cells.

In the simple case where all the n-cells possess one geometric
realization an embedding is described by a set of p pairs 

< n-Cell, m-Cell[i] > (10)
In the general case where an n-cell potentially possesses more

than one geometric realization an embedding is described by a set
of p pairs

<< n-cell, n-realization[i]>,
< m-cell[i],m-realization[i]> > (11)

Figure 4 illustrates the embedding of a zero-cell into a set of four
two-cells.

The information stored in (10) and (11) fully represents the
embedding. However, it does not specify how the lower-dimen-
sional n-cell influences the higher dimensional m-cells in the vicin-
ity of the embedding. The flexibility of the representation is
enhanced by defining different types of embeddings:
� An l-seam is an embedding that connects the higher dimensional

cells through the lower dimensional cell. The fairing framework
guarantees cross n-cell smoothness if the embedding is of this
type.

� An l-limit is an embedding that separates the higher dimensional
cells bounded by the lower-dimensional cell. The fairing frame-

m n<

Figure 4: Embedding of a zero-cell into a set of two-cells.

m n>

TC1,TR1

TC2,TR2 TC3,TR3

TC4,TR4

ZC1,ZR1

ZC: 0-cell
ZR: 0D realization
TC: 2-cell
TR: 2D realization

Embedding {
lowDimCell: ZC1
lowCellRealizations: {ZR1, ZR1, ZR1, ZR1}
highDimCell: {TC1, TC2, TC3, TC4}
highDimRealizations: {TR1, TR2, TR3, TR4}

}
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work does not provide cross n-cell smoothness if the embedding
is of this type.
Figure 5 illustrates different types of embeddings: the zero-cells,

represented by the green spheres, are embedded into the one- and
two-cells as l-limits. The one-cells represented by red lines are also
embedded as l-limits into the two-cells. The intersection curve
shown in blue is embedded as an l-seam in the yellow two-cells,
and as a limit in the green two-cell.

3.3 Discussion
The data structure presented in section 3.2 satisfies the require-

ments discussed in section 3.1: it is capable to represent non-mani-
fold models and it is dimension independent. Furthermore, the
navigation in the model can be performed efficiently, both at the
connectivity level and at the level of the n-cells.

The proposed representation is capable of a detailed description
of models. The use of geometric realizations allows us to model
topologically connected n-features that are disconnected geometri-
cally. Consider the models illustrated in figure 2.a and figure 6.a:
topologically, they are identical, except that the intersection curve
has one realization in the first model and four in the second.

The use of different embedding types allows us to influence the
behavior of the operators applied to a model. Consider the non-
manifold model presented in figure 6.a. Different semantics can be
associated with the model by changing the type of the embeddings
of a single one-cell. Smoothing these syntactically identical mod-
els using the same fairing operator results in different end configu-
rations, as illustrated by figure 6.b-d. These represent only a subset
of all possible semantics that could be defined on the model shown
in figure 6.a. The color coding of the images displays the norm of
the Laplacian of the vertices on a logarithmic scale.

This example demonstrates the flexibility and power of a repre-
sentation capable of describing the model semantics in addition to
the model syntax.

4 Model-Centric Fairing
In this section we present a new set of operators to remove high-
frequency information from non-manifold models. Models will be
smoothed by attenuating the noise from all the n-cells, while
simultaneously achieving cross-l-seams smoothness. Next, we will
describe a new set of operators to preserve the volumes in a model
exactly. Our operators are inherently dimension independent.
However, they are based on manifold operators, which could be
dimension specific.

4.1 Overview
The manifold smoothers described in section 2.1. remove high fre-
quencies by displacing the model vertices so as to minimize an
approximation of the curvature. Without restricting the generality
of our framework, we will work with an approximation of the
Laplacian for the following analysis. Other operators could be used
as well.

The goal in smoothing m-dimensional non-manifold models is to
fair all the n-cells, interpolate the zero-cells and guarantee smooth-
ness across l-seams. As we will explain subsequently, this can be
achieved by constructing an operator on top of any conventional
manifold smoother. The algorithmic flow of the resulting method
is similar to the flow of conventional smoothing algorithms, and is
summarized by the following pseudo-code fragment:

// Step 1
for n from 1 to m do
for all n-cells nC in the model do
for all vert in nC do
if vert is not present in an l-limit of nC do
nDLapl[nC][vert] = nDLaplacian(vert);

// Step 2
for n from 1 to m do
for all n-cells nC in the model do
for all vert in nC do
if vert is an n-vertex then
position[vert] = computeNewPos(vert, nDLapl[nC]);

In the first step, the approximation of the Laplacian is computed
for all the vertices in the model. An nD Laplacian is computed for
all the vertices present in an n-cell, which do not lie on an l-limit
embedded in the cell. By this definition, it might be necessary to
compute multiple Laplacians for a vertex, such as for vertices
defined in an m-cell embedded in an n-cell as an l-seam, where
both an nD and an mD Laplacians need to be computed.

The core of our framework is the function computeNewPos() in
the second step, where the new position  for all vertices  must
be computed. Immediate use of simple approaches such as (3)
would not generate fair models, since cross-l-seam smoothness
cannot be guaranteed. Instead, the new position  for the vertex

 is chosen to minimize a weighted sum of the Laplacian  and
the Laplacians  of the vertices  in the one-ring of ,
thereby increasing the support of the vertices in the model. This
allows us eventually to smooth all the n-cells in a model, interpo-
late the zero-cells, and obtain cross-l-seam smoothness.

Note that depending on the choice of the underlying operator we
will minimize different functionals, such as the ones reviewed in
section 2.1.

4.2 A Fairing Functional for Non-Manifolds
The first step in the pseudo-code algorithm presented in the previ-
ous subsection can be computed using any existing fairing opera-
tor. The basic principle behind our approach for the second step is
to increase the support of a vertex , so that during the fairing

Figure 5: The intersection curve is embedded as an l-limit in the green two-cell and
as an l-seam in the yellow two-cell.

Figure 6: Fairing operator applied to syntactically identical models:
a) Input model.
b) Seams connect the two-cells diagonally.
c) Seams connect the two-cells vertically.
d) Seams connect the bottom-left two-cell to all other two-cells.

Intersection curve

a) b)

c) d)
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process it will not only minimize its own Laplacian , but also
the Laplacian  of its neighboring vertices . Formally, the
new position  of a vertex  is computed using equation (12):

(12)

The term  represents a weight associated with the Laplacian
 of the vertex . Note that the weight  controls the

importance of the curvature of an individual vertex  with respect
to the fairing process. In section 4.4 we will present a strategy to
choose these weights.

Equation (12) increases the support of the vertex i. For instance,
if the original operator had a support over the one-neighborhood of
i, then (12) extends its support over the two-neighborhood of i.
This is a fundamental property, since it allows us to achieve cross-
l-seam smoothness without having to displace any of the vertices
on the l-seams.

We start our investigation by assuming that the Laplacian 
for a vertex k is computed as

(13)

The general definition of the Laplacian given in (13) allows us to
represent all the operators described in section 2.1. If new fairing
operators will be designed in the future, a redefinition of (13)
could be required. Both definitions specified by (12) and (13) are
dimension independent. However, since not all the manifold opera-
tors are dimension independent, we will assume that the vertex  is
a 2-vertex.

The minimization problem defined by (12) and (13) does not
have a unique solution. In the following subsection we will present
two approaches that minimize the 2-norm and the -norm respec-
tively. Furthermore, we will describe a simple approach to force
any vertex  to move only along its Laplacian.

Minimization of the 2-norm
The new vertex position  can be computed by solving an

 system of equations using a least squares method. We
start with the following system:

(14)

which depicts the ideal solution where all the Laplacians are zero.
We can construct a linear system of equations from (14) using def-
inition (13), which yields:

(15)

Note that if we plug equation (13) into (15)  would disappear
from the right hand side of the system.

The new position  of the vertex , which best solves (15) with
respect to the two-norm, can be computed using a least squares
approach that yields the normal equation (16):

(16)

We do not make any assumption about the Laplacians ,
except for the definition given in (13): the values  are used as
approximations of the curvature at every vertex . Equation (16)
essentially states the fundamental relationship used to compute the
new position  of the vertex  analytically from the old position

. This confirms our claim that we can use any of the manifold
smoothers presented in section 2.1.

The ideas behind the functional described in this section are
demonstrated by an example in figure 7: figure 7.a depicts the
Laplacian computed at every vertex using a manifold smoother,
while figure 7.b shows the new displacements computed using
equation (16). Finally, figure 7.d illustrates the smooth surface
generated by the fairing operator.

Minimization of the -norm
The new position  of the vertex i that minimizes the -norm

can be computed by solving an  system of equations
similar to (14) using the definition (13):

 (17)

This system describes a set of displacement vectors of the vertex
 that minimizes the Laplacian of  and the Laplacian of its neigh-

bors, weighted by a factor of .
The displacement vector that minimizes the residual of (17)

according to the -norm can be constructed by computing the
bounding box of all the displacement vectors defined in (17). The
new position of the vertex  is then computed from the extrema of
the bounding box  as

(18)

Displacement along the Laplacian
The two solutions presented in the previous subsection do not

necessarily move vertices along their Laplacian. If this is a require-
ment of the user or the application, a post-processing step can be
added to the fairing operator.

Given a vertex , its old position  and the new position 
computed with either of the two methods described above, we need
to find the vertex  closest to  along the Laplacian of . This
is achieved in two steps. First by solving

∆xi
∆xj xj

xi' i

xi'  min ωi j, ∆xj⋅( )2

j N1 i( )∈
∑ ωi i, ∆xi⋅( )2+

 
 
 

arg=

ωi j,
∆xj xj ωi j,

j

∆xk

∆xi ci j, xj
j N1 i( )∈
∑ xi�=

i

∞

i

xi'
n 1+( ) 1×

ωi i, ∆xi 0=

ωi j1, ∆xj1
0=

…
ωi jn, ∆xjn

0=

ωi i,

ω� i j1, cj1 i,

…
ω� i jn, cjn i,

xi'⋅

ωi i, ∆xi xi+( )

ωi j1, ∆xj1
cj1 i, xi�( )

…
ωi jn, ∆xjn

cjn i, xi�( )

=

xi

xi' i

Figure 7: Illustration of the fairing functional:
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d) Smoothed surface that interpolates the l-seams (in blue).
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(19)

using a least squares approach in  and then by computing
the resulting vertex position  as

(20)

4.3 Volume Preservation
An important extension to the standard fairing technique is vol-

ume preservation. The nature of the fairing process, similar to a
diffusion process, changes the volume of the model. This side
effect can cause problems in particular applications such as fluid
flow simulation. Previous contributions solved this problem using
two different strategies:
� The first approach, introduced in [23], consists in applying an

un-shrinking step after each fairing step. This is accomplished
by re-applying equation (3) using a negative constant 
instead of .

� The second approach, presented in [4], preserves the volume
defined by a surface globally by first computing its volume, and
then rescaling the surface after every fairing step to guarantee
exact global volume preservation.
Both approaches are not adequate in the non-manifold setting.

The first approach has the drawback of not preserving volumes
exactly, as noted in [4]. The second approach is not applicable,
since many models do not have only one volume that must be pre-
served, but possibly a very large number of them.

In the following we will present a novel volume preservation
strategy, which is efficient, exact, and can be applied to arbitrarily
complex models. Instead of preserving the volume globally, simi-
lar to the other two approaches, we will preserve volumes locally.
This idea is motivated by the following observation: when a vertex

 is smoothed the change of the volume  can be computed
locally. This is accomplished by calculating the volumes of the tet-
rahedra defined by the triangles in the one-neighborhood of  and
the new position  of . Thus, we can compensate for  by
moving the vertices in the one-neighborhood of  into the �oppo-
site� direction that we moved , as shown in the example pre-
sented in figure 8.

Figure 8 illustrates the volume preserving fairing operator step
by step. The first step consists in smoothing the vertex . The
change of the geometric position of  introduces a change in the
volume, which can be computed efficiently using equation (21).

(21)

where the operator  represents the determinant of the 
matrices used to evaluate the volume of the associated tetrahedra.
We observed reasonable numerical stability, however, it is possible
to use alternative approaches, such as [9].

The change in volume  can be compensated locally by dis-
placing the neighboring vertices of , as shown in figure 8.c. We
propose three different strategies to perform this operation, provid-
ing a trade-off between the computational efficiency and the
robustness of the algorithm.

Linear problem
The simplest strategy consists in displacing all the neighboring

vertices of  along the same vector. In our implementation we
chose this vector to be the Laplacian  of the vertex . This
approach has the advantage of reducing the problem to a linear
system of equations that can be solved efficiently.

Each of the vertices  in the one-neighborhood of  is forced
to compensate for a part  of , where

(22)

Since all the neighboring vertices are moved along the same vec-
tor, it can be shown that the displacement vectors can be computed
independently for all neighbors. The displacement for the neighbor

 is computed by solving the linear equation

(23)

with respect to t. Hence, the new position  of  is computed as

(24)

The advantage of this approach is that all the neighboring verti-
ces can be handled separately, thus reducing the computations
required. However, this technique is not always stable, since all the
neighboring vertices are displaced along the same vector, poten-
tially leading to degeneracies in the results.

Pseudo non-linear problem
The robustness of the volume preserving operator can be

improved by displacing the neighboring vertices of  along dif-
ferent vectors. We decided to move them along their normals in
order to minimize the displacement required to compensate for the
change in volume .

This strategy, while being more robust, is less efficient than the
linear approach for two reasons: the system of generated equations
is non-linear, and the volume preservation problem must be solved
for the entire neighborhood of  simultaneously. The operator
presented in this subsection avoids these two potential bottlenecks
by using a simple strategy similar in spirit to Gauss-Seidel: the j-th
neighbor of  is forced to compensate for a part  of , as in
the previous approach. This leads to a system similar to (23):

(25)

where  represents the normal of the vertex . In order to pre-
serve the volume exactly, the newly computed position of the first
j-1 neighbors of  is used to solve the system (25). We solve with
respect to t, and compute the new position  of  as

Figure 8: Local volume preservation:
a) Model before fairing.
b) The vertex xi is smoothed.
c) The neighboring vertices xj of xi compensate for the change in volume.
d) Final model after fairing and volume preservation.
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(26)

This second approach, while being non-linear in nature, uses the
same linear system as the one described in the previous subsection.
It guarantees an exact volume preservation, and it is efficient.
However, the displacement of the neighbors of  is not symmet-
ric, since the vertices are moved using a Gauss-Seidel-like strat-
egy, which could lead to unsatisfactory results in certain
applications.

Non-linear problem
The best quality is obtained by solving the non-linear volume

preservation problem. As in the previous approach, vertices are
moved along their normals to compensate for the change in vol-
ume .

The volume preservation problem can be formulated as follows:
the neighboring vertices of  are displaced along their normals at
the same speed, until the change in volume  is compensated. In
the simplest configuration, where the neighborhood of  is con-
vex, the change in volume introduced by the displacement of the
adjacent vertices of  is described by (27):

(27)

where the matrix  is defined as

(28)

if the k-th neighbor of  is also the (j-1)-th neighbor of , and

(29)

otherwise. The determinant of the matrix defined in (28) leads to a
quadratic polynomial in t, whereas the determinant of the matrix
defined in (29) provides a linear polynomial in t. The resulting sys-
tem can be formulated as

(30)

In general, equation (30) has two solutions which describe how
to displace the neighboring vertices to achieve volume preserva-
tion. We choose the solution with smallest absolute value, since it
minimizes the norm of the displacement vectors. Their new posi-
tion is then computed using (26).

Example
Since the operations of the three approaches are local, the overall

shape of the model is not changed by the volume preserving fairing
operator. Consider the simple V-shaped manifold depicted in fig-
ure 9: if we apply our volume preservation operators to this model
they will smooth it while preserving its volume and its shape,
whereas a global volume preservation strategy would return a flat
plane in the limit.

As opposed to [4], the local volume preservation strategies we
discussed are part of a diffusion process. Thus, we are faced with
potential convergence problems. We did not observe any degenera-
cies, especially when using the pseudo-linear and the non-linear
operators. However, if the problem occurs, we recommend to
attack it by choosing  in equation (3) sufficiently small. This
leads to a slower convergence, but it increases the stability of the
Euler iteration.

4.4 Computation of Weights
In equation (14) and (17) a set of weights  has been used that

controls the importance of the different Laplacians. In our frame-
work we developed a simple strategy to select those weights allow-
ing us to achieve reasonable cross-l-seam smoothness.

Our approach is simple: we want to assign larger weight values
to vertices that are closer to embeddings of type l-seam, and
smaller weights to vertices that are farther away. We accomplish
this in two steps.

We first compute the distance  from each vertex  to the
closest l-seam. For the examples depicted in this paper we used a
topological measure, where the distance between two vertices 
and  equals the minimum number of edges traversed to get from

 to .
Next, the weight  for each vertex  is computed as the ratio

between the distance  of  and the maximum distance  of
any mesh vertex to the closest l-seam or zero-vertex whose path
goes through :

(31)

where  is a user specified maximum weight. Figure 7.c shows a
colormap of the weights associated with the vertices in the model:
blue corresponds to small values, yellow to high values. We have
chosen a linear function to model the weights, since it was suffi-
cient for our needs. However, our framework can use any other
function in its place.

During the smoothing step of a vertex  the weight associated
with a neighboring vertex  is chosen as follows:

(32)

where  is the number of neighbors  of  that satisfy .
As a consequence, the new position of the vertex  is chosen to
minimize its curvature plus the curvature of the vertices that are
closer to an l-seam.

If the model does not contain any l-seam, our operator would
reduce to the standard two-manifold operator, and the weights
would be defined as:

(33)

4.5 Boundary Conditions
Real-world models usually have boundaries, i.e. they are created

from a set of n-dimensional manifolds with boundaries. The
boundaries in our models are handled in the same way we handle
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Figure 10: Multilevel fairing of a geological model:
a) Original model.
b) Wireframe of the original model.
c) Wireframe of the simplified model.
d) Smoothed model in full resolution.

a) b) c) d)

any other m-cell: they are smoothed using an m-dimensional fair-
ing operator. This approach guarantees smooth boundaries, and
since they are represented as embeddings in a higher dimensional
n-cell, no special operator has to be defined for the case where the
neighborhood of a vertex  is homeomorphic to .

For the time being we are not applying additional constraints on
the boundaries, but constraints could easily be included into the
model. This could be done for example by specifying the deriva-
tive or the curvature at the boundary vertices [2]. Using this infor-
mation we would treat the boundaries as l-seams, which enables us
to construct approximations of the mD Laplacians for the boundary
vertices.

5 Multiresolution Techniques
The models used in many applications can be arbitrarily large and
complex, both topologically and in the number of vertices and sim-
plices present in them. In order to handle very large datasets, mul-
tiresolution techniques are a key ingredient of any representation.
In the following we introduce three concepts for interactive model-
ing: a multiresolution representation of models, a multilevel fair-
ing technique, and a multiresolution editing tool.

5.1 Multiresolution Representation
A multiresolution representation is an important component that

allows us to construct approximations of the input models, a fea-
ture required in interactive modeling and visualization systems.

In our framework, we extended the progressive mesh algorithm
described in [11] and [12] to handle non-manifold models. We
modified the edge collapse operator to meet the underlying bound-
ary representation of our models: n-vertices can only be collapsed
into m-vertices, . For example a one-vertex is to be col-
lapsed into one of its two neighbors in a one-cell, but with no two-
vertex in a two-cell. The collapse of an m-vertex does not only

Figure 11: Collapse of a vertex of a one-feature in our boundary representation:
a) Before edge collapse.
b) After edge collapse.

xi ℜ+
n

a) b)

Vertex being removed

m n≤

change the connectivity information of its m-cell, but also all the
higher dimensional n-cells where the m-cell is embedded, as dem-
onstrated by the example depicted in figure 11.

Although in theory the multiresolution representation could be
defined for n-dimensional models, we confine our discussion to
models that only contain n-cell, .

During the construction of the multiresolution representation, we
guided the simplification process in order to generate approxima-
tions of good quality. In particular, we checked for degeneracies in
the mesh, such as folded or badly shaped triangles. A rigorous
analysis of the problem can be found in [5]. It should be noted that
bubbling can occur, where the removal of a vertex from a model
introduces new self-intersections. The solution to this problem is
outside the scope of our paper; if it has to be avoided, global tests
must be performed after every edge collapse operation [21].

The geometric position  of the vertex i removed by an edge
collapse can be encoded in different ways: by storing its absolute
position, its relative position, or by using local frames [6], [15]. In
our implementation we use the latter one and a generic prolonga-
tion operator , which can be considered as a non-uniform subdi-
vision operator, to approximate the position  of the vertex  that
is being re-introduced into the mesh. The distance between the
exact position  and  is then stored in a local frame.

5.2 Multilevel Fairing
A multilevel fairing scheme has several advantages over flat

fairing approaches. First of all, models can be smoothed in fewer
iterations, thus speeding up the algorithm. More importantly,
explicit solvers based on a Gauss-Seidel iteration scheme only
smooth high frequencies efficiently. This is caused by the fact that
the filtering process attenuates the eigenvectors with largest corre-
sponding eigenvalues referring to the high mesh frequencies [8].
Lower frequencies however can be attenuated effectively by
applying the fairing operator on a coarse approximation of the
input model.

We implemented a multilevel fairing operator as a full V-cycle,
which can be described as

(34)

The input model  is first smoothed using (16), denoted by the
term  in (34). Next, the model is simplified using our
extension of the progressive mesh scheme, denoted by the operator

. These two operations are applied  times, until we obtain a
coarse approximation of the model. This approximation is then
refined using the prolongation operator , which re-introduces
vertices into the model. Since we use (16) as our prolongation
operator, the resulting refinement will be smooth. After that, the
model is smoothed once again using (16). These two operations
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Figure 12: Fairing of a complex geological model:
a-b) Input model visualized from different viewpoints.
c-d) Faired model visualized from the same viewpoints.

a)

b) d)

c)

must also be repeated  times to reconstruct a model that has the
same connectivity as the input model.

We show in figure 10 how a geological model is smoothed using
this approach: figure 10.a-b illustrate the input model. After the
first half of the V-cycle has been computed, we obtain a coarse
approximation of the model, depicted by figure 10.c. Finally, the
second half of the V-cycle is performed, providing the full-resolu-
tion smooth model shown in figure 10.d.

Since the surfaces in the example of figure 10 are height fields,
we constructed a robust global parametrization for all the two-fea-
tures in the model. This allowed us to map textures to the model
and to avoid tearing problems caused by the drifting of vertices
encountered during the fairing process.

Figure 12.a-b present a more complex geological model that was
faired using our techniques. The input model has been constructed
from three real-world layer interfaces, an artificial salt dome and
two artificial faults. The model generated by these six two-mani-
folds consists of 216�316 vertices, 253 two-cells, 407 one-cells,
and 342 zero-cells. The framework automatically reconstructed six
two-features, the input surfaces and 292 one-features. Figure 12.c-
d depict the smoothed model from the same viewing directions
than figure 12.a-b.

5.3 Multiresolution Editing
A fundamental functionality of any modeling system is an edit-

ing tool. Although extensive literature is available on editing tech-
niques for manifold surfaces, including regular [6], semi-regular
[24] and irregular [15] connectivity, editing tools for non-manifold
models are not as common. The standard solution consists in pull-
ing the two-manifold components out of a model, edit them out-
side the model and re-insert them into the model afterwards.

Our approach to editing is to extend standard editing techniques
for two-manifolds to the non-manifold setting, and provide some
of the basic functionalities. The main advantage of model centric

n editing is that changes can be immediately propagated into the
model and are not confined to a single cell.

Ideally, edit operations should not affect the high frequency
information of a model, but only change the structural low-fre-
quencies. With this in mind, an edit operation is performed in four
steps:
I. First, the user is required to define a handle which will be used

in subsequent edit operations. This object is represented inter-
nally either as a zero- or one-cell embedded as an l-seam in the
two-cell that is being edited.

II. The high frequency information is stored in local frames. This
is accomplished by computing the smooth base domain of the
model using the multilevel fairing operator defined in section
5.2. The details that describe the difference between the input
model and its base domain correspond to the high frequency
information that must be encoded. We refer the user to [15],
where a similar technique is described for manifold meshes.

III. The model is edited by moving the handle in the model, either
by translating or rotating all the vertices in the handle.

IV. The position of all the vertices in the model is recomputed each
time the handle position changes. The new base domain of the
model is computed using the multilevel fairing operator by
freezing the user-defined position of the handle vertices, and
the high frequency information is extracted from the local
frames.

Figure 13 illustrates how a model is edited, step by step. The
input model is depicted in figure 13.a. The user-defined handle and
the base domain of the model are illustrated in figure 13.b. After
the handle has been moved, a new base domain that interpolates
the edited handle is computed as shown in figure 13.c. In a final
step, the high frequency information encoded in local frames is re-
introduced into the model, as depicted in figure 13.d. The color
coding of the models in figure 13 show the magnitude of the
Laplacian at every vertex in the model, using a logarithmic scale.
This information is particularly useful to compare the input model
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and the edited model: the structural information changed, but the
high frequency details have been preserved.

6 Feature Preservation
One of the prominent applications of mesh fairing is the removal
of noise from meshes that are acquired from real world data, such
as meshes constructed from laser-scanners or from seismic data.
The noise is usually introduced by imperfect acquisition systems,
and it has to be removed in order to reconstruct the original shape.

The conventional fairing operators that have been constructed so
far do not distinguish between noise and features, however. That
is, during the fairing process special features of meshes might be
removed. Although alternate approaches based on anisotropic dif-
fusion exist [3], it is difficult to obtain high quality results that pre-
serve features.

In this section we will briefly discuss two issues related to fea-
ture preservation: the detection of features in the model and a strat-
egy to guarantee feature-preservation in the smoothing process.
Feature information is either provided by the user, or it must be
extracted automatically. In our framework we use the semi-auto-
matic extraction technique presented in [14], which can be applied
to two-manifold surfaces with arbitrary connectivity. Additional
details on the detection step are outside the scope of this paper and
can be found in the reference.

In our framework, we approach the feature preservation problem
by exploiting the properties of our boundary representation data
structure. Features are modeled as n-cells, and in particular as
zero- or one-cells embedded in higher dimensional cells. The type
of embedding specifies how features are to be preserved: features
embedded as l-limits will not provide cross-feature smoothness,
while features embedded as l-seams will provide cross-feature
smoothness. Note that either type of embedding will preserve the
feature: a zero-vertex will be interpolated regardless of how it is
embedded into a higher dimensional cell.

In figure 14 we depict the result of applying this simple strategy
to a model. In this example we set six vertices on the top of the V-
shaped manifold as zero-vertices. We observe that the algorithm
smoothed the model while preserving its overall shape and the six
interpolatory constraints.

Taubin presented in [23] a different approach to compute a
smooth interpolation of vertices. The drawback of his approach,
however, is that in order to achieve smooth surfaces using interpo-
latory constraints, it is first necessary to compute a set of smooth
surfaces. In a second step, a linear system of equations must be
solved having the same size as the number of vertices to be
smoothly interpolated. Furthermore, if the fairing operator requires
geometric information, this problem must be solved for each itera-

tion. In our approach, the boundary representation data structure
gives us feature preservation at no additional cost.

7 Conclusion and Future Work
In this paper we presented a framework for the representation of
non-manifold models based on fairing operators. We constructed a
set of fairing operators for models, and used them to define
advanced modeling tools, including multi-level smoothing and
editing operators. We also introduced important extensions to our
framework that allow us to guarantee volume and feature preserva-
tion.

We consider the described framework as a core technology
enabling us to construct a multi-resolution representation of non-
manifold models. Future work comprises the construction of new
manifold operators, adaptive visualization techniques and a fea-
ture-rich modeling system. Furthermore, we plan to develop robust
texture parametrization methods that are independent of the fairing
operator and of the topological type of the two-cells.
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