
1 of 8

Multiresolution Feature Extraction from Unstructured Meshes
Andreas Hubeli, Markus Gross

Department of Computer Science
ETH Zurich, Switzerland

Abstract
We present a framework to extract mesh features from unstruc-

tured two-manifold surfaces. Our method computes a collection of
piecewise linear curves describing the salient features of surfaces,
such as edges and ridge lines. We extend these basic techniques to
a multiresolution setting which improves the quality of the results
and accelerates the extraction process. The framework is semi-
automatic, that is, the user is required to input a few control param-
eters and to select the operators to be applied to the input surface.
Our mesh feature extraction algorithm can be used as a preproces-
sor for a variety of applications in geometric modeling including
mesh fairing and subdivision.

CR Descriptors: Surface Representations, Geometric Modeling,
Triangle Decimation, Multiresolution Models, Feature Extraction.

1 Introduction

1.1 Motivation
Recent advances in acquisition systems have resulted in the

ready creation of very large, densely sampled surfaces, usually
represented as triangle meshes. The impossibility of real-time
interaction with these large models has motivated many research-
ers in the computer graphics community to design advanced mesh
processing methods including subsampling, restructuring, fairing
and others.

The early approaches, such as the vertex removal algorithm of
W. Schröder [17] or the progressive mesh algorithm of H. Hoppe
[10], use local error norms to construct multiresolution approxima-
tions of meshes by iteratively removing information from the input
mesh. More recent representations are based on the generalization
of fairing techniques from signal processing [18], [13], [11], or on
subdivision surfaces [14], [19]. These approaches combine
advanced operators with multiresolution techniques to enable
interaction with large datasets and provide additional functionality,
such as editing.

E-mail: hubeli@inf.ethz.ch
grossm@inf.ethz.ch

Address: Department of Computer Science
ETH Zentrum
CH - 8092 Zurich

In this paper we investigate a related problem: the detection of
mesh features. Our goal is to extract piecewise linear features from
meshes which can then be used to construct more sophisticated
multiresolution representations. The most important advantage of
our method is that we can force modeling algorithms, such as sub-
division and fairing, to retain feature information including sharp
edges or ridge lines.

1.2 Previous Work
In his pioneering work [2], Canny constructed an optimal filter

to detect and extract certain types of features from images. The cri-
teria used to design the filter include detection performance, sharp
localization of the features and a unique detection of edges.

The theory of snakes [12] uses deformable models to track fea-
tures. A polygonal curve is assigned an energy function and is
deformed until its associated energy is minimized. The choice of
particular energy functions ensures that the polygonal curve traces
a feature to its end configuration.

Anisotropic diffusion, as used in [16], is a powerful tool that
allows to remove high-frequency noise while preserving the fea-
ture information. Thus, the technique enables the construction of
robust edge detection algorithms. This operator has been extended
to the non-parameterized setting of triangle meshes with arbitrary
connectivity in [3].

A problem related to feature extraction is image segmentation
[9], where input images must be subdivided into regions that pos-
sess similar characteristics. A robust segmentation algorithm was
used to extract features being defined as the piecewise linear
curves that bound different regions in the image.

Most of the techniques discussed in this section apply to images.
There are several advantages of handling images over triangle
meshes: images have both a regular connectivity and a well known
parameterization, properties that triangle meshes do not possess.
These differences complicate the extension of these techniques to
the more general domain of unstructured triangle meshes.

1.3 Paper Organization
The paper is organized as follows: in section 2 we provide some

basic definitions and give an overview of the framework. In sec-
tion 3 we present the first major component of our framework, the
set of classification operators, followed in section 4 by a discus-
sion of the second component, the detection operators. In section 5
we describe a multiresolution feature extraction technique. In sec-
tion 6 we present some of the results we obtained using this frame-
work and we discuss some application domains. We will conclude
the paper with the description of some future challenges.

2 Overview of the Technique
The goal of the framework presented in this paper is to extract a set
of mesh features from two-manifold polygonal meshes with arbi-
trary connectivity. To this end, we first formalize the notion of a
mesh feature and the domain of our operators:

2 of 8

Definition: A mesh feature is a piecewise linear curve that
describes an important characteristic of the input mesh. We restrict
any mesh feature as being represented by a collection of edges of
the mesh. That is, our extraction operators are not required to mod-
ify the connectivity of the mesh.

Definition: a surface is a two-manifold with boundaries if all its
points have an open neighborhood homeomorphic to either or

.

The approach that we introduce is independent of the feature
semantics, i.e. the operators are not trained to recognize particular
patterns. Instead, we decided to use application-neutral operators
which are based on notions such as Laplacian or curvature. The
resulting framework is subdivided into two components, as shown
in figure 1:
� In a classification phase, every edge in the model is assigned a

weight proportional to the probability that the edge lies on a
mesh feature. The operators used in this step are not based on
any assumption on the input mesh, except that it has to be a two
manifold surface with boundaries.

� In a detection phase, mesh features are reconstructed from the
information computed in the previous step. By our definition,
this step constructs piecewise linear curves, defined as collec-
tions of edges.

The distinction between the classification and detection opera-
tors has several advantages: first, it is possible to easily swap
between classification operators and thus choose the best suitable
operator for the particular input mesh. Furthermore, if additional
information on the application domain is available, new optimized
operators can be included into the framework more easily.

In the next two sections we will describe the two components in
detail and present the set of operators that we constructed and
tested in our framework. We illustrate the results by applying them
to surfaces with different properties.

3 Classification Phase
The goal of the classification phase is to assign a weight to every
edge in the input mesh. Ideally, the weight should be proportional
to the probability that the edge belongs to a mesh feature: edges
close to mesh features should be assigned larger weights than
edges that are farther away. The information computed in this first
phase will then be used to extract a set of the most important
edges, which in turn will be used to reconstruct the mesh features.

In the classification step we are faced with different problems.
First, the operators must be capable to handle meshes with differ-
ent resolutions. Some meshes are highly optimized meaning that
the number of triangles is reduced to a minimum, while others are
oversampled. In addition, the classification process is aggravated
by the presence of high frequency noise in the input meshes, which
could mistakenly be recognized as useful information.

To alleviate some of these problems we provide a set of different
operators, each with different properties, and better suited to han-
dle certain classes of meshes. In addition, we can optionally pre-
filter the input meshes using standard operators, such as [13], [8]
and [4].

In the remainder of this section we will introduce the operators
we use in our framework and discuss their capabilities and limita-
tions.

3.1 Second Order Difference (SOD)
The SOD is the simplest classification operator. It assigns a

weight to every edge in the mesh proportional to the dihedral
angle defined by the normals of its two adjacent triangles. The idea
is based on the second order difference operator constructed in [8],
which was used to fair meshes of arbitrary connectivity. The oper-
ator, described by equation (1), is locally bound and can be evalu-
ated efficiently.

(1)

The variables and correspond to the normals of the two tri-
angles that share edge , as shown in figure 2.

This technique is best suited for coarse, pre-optimized meshes.
However, SOD performs poorly on highly detailed or noisy
meshes, since all computations are carried out within a small
region of support.

3.2 Extended Second Order Difference (ESOD)
The ESOD operator extends the SOD operator by using a larger

support to evaluate the weight of an edge . Instead of defining
and as the normals of the two neighboring triangles of , we
define them as the average normals computed from the triangles on
the one-ring of the vertices and opposite to and apply the
them in equation (1). The extended support of ESOD is illustrated
in figure 3.

The increased support of the operator has the expected conse-
quences: the influence of noise on the classification process is
attenuated. However, as a the support of the operator is larger and
cannot be adapted to the input mesh, ESOD does not perform well
on very coarse meshes.

3.3 Best Fit Polynomial (BFP)
The BFP operator uses a different philosophy than the previous

operators, in that it makes use of a parameter domain associated
with every edge in the mesh. The weight assigned to an edge is
computed as follows: first, a subset of the mesh vertices are pro-

Figure 1: Overview of the feature extraction framework.

ℜ2

ℜ+
2

Classification Phase Detection Phase

Edge selection
Patch construction
Skeletonizing

Figure 2: Support of the SOD classification operator.

Figure 3: Support of the ESOD operator.

e

w e()
ni
ni

nj
nj

---------⋅

1�
cos=

ni nj
e

e

ni

nj

e ni
nj e

xi xj e

nj
ni

e
xjxi

e

3 of 8

jected onto the parameter domain and a best fit polynomial
of degree n is computed. The curvature of the (planar) polynomial
is then evaluated at the parameter position of , as described by
equation (2):

(2)

The major challenges of this approach are the definition of the
parameter domain and the proper projection of the set of vertices
from 3-space. An intuitive definition of the parameter space is
given in figure 4.

We propose to set the parameter plane to be perpendicular to the
vector defined by the edge . A unique plane is defined by requir-
ing the midpoint of to lie on the plane. The points used in the
best fit process are computed from the intersection of the plane
with a set of neighboring triangle edges, as shown in figure 4.b.
The most important advantage of this strategy is that the support of
the operator can be chosen freely and that it can be adapted locally
for each edge. An additional degree of freedom is given by the
degree of the fitting polynomial which can be adjusted to the size
of the support of the operator.

This approach has the advantage of being very flexible, because
the support can be adapted both globally and locally. Thus, it is
less influenced by noise which is filtered out during the best fit
process. Furthermore, it has the potential to be used for any type of
mesh, provided that an appropriate set of parameters is chosen.
The main disadvantage of the approach is that its computational
cost is higher than the cost of the previous operators.

3.4 Angle Between Best Fit Polynomials (ABBFP)
The ABBFP operator is a variation of the BFP operator which is

also based on best fit polynomials. As for the previous approach,
polynomials are fitted in the parameter domain of every edge
(figure 5). The ABBFP operator fits two polynomials: one for the
vertices that lie on one side of in the parameter domain and
another for the vertices lying on the other, as illustrated in figure
5.c. The weight assigned to is chosen to be proportional to the
angle between tangents of the two curve evaluated at the parameter
position of . The weight is then computed according to equation
(3):

(3)

As for the BFP operator, the user is allowed to specify both the
size of the support and the degree n of the polynomial used in the
best fit process. A potential advantage of this variant is that it is
adept in capturing discontinuities at the parameter position of ,
which hints at the presence of a mesh feature in the neighborhood
of .

3.5 Comparison of the Operators
In order to compare the different operators that were described in

this section, we apply them to two different types of meshes.
Figure 6.a depicts a coarse mesh that represents a motor part

using few triangles. Figure 6.b-c illustrate the result computed
using the SOD and BFP operators respectively. In this example the
most efficient operator is SOD, since it can capture all the impor-
tant information efficiently and it can be evaluated more effec-
tively than BFF. The BFP operator is capable of generating good
results, but its parameters must be tuned carefully.

Figure 7.a shows a highly detailed mesh that represents a geolog-
ical surface using a large number of triangles. The results com-
puted using the SOD and BFP operators are depicted in figure 7.b-
c respectively. The SOD operator recognized important regions in
the mesh, but noisy regions were also recognized as a result of the
limited support of the operator. The BFP operator performed bet-
ter, since its support has been tuned to filter out most of the noise
present in the surface.

For both examples presented in figure 6 and figure 7 the same
parameters were chosen for the hysteresis which was used to select
the set of most important edges. A description of the hysteresis
function is given in section 4.1.

4 Detection Phase
The classification step discussed in the previous section assigns a
weight to every edge in the input mesh, which is proportional to
the probability that the edge belongs to a mesh feature. The detec-
tion phase analyzes these values and reconstructs a set of important
mesh features in four steps:

Figure 4: The BFP operator:
a) Parameter plane.
b) Intersection between the parameter plane and the mesh.
c) Best fit polynomial fitted in parameter space.

p u()

e

w e() p'' e()=

a) b)

c)

e

p u()

e
e

e

e

e

e

w e()
1 pl' e(),()
1 pl, ' e()()

1 pr, ' e()()
1 pr, ' e()()

-----------------------------⋅

1�
cos=

e

e

Figure 5: The ABBFP operator:
a) Parameter plane.
b) Intersection between the parameter plane and the mesh.
c) Two polynomials are fitted on both sides of e and the angle between

their tangents at e is measured.

Figure 6: Classification operators applied to an optimized mesh:
a) Input mesh.
b) Result computed using the SOD operator.
c) Result computed using the BFP operator.

a) b)

c)

e pr u()pl u()

a)

b) c)

4 of 8

� First, the set of the most important edges is computed. The
importance of an edge is defined both by its weight and by the
weight of the neighboring edges.

� The set of edges is analyzed to construct a set of patches. A
patch is a mesh region that is likely to contain one or more mesh
features.

� The mesh features are extracted from the patches using a skele-
tonizing algorithm which iteratively simplifies every patch to a
collection of piecewise linear curves.

� Optionally, unimportant mesh features can be removed from the
result. The importance of a mesh feature is computed from its
length and from the weights associated with its edges.
In the next four subsections we will describe each of these steps

in detail and illustrate the results with an example.

4.1 Selection of Important Edges
The first step in the detection phase is crucial, since it identifies

the edges close to the mesh features. This process is heavily mesh
dependent: meshes contain a varying number of mesh features and
their edge density is variable. Furthermore, the process is also
influenced by the user who might be interested in only a subset of
the mesh features. Hence, we require the user to specify the bounds
of the hysteresis function used to mark the set of important edges.

Hysteresis Thresholding
This approach requires two user-defined values which serve as a

lower bound and as an upper bound of the hysteresis. An
edge in the mesh is selected if it satisfies one of two conditions:

Condition 1: the weight of is larger than the upper bound
 of the hysteresis function:

(4)

Condition 2: The weight of is larger than the lower bound
 of the hysteresis function and the set of neighboring edges

 contains a selected edge :

(5)

If neither condition is satisfied, the edge is discarded.
Figure 8 illustrates the binary hysteresis function with upper

bound and lower bound and as implemented in our frame-
work:

An hysteresis has several advantages versus standard threshold-
ing strategies: first, thresholding can be simulated by the hysteresis
function by setting the upper and lower bounds to the same value:

(6)

Furthermore, the hysteresis clusters edges better than thresholding.
As a result, the patching algorithm is capable of generating less
patches with larger area, which in turn allows us to extract mesh
features more robustly.

Figure 9 illustrates the set of patches obtained by using different
bound values for the same set of input weights. If the upper and
lower bounds are set to the same value, as in figure 9.b, the hyster-
esis process is reduced to standard thresholding and the selected
edges have not been clustered well. The use of different bounds, as
illustrated in figure 9.c, enables us to remove some of the isolated
edges and generate better clusters. The choice of a very large upper
bound and a small lower bound allow us to select edges close to
the most important features, as shown in figure 9.d.

4.2 Patch Construction
The construction of the patches is actually not required in the

detection phase. However, the use of patches allows us to apply
extensions of standard skeletonizing algorithms from the field of
computer vision [6]. This is advantageous, since the problem has
been well studied in that field and many robust skeletonizing algo-
rithms are available.

As mentioned in section 4.1, the hysteresis operator has good
clustering capabilities. The goal of the patching algorithm is to
transform these clusters into uniform patches, where all edges are
marked. Additionally, the algorithm is not allowed to increase the
size of the clusters, but only fill the interior. The result is a simple
condition that is checked to select additional edges and insert them
into the set created in section 4.1:

Figure 7: Classification operators applied to a highly detailed mesh:
a) Input mesh.
b) Result computed using the SOD operator.
c) Result computed using the BFP operator.

a)

b) c)

Bl Bu
e

w e() e
Bu

w e() Bu≥

w e() e
Bl
N e() e'

w e() Bl≥ e' e' N e() e′ is selected;∈;∃∧

e

Bu Bl

Figure 8: Hysteresis function for the threshold values Bl and Bu.

Figure 9: Edges selected by the hysteresis function:
a) Input mesh.
b) Result generated using the parameters Bu = 0.92, Bl = 0.92.
c) Result generated using the parameters Bu = 0.96, Bl = 0.92.
d) Result generated using the parameters Bu = 0.995, Bl = 0.9.

w e()

accept

reject

10 Bl Bu

Bl Bu=

a) b)

c) d)

5 of 8

Condition: An edge is inserted into a patch if it was marked in
the previous step, or if both of its endpoints belong to other edges
present in the patch, regardless of the weight of .

This condition is similar to the second condition used by the hys-
teresis function. Again, edges with a small weight are inserted into
the set of patches if they are close to important edges. The require-
ment that important edges are present on both sides of ensures
that patches do not grow unnecessarily large. The absence of
requirements for the weight of guarantees that all
unmarked edges in the interior of a cluster will be added to the
cluster thus resulting in more uniform patches.

Figure 10 depicts the result obtained by our patching algorithm.
The algorithm is initialized with the set of edges displayed in fig-
ure 10.a. The insertion of edges according to the condition speci-
fied in this section yields the set of patches illustrated in figure
10.b.

Note that the holes in the patches depicted in figure 10.b are a
consequence of the requirement that patches should not grow more
than needed.

4.3 Skeletonizing
The most important step in the detection phase consists in the

extraction of the final mesh features from the patches computed in
the previous step. We accomplish this goal using a skeletonizing
algorithm similar to the ones used computer vision. In particular,
we constructed a thinning technique: patches are thinned to a set of
mesh features by burning the edges from the boundary of the
patches down to a set of piecewise linear curves. We do not use
existing algorithms from computer vision, since the skeletonizing
algorithm is expected to handle meshes with arbitrary connectivity
and not only height field data. The thinning algorithm is described
by the following pseudo-code fragment:

void patchThinning(list< int > patch) {
for all edges e in patch
if (isBoundaryEdge(e) == true)
edgeList.insert(e);

while edgeList is not empty do {
e = edgeList.front(); // Retrieve the first edge
edgeList.pop_front(); // Remove it from the list

if(belongsToMeshFeature(e) == false) {
removeFromPatch(e);
edgeList.insert(newBoundaryEdges);

}
}

}

The thinning operation is initialized by inserting all the edges
that lie on the boundary of a patch into a linked list. The function
isBoundaryEdge checks the following condition for the edge :

Condition: consider an edge that belongs to a patch and its two
adjacent triangles and . If any of the other four edges of
and does not belong to the patch, then is a boundary edge.

The boundary edges are extracted from the list one at a time, and
they are analyzed. The function belongsToMeshFeature inspects
two conditions to decide whether an edge belongs to a feature:

Condition 1: If only one of the endpoints of belongs to another
edge in the patch, is only preserved if the endpoint belongs to
only one other marked edge. If the endpoint belongs to multiple
edges in the patch, then it must be removed. This condition enables
us to remove edges that are perpendicular to the mesh feature
being extracted.

Condition 2: If both endpoints of belong to other edges in the
patch, then can only be removed if it does not disconnect the
patch locally. The patch is not disconnected by the removal opera-
tion if and only if one of the two adjacent triangles and of
is defined by three marked edges. Consider the example in figure
11: the edge in the configuration displayed in figure 11.a can be
removed safely, since all the edges in are marked. Conversely,
the edge in figure 11.b cannot be removed without disconnecting
the patch locally.

If an edge is removed from a patch, two new edges will become
boundary edges and they must be inserted into the list. After the
edge has been analyzed, the next edge is extracted from the list.
This process continues until the list is empty.

The end configuration is guaranteed to be a collection of piece-
wise linear curves. Since the patches were not disconnected in the
thinning process, the mesh features are also guaranteed to be con-
nected. The mesh features can intersect, i.e. two or more edges that
belong to mesh features can intersect at a vertex. Therefore, com-
plex features can be recognized and extracted by the algorithm.

Figure 12 illustrates the mesh features extracted from the set of
patches computed in the previous section. The input data is visual-
ized in figure 12.a and the set of output mesh features in figure
12.b. By analyzing the result thoroughly, one can notice that one of
the patches has been thinned into two mesh features implying that
the patch has been disconnected. The two features were connected
by a third feature that has been removed from the result.

4.4 Importance Function
The set of mesh features can be optionally reduced so that only

�important� features are returned to the user. In our opinion, the
importance of a mesh feature is determined by two factors: its
length, i.e. the number of edges present in the mesh feature and the
average weight of the edges. The elimination of �unimportant� fea-

Figure 10: Patch construction:
a) Set of edges selected by the hysteresis function.
b) Patches generated by the framework.

e

w e() e

e

w e() e

a) b)

e

e
t1 t2 t1

t2 e

Figure 11: Thinning operator; selected edges marked as a bold polyline:
a) Edge e is removable.
b) Edge e is not removable, since it would disconnect the feature locally.

Figure 12: Mesh features generated by the thinning algorithm:
a) The set of patches used to initialize the algorithm.
b) The set of resulting mesh features.

e

e
e

a) b)

e e

t1

t2 t2

t1

e
e

t1 t2 e

e
t1

e

a) b)

6 of 8

tures is performed by ranking the mesh features according to an
importance function such as

(7)

The term describes the length of the mesh feature and
 the weight of an edge that belongs to .

Next, the mesh features with smallest importance are removed
from the result and the remaining features are returned to the user.

5 Multiresolution Feature Extraction
The classification and detection techniques that we discussed in
the previous two subsections are efficient and generate meaningful
mesh features. However, as already shown in image processing
[15], the use of multiresolution techniques can improve the overall
framework, both in terms of efficiency and in terms of quality of
the results. In particular, the use of a multiresolution representation
of the input mesh enables us to better capture low frequency mesh
features than by extending the support of the classification opera-
tors.

5.1 Multiresolution Representation
The literature offers many different multiresolution representa-

tions for triangulated two-manifold surfaces, based on operators
such as vertex removal [17] and edge collapse [10], [5]. We
selected the progressive mesh algorithm in our framework, since
the edge collapse and vertex split operators naturally complement
our own operators.

In addition, we obtain the following advantageous properties:
� The coarse approximation of the input mesh only contains the

structural information on the mesh, i.e. the collapse operator
preserves the salient features of the mesh during the simplifica-
tion process.

� During the refinement process, the vertex split operations can be
analyzed on the fly to update the set of mesh features. Thus we
obtain the full-resolution features after all the vertices have been
re-inserted into the mesh.

� A multiresolution approach has the potential of accelerating the
extraction process. This can be accomplished by computing the
weight of a subset of the edges of the input surface that are close
to mesh features.

5.2 Multiresolution Feature Extraction
As mentioned in the previous subsection, multiresolution and in

particular the edge collapse operator can be used effectively to
extract features incrementally from a full resolution mesh. This
process is implemented in three steps:
I. Given an input mesh, its progressive mesh representation is

first constructed. The result consists of a coarse approximation
of the mesh and a set of vertex split operations that allow us to
reconstruct the original surface.

II. The techniques described in section 3 and section 4 are applied
to the coarse representation of the mesh to extract the most
important mesh features. This operation can be performed effi-
ciently, since both the classification and the detection steps are
applied only to a subset of the edges of the input mesh.

III. Finally, the input mesh is reconstructed from the coarse mesh
by re-inserting the vertices and edges using the set of vertex
split operations. During this process, it is crucial to update the
mesh feature information which needs to adapt to the changes
of the underlying mesh. The set of masks needed to perform
these updates is illustrated in figure 13.

During the insertion of a vertex which is split from a vertex
, the neighborhood of the vertex split is analyzed. If belongs

to a mesh feature, we need to check whether the feature needs to be
modified. In principle, many different configurations could be
investigated in order to compute the best possible update. In prac-
tice however, the masks displayed in figure 13 proved to be ade-
quate and only three configurations must be considered:
� The case depicted in figure 13.a is unambiguous: the new edge

 must be included into the mesh feature, otherwise the inser-
tion operation would split the feature into two components.

� The second case shown in figure 13.b is also straightforward:
the insertion of the new edge does not affect the feature.
Therefore is not inserted into the feature.

� The third case shown in figure 13.c is more complex. The two
edges that are split by the vertex split operation belong to the
mesh feature. Therefore, the mesh feature can be updated in four
different ways. The choice of the best path for the mesh feature
is determined by analyzing the weights of the edges locally. The
mesh feature is updated using the path with the largest average
weight.

I Fi() Fi
1
n--- w e()

e Fi∈
∑⋅=

Fi Fi
w e() e Fi

Figure 13: Feature update masks; feature displayed as a thicker polyline:
a) The new edge e is inserted into the feature.
b) The new edge e is not inserted into the feature.
c) The new edge e changes the shape of the feature locally.

Figure 14: Multiresolution mesh feature extraction:
a) Full-resolution input mesh (34�834 vertices).
b) Mesh features extracted from the base domain (3�483 vertices).
c) Mesh features reconstructed from an intermediate representation

(19�158 vertices).
d) Full-resolution mesh features.

a) b)

c)

e e

eeee

xj
xi xi

e

e
e

a)

b) c) d)

7 of 8

Of course, there are special cases that must be analyzed, such as
the split of vertices at the end of a mesh feature, or the split of ver-
tices where two or more mesh features meet. These configurations
can also be handled using straightforward variations of the masks
discussed previously and will not be discussed further.

Consider figure 14 which illustrates our multiresolution
approach. A coarse mesh is computed from the input surface (fig-
ure 14.a) and its mesh features are computed using the techniques
discussed in section 3 and 4 (figure 14.b). The set of mesh features
is then continuously updated during the refinement process. An
intermediate state is shown in figure 14.c, where 50% of the verti-
ces were already re-inserted. The end configuration is displayed in
figure 14.d.

This approach could be further improved, since the coarse
approximation of the input surface does not necessarily contain all
the mesh features. Therefore, the algorithm should support the cre-
ation of new mesh features in the reconstruction process. This
results in a multilevel feature detection strategy where the opera-
tors discussed in section 3 and section 4 are applied at different
levels of resolutions.

6 Results and Applications
In this section we present some of the results generated by our
framework. We use both well known meshes, such as the �Stanford
bunny�, the �mannequin� and the �golf club�, as well as models
from the domain of geoscience. Most of these meshes have irregu-
lar connectivity and possess a set of features readily identifiable.
The exception is the geological surface displayed in figure 17
which does not contain any prominent feature.

In figure 15 we applied the framework to the mannequin head.
To test the capabilities of the framework we first applied three
Loop subdivision steps to the input data, so that the algorithm had
to work on a very smooth domain. The results illustrated in figure
15 have been computed using the BFP operator and a large sup-
port. The most important components of the face, such as the eyes,
nose, ears and mouth, have been properly recognized. The local-
ization of the mesh features is good given the amount of informa-
tion present in the mesh.

Next, we present the mesh features extracted from the Stanford
bunny in figure 16. For this mesh we used the ABBFP operator
and selected a support that filtered out most of the noise present in
the fur of the bunny. The important components, such as the ears,
tail, neck, legs and even some of the paws of the bunny, have been
properly recognized. The hysteresis function removed other impor-
tant features, such as the eyes and mouth. However, it should be
noted that the magnitude of these features is almost the same as the
magnitude of the noise present in the fur.

We believe that automatic feature extraction algorithms for
meshes with arbitrary connectivity can be applied in different pro-
cesses of geometric modeling. The first application we discuss is
feature preserving fairing that has been proposed in our non-mani-

fold fairing framework [11]. Using the techniques presented in this
paper, high frequency noise can be removed from complex models
without removing important features. As an example consider fig-
ure 17 depicting a geological model. The noise of the input surface
can be eliminated either using standard fairing techniques (figure
17.b) or using feature-preserving fairing (figure 17.c).

Mesh features can be used in conjunction with other operators as
well in order to preserve information about the input model. Any
subdivision operator can be extended to preserve features. This is
accomplished by handling the mesh features as boundaries [1] and
by applying the one-dimensional subdivision operators on them.
An example is displayed in figure 18. The input mesh (figure 18.a)
is first analyzed and its most important mesh features are extracted.
The use of standard subdivision generates results of decent quality,
but the magnitude of features is attenuated, as shown in figure
18.b. The use of a feature-preserving subdivision operator enables
us to preserve the important mesh features much better, as illus-
trated in figure 18.c.

Finally, mesh features could also be used to govern a simplifica-
tion algorithm: an edge collapse operator should not collapse edges
perpendicular to a mesh feature, but rather parallel edges. Of
course, error norms that control the simplification already strive to
preserve features, but explicit feature preservation would guaran-
tee that important information will not be removed from any of the
approximations constructed by the algorithm.

Figure 15: The features of the mannequin.

Figure 16: The features of the Stanford bunny.

Figure 17: Feature-preserving fairing:
a) The input model.
b) Smooth model generated by standard fairing.
c) Smooth model generated by feature preserving fairing.

a)

c)

b)

8 of 8

7 Conclusions and Future Work
In this paper we presented a framework for the detection of fea-
tures in meshes with arbitrary connectivity. We proposed a two-
stage process consisting of a classification phase and a detection
phase. In order to handle a variety of different meshes, we provide
a set of operators with different properties. We extended our
framework to a multiresolution setting, which clearly improves the
quality of the results and the performance of the algorithms.

The user must select the operators as well as a few parameters
for the classification and detection steps. As such, the process is
not fully automatic and requires manual assistance and tuning for
optimal performance. We do not consider this as a major draw-
back, since all algorithms can be computed efficiently.

We believe that the results produced by our framework are of
useful quality. We envision the following optimizations and exten-
sion on these techniques:
� Improved classification operators: one of the major difficulties

encountered in the classification phase is to distinguish between
high frequency noise and feature information, a well known
problem in computer vision. We addressed this problem by con-
structing operators with adjustable support, which worked well
in practice. However, we believe that further improvements
could by obtained by mesh decomposition [7].

� Improved skeletonizing operators: the quality of the results gen-
erated by the thinning algorithm could be improved by using the
weights computed in the classification phase more aggressively.
Currently, only a topological measure is used. The advantage of
a topology-driven thinning algorithm is improved robustness at
the cost of an inferior localization of the mesh features.

� Improved interaction: the final goal of this project is, of course,
to provide a sophisticated mesh analysis tool able to determine
the optimal operators and most of the parameters autonomously,
requiring only a few intuitive parameters from the users.

Acknowledgments
This research was made possible by grants from Schlumberger

ATC, Austin, TX. The authors would like to thank Richard Ham-
merlsey and Karen Lu for many helpful discussions. Further

thanks to Kuno Meyer and Philippe Zürcher who implemented
parts of this framework.

Literature
[1] H. Biermann, A. Levin, and D. Zorin. �Piecewise smooth subdivision

surfaces with normal control.� In K. Akeley, editor, Siggraph 2000,
Computer Graphics Proceedings, pages 113�120. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[2] J. Canny. �A computational approach to edge detection.� IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
8:679�698, 1986.

[3] U. Clarenz, U. Diewald, and M. Rumpf. �Anisotropic geometric dif-
fusion in surface processing.� In Proc. of the 11th Ann. IEEE Visual-
ization Conference (Vis) 2000, 2000.

[4] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. �Implicit fairing
of irregular meshes using diffusion and curvature flow.� In SIG-
GRAPH �99 Proceedings, Computer Graphics Proceedings, Annual
Conference Series. ACM SIGGRAPH, ACM Press, Aug. 1999.

[5] M. Garland and P. S. Heckbert. �Surface simplification using quadric
error metrics.� In T. Whitted, editor, SIGGRAPH 97 Conference Pro-
ceedings, Annual Conference Series, pages 209�216. ACM SIG-
GRAPH, Addison Wesley, Aug. 1997. ISBN 0-89791-896-7.

[6] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addi-
son-Wesley, Reading, MA, USA, 1992.

[7] M. H. Gross and A. Hubeli. �Eigenmeshes.� Technical report, ETH
Zurich, Mar. 2000.

[8] I. Guskov, W. Sweldens, and P. Schröder. �Multiresolution signal
processing for meshes.� In SIGGRAPH �99 Proceedings, Computer
Graphics Proceedings, Annual Conference Series. ACM SIG-
GRAPH, ACM Press, Aug. 1999.

[9] R. Haralick and L. Shapiro. �Image segmentation techniques.� Appli-
cations of Artificial Intelligence II, April 9-11.

[10] H. Hoppe. �Progressive meshes.� In H. Rushmeier, editor, SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series,
pages 99�108. ACM SIGGRAPH, Addison Wesley, Aug. 1996. held
in New Orleans, Louisiana, 04-09 August 1996.

[11] A. Hubeli and M. Gross. �Fairing of non-manifolds for visualiza-
tion.� In Proc. of the 11th Ann. IEEE Visualization Conference (Vis)
2000, 2000.

[12] M. Kass, A. Witkin, and D. Terzopoulos. �Snakes: Active contour
models.� In Proc. of IEEE Conference on Computer Vision, pages
259�268, London, England, 8-11 1987.

[13] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. �Interactive
multi-resolution modeling on arbitrary meshes.� In M. F. Cohen, edi-
tor, Computer graphics: proceedings: SIGGRAPH 98 Conference
proceedings, July 19�24, 1998, Computer Graphics -proceedings-
1998, pages 105�114, New York, NY 10036, USA and Reading, MA,
USA, 1998. ACM Press and Addison Wesley.

[14] C. Loop. Smooth Subdivision Surfaces Based on Triangles. PhD the-
sis, Utah University, 1987.

[15] D. Park, K. Nam, and R. Park. �Multiresolution edge-detection tech-
niques.� Pattern Recognition, 28(2):211�229, February 1995.

[16] P. Perona and J. Malik. �Scale-space and edge detection using aniso-
tropic diffusion,� 1990.

[17] W. J. Schröder, J. A. Zarge, and W. E. Lorensen. �Decimation of tri-
angle meshes.� In E. E. Catmull, editor, Computer Graphics (SIG-
GRAPH �92 Proceedings), volume 26, pages 65�70, July 1992.

[18] G. Taubin. �A signal processing approach to fair surface design.� In
R. Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pages 351�358. ACM SIGGRAPH, Addison
Wesley, Aug. 1995. held in Los Angeles, California, 06-11 August
1995.

[19] D. Zorin, P. Schröder, and W. Sweldens. �Interactive multiresolution
mesh editing.� In T. Whitted, editor, SIGGRAPH 97 Conference Pro-
ceedings, Annual Conference Series, pages 259�268. ACM SIG-
GRAPH, Addison Wesley, Aug. 1997. ISBN 0-89791-896-7.

Figure 18: Feature-preserving subdivision:
a) The input mesh.
b) The set of mesh features generated by our framework.
c) Smooth surface generated by standard subdivision.
d) Smooth surface generated by feature preserving subdivision.

b) c)

a)

