
to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
A. Chalmers and T.-M. Rhyne (Guest Editors)
Ray Tracing Triangular Bézier Patches

S. H. Martin Roth, Patrick Diezi†, Markus H. Gross

Computer Science Department
Swiss Federal Institute of Technology (ETH)

Zurich, Switzerland

email: {roth, grossm}@inf.ethz.ch
http://graphics.ethz.ch/

Abstract

We present a new approach to finding ray–patch intersections with triangular Bernstein–Bézier patches of
arbitrary degree. This paper extends and complements on the short presentation 17. Unlike a previous
approach which was based on a combination of hierarchical subdivision and a Newton–like iteration
scheme 21, this work adapts the concept of Bézier clipping to the triangular domain.

The problem of reporting wrong intersections, inherent to the original Bézier clipping algorithm 14, is inves-
tigated and opposed to the triangular case. It turns out that reporting wrong hits is very improbable, even close
to impossible, in the triangular set–up. A combination of Bézier clipping and a simple hierarchy of nested
bounding volumes offers a reliable and accurate solution to the problem of ray tracing triangular Bézier
patches.

Keywords: Computer graphics, parametric surfaces, piece-
wise polynomials, ray tracing, Bézier clipping, Bernstein–
Bézier patches, Chebyshev boxing

1. Introduction

Piecewise polynomial surfaces, or parametric free–form
surfaces, have proven useful for representing objects in
computer aided design and computer graphics (for an intro-
duction, see 8). In general, we have to distinguish two types
of free–form surfaces: rectangular and triangular surfaces.
Most modeling systems strictly rely on rectangular surface
formulations since their definition as a tensor product
extension of the univariate case is conceptually simpler.
However, triangular formulations offer considerable advan-
tages both topologically and analytically. Further, from a
mathematical point of view, triangular Bézier patches in
terms of barycentric coordinates are a more natural general-
ization of Bézier curves than tensor product patches. More
and more, triangular surfaces are used for modeling com-
plex geometries or to represent deformable models 7, 18.
Further, they lend themselves well to scattered data

interpolation 1. All those disciplines have a demand for an
accurate visualization of the resulting surfaces.

Conceptually, there are two alternatives to render free-
form surfaces: firstly, the conversion to a polygonal model
and subsequent rendering of the resulting polygonal primi-
tives or, secondly, direct ray tracing of the parametric sur-
face description. The disadvantages of polygonalization are
obvious. On the one hand, shading artifacts occur if the
polygonalization is too coarse. On the other hand, visual
effects like reflection and refraction as well as correct light-
ing is difficult or impossible to achieve. In contrast thereof,
ray tracing, although being computationally more expen-
sive, offers a means to accomplish all fore–mentioned
effects. Further, ray tracing as a high quality rendering tech-
nique is well known and has been investigated thoroughly
over the past decades (see e.g. 10).

The basic requirement for ray tracing of objects, it be
geometric primitives or a parametric surface, is the compu-
tation of intersections between a ray and the surface
description. This task is referred to as the ray–patch inter-
section problem. This paper describes a new approach to
this problem for triangular Bézier patches of arbitrary
degree 6 based on the concept of Bézier clipping 14.

† Currently at ViewTec, Zurich, Switzerland
email: diezi@viewtec.ch
© The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
The paper is organized as follows: after an overview of
previous work in Section 2, the extension of Bézier clipping
to the triangular domain will be presented in Section 3. Sec-
tion 4 will give some details about the problem of reporting
wrong intersections inherent to the original clipping algo-
rithm for tensor product formulations and investigate differ-
ences and advantages of triangular Bézier clipping. Section
5 will present results and comparisons to a simple approach
based on nested bounding volumes.

2. Related Work

In general, the ray–patch intersection problem with free–
form surfaces of arbitrary degree cannot be solved directly.
As a consequence, one has to resort to an iterative computa-
tion of intersection points. Fournier and Buchanan 9 distin-
guish between two principle approaches: geometric and
parametric intersection. Geometric intersection aims at
finding the world coordinates of intersection points whereas
parametric intersection determines their parametric coordi-
nates. Most often, it is not only the intersection point itself
one is interested in but also the local surface normal as well
as shading and texture information. As far as free–form sur-
faces are concerned, all these requirements make it inevita-
ble to know the world as well as the parametric location of
an intersection. Further, as a matter of fact, knowing the
parametric intersection coordinates automatically implies
the corresponding point in 3D space whereas the contrary in
general does not hold. As a consequence, with exception of
early works 13, 19 emphasis in previous research as well as
in this work has been put on parametric intersection meth-
ods.

Again, parametric intersection methods divide into two
categories: nested bounding volumes in general followed by
a root finding scheme such as Newton iteration and parame-
ter interval iteration. These classes of algorithms will be
revisited in the next two sections.

2.1. Nested bounding volumes

Approaches using nested bounding volumes basically com-
pute a hierarchy of bounding volumes for every patch. In a
preprocessing step each patch is hierarchically subdivided
until the resulting sub–patches meet a certain stopping cri-
terion, most often based on the flatness of the sub-patch.
The computation of a ray–patch intersection now consists
of a traversal of such a hierarchy guided by intersection
tests between the ray and the bounding volumes on the
respective hierarchy level. As soon as a leaf of the hierarchy
is reached, the intersection between the ray and the leaf
geometry is calculated. This is accomplished either by
using Newton iteration, known to converge quickly on
nearly planar surfaces, or by direct intersection of the ray
with an approximating primitive.

One has to choose a suited bounding primitive providing
for an optimal trade–off between tight enclosure and effi-
cient intersection testing. Bounding spheres offering a very
efficient intersection test 10 have been proposed as well as
axes-aligned bounding boxes 22, oriented slabs 25, and
parallelepipeds 2. Especially the use of parallelipipeds is
very suitable for Bézier patches as it takes advantage of
their convex hull property. Another conceptually elegant
and very efficient method, Chebyshev boxing, was intro-
duced by Fournier and Buchanan in 9. In order to find a
hierarchy of enclosing bounding volumes they use the coef-
ficients of the Chebyshev representation of bilinear patches
approximating the sub–patches in the hierarchy. The actual
point of intersection is finally found by intersecting interpo-
lating bilinear patches in the leaves of the hierarchy with the
ray. Obviously, such a procedure, as does any approach
using an approximation of the surface in the leaves, requires
solving the cracking problem between adjacent patches.
Further, Chebyshev boxing can only deal with integral
patches 5. Therefore, Campagna et al. in 5 proposed an
approach very similar to Chebyshev boxing which can han-
dle rational patches, the bounding volume hierarchy (BVH).
It computes nested bounding volumes using the Bézier rep-
resentation. The actual intersection points are found either
using Bézier clipping 14 (see section Section 2.2) on the
sub–patches in the hierarchy leaves or by intersecting an
interpolating bilinear sub–patch. In contrast to Chebyshev
boxing, there is no need for calculating these sub–patches
since the four corner control points of the corresponding
Bézier sub–patch already form an interpolating bilinear
patch.

2.2. Parameter interval iteration

In contrast to the fore–mentioned methods, parameter inter-
val methods directly operate on the parametric domain by
narrowing the candidate interval for an intersection. First
approaches using multivariate Newton iteration employed
interval arithmetic to overcome the inherent problem of
finding a good starting point for the iteration 23. More
recently, Nishita et al. introduced the technique of Bézier
clipping 14 which makes extensive use of the convex hull
property of Bézier curves. Although being less computatio-
nally efficient than e.g. Chebyshev boxing, this approach is
applicable to rational patches and, with slight
improvements 4, 5, yields a robust and stable algorithm. In
contrast to many nested bounding volume algorithms,
Bézier clipping is guaranteed to find all intersections. Fur-
ther, the memory usage of Bézier clipping is very low com-
pared to nested bounding volume approaches, since only
the control points of the patches have to be stored instead of
hierarchical data structures and thousands of bilinear
patches and bounding volumes.

In summary, in accordance with 5, we prefer Bézier clip-
ping as a general choice for producing high–quality pictures
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
without artifacts in reasonable time and with few memory
requirements. Chebyshev Boxing and BVH are still very
useful for animation set–ups where the same scene may
have to be rendered several times. A combination of a
nested bounding volume approach together with Bézier
Clipping seems very promising. On the one hand, it elimi-
nates the first clipping iterations which in general are less
efficient due to little clipping of curved patches. On the
other hand, it avoids potential approximation artifacts.

2.3. Ray tracing triangular patches

Except for the early work on triangular Steiner patches
in 19, to the author’s knowledge only Stürzlinger addressed
the problem of ray tracing triangular free–form surface
patches 21. Stürzlinger’s approach must be attributed to the
class of nested bounding volume algorithms using tripipeds
(skewed triangular prisms) as bounding primitives and
Newton iteration similar to 2. Chebyshev boxing unfortu-
nately does not directly generalize to the triangular domain.
Although having been considered by Stürzlinger to be «not
straightforwardly applicable to triangular surfaces», the
next section presents an extension of Bézier clipping to the
triangular domain.

3. Triangular Bézier Clipping

After a short introduction to triangular Bernstein–Bézier
patches we in this section will present the Bézier clipping
algorithm for triangular patches. We will point out to differ-
ences and analogies to the tensor product situation.

3.1. Triangular Bernstein–Bézier patches

A Bézier curve of degree n in the local coordinate u,
 is represented as

with control points and the univariate Bernstein polyno-
mials . For triangular surfaces and
using barycentric coordinates as local coordinate system,
the Bernstein polynomials generalize very naturally to

Correspondingly, a triangular Bézier surface of degree n
is given by

where stands for on the assumption
that . Figure 1 illustrates the situation on the
example of a quadratic Bézier patch.

Please notice that although there are three barycentric
coordinates we are dealing with the bivariate case due to the
linear dependency of the third barycentric coordinate

. As a consequence, in the remainder of the
paper we will adhere to a notation using only r and s and
omitting t. A triangular patch therefore is of the form:

(1)

3.2. Ray–patch intersection problem

The ray–patch intersection problem refers to the task of
finding the intersections of a ray

with a Bézier patch according to (1). As do 13, 14 we repre-
sent the ray as the intersection of two planes given by their
normalized implicit equations

(2)

with (see Figure 2).

In practice, the two planes are orthogonal. To this aim,
we define the normals and the distances
to the origin as

If we instead of use a vector given by permut-
ing the two biggest values in in order to define .

3.3. Reduction to two dimensions

In complete analogy to 5, 14 the problem of finding an inter-
section

0 u 1≤ ≤

bn u() biBi
n u()

i 0=

n

∑=

bi
Bi

n u() n
i()ui 1 u–()n i–=

Bijk
n

r s t, ,() Bi
n

r s t, ,() n
i()r

i
s

j
t
k n!

i! j!k!
-------------r

i
s

j
t
k

= = =

bn
r s t, ,() biBi

n
r s t, ,()

i n=
∑=

i n= i j k+ + n=
i j k 0≥, ,

Figure 1: A triangular quadratic Bézier patch:
(a) barycentric parametric domain
(b) corresponding patch and control points

t = 1

s = 1
r = 1 b020

b002

b200

r

t

s

b200

b110

b020

b011

b002b101

(a) (b)

t 1 r– s–=

bn
r s,() bijBij

n
r s,()

i 0=

n j–

∑
j 0=

n

∑=

r u() r0 u rd⋅+= u R
+∈ rd, , 1=

akx bky ckz ek+ + + 0= k 0 1{ , }∈,

ak
2

bk
2

ck
2

+ + 1=

nk ak bk ck, ,()T=
ek

n0

r0 rd×
r0 rd×

---------------------= e0 n0 r0⋅()–=,

n1

n0 rd×
n0 rd×

----------------------= e1 n1 r0⋅()–=,

r0 rd|| r0
rd n0

r u() bn
r s,()=
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
can be reduced from three to two dimensions even if the tri-
angular patch was rational. This is accomplished
by substituting (1) into (2) which yields

(3)

with (4)

and the coordinates of the control points of
the patch. The components 0 and 1 (in the remainder
referred to as x and y) of geometrically represent the
distance of the point to plane 0 and 1, respectively (see Fig-
ure 3). For rational patches, these distances are scaled by
the weights. The problem now reduces to finding the roots
of (3).

3.4. Finding intersections

Bézier clipping basically clips away regions in the paramet-
ric domain which are known not to intersect the patch. For

tensor product surfaces, Nishita et al. in 14 determine both
and of the parametric candidate

region for an intersection with the ray (see Figure 4a).
Using these bounds, they subdivide the patch and iterate the
procedure until the patch is small enough to satisfy a toler-
ance condition which assures sub–pixel accuracy.

A similar approach on the triangular domain of the bary-
centric coordinates r, s and t in general yields a complex
non–triangular candidate region (see Figure 4b, red striped
region). A triangular upper bound of this region can be
found using only , and (see Figure 4b, blue
region). Subdividing with respect to this triangular domain
and iterating the procedure similar to the tensor product
case determines the parametric intersection. In order to find
potential multiple intersections, a patch will be subdivided
into four sub-patches if in one clipping iteration in r, s and t
too little of a patch was to be clipped away (see Figure 13a).
In our implementation, the following subdivision criterion
proved to be a good choice

subdivide if

In the following, the procedure of finding on the
example of a cubic patch will be illustrated. The steps for

 and follow from symmetry.

Firstly, we determine a line parallel to the vector from
to through the origin. This line can be seen as a

linear approximation of the curve of constant r through the
origin. Expressing this line in its implicit form

yields the distances of the control points
 to the line as

with since the line passes through the origin. Figure
5 clarifies the situation.

Figure 2: Representation of a ray by two orthogonal planes
(control net of patch indicated in red)

Figure 3: Reduction of the ray–patch intersection problem
to two dimensions (control net indicated in red)

bn
r s,()

!dn
r s,() dijBij

n
r s,()

i 0=

n j–

∑
j 0=

n

∑ 0

0
 = =

dij

a0

a1

xij

b0

b1

yij

c0

c1

zij

e0

e1

+ + +=

xij yij and zij, ,

dij

t = 1

s = 1

r = 1

–2

–1

1

2

3

4

plane 1

–3 –2 –1 1

plane 0

intersection of ray
and patch

Figure 4: Bézier Clipping in the parametric domain (can-
didate region highlighted in blue):
(a) Rectangular (tensor product) domain
(b) Triangular (barycentric) domain

(a) (b)
umin umax

vmin

vmax

rmin rmax

tmin

tmax

smin

smax

t = 1 r = 1

s = 1

umin umax,() vmin vmax,()

rmin smin tmin

rmin smin tmin+ + 0.5<

rmin

smin tmin

Lr
d00 d0n

ax by c+ + 0 a
2

b
2

+ 1=,=

drij
dij xij yij,()= Lr

drij axij byij c 0 i j+ n≤ ≤,+ +=

c 0=
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
The distance of an arbitrary point to conse-
quently becomes

The distance function can be regarded as a
functional surface over the triangular domain as

(5)

with and equidistant and
for . Figure 6 illustrates the func-

tional distance patch and the corresponding distances.

In a next step, the functional surface is projected along
the direction which corresponds to the paramet-
ric line or s direction in Figure 6. Figure 7 shows the pro-
jected points and their convex hull.

The clipping value can now be found by intersect-
ing the convex hull of the projected distances with the r
coordinate axis (see Figure 7). In this example evalu-
ates to zero. In the very same manner, a clipping value
can be found. Figure 8 shows the projected distances
and their convex hull as well as the resulting value.
For the determination of , the convex hull projection
direction is given by the line , which corresponds to
the diagonal line in Figure 6.

Figure 5: Line Lr and corresponding distances drij of con-
trol points of a cubic patch (control point dn0 is
hidden)

Figure 6: Functional distance patch:
(a) top view, (b) 3D view

d00

d0n

r = 1

–2

–1

1

2

3

4

plane 1

–3 –2 –1 1

plane 0
d01

d02

d12

d21

d11

d10

d20

dr0n

dr12

dr02

dr21

dr11

dr20

dr10

dr00

dr01

Lr

dr
n

r s,() Lr

dr
n

r s,() drijBij
n

r s,()
i 0=

n j–

∑
j 0=

n

∑=

dr
n

r s,()

drn
r s,() drijBij

n
r s,()

i 0=

n j–

∑
j 0=

n

∑ r s dr
n

r s,(), ,()= =

drij ri s j drij, ,()= ri i n⁄=
s j j n⁄= 0 i j+ n≤ ≤

dr12 = 0.79

dr11 = 0.79

dr10 = 0.35

dr21= 0.97

dr20= 1.85 drn0= 1.6dr00 = -2.02

dr0n = -2.02

dr02 = 0.6

dr01 = -1.15

s = 1

s = 0

r = 0 r = 1(a)

0 0.2 0.4 0.6 0.8 1

r
0

0.2
0.4

0.6
0.8
1

s

–1

0

1

dr

(b)

Figure 7: Projection of functional Lr distance patch along
the s direction, its convex hull and the resulting
rmin

Figure 8: Projection of functional Ls distance patch along
the r direction, its convex hull and the resulting
smin

Lr r 0=

-2

-1

0

1

0.2 0.4 0.6 0.8 1.0
r

dr00, dr0n

dr11, dr12

dr10

dr01

dr02

dr21

dr20

drn0

dr

rmin

rmin

rmin
smin

Ls
smin

tmin
t 0=

s

0.2 0.4 0.6 0.8 1.0

ds10

ds00, dsn0

ds20

ds11
ds01

ds21

ds02

ds12

ds0n

3

2

1

0

-1

-2

ds

smin
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
For parametric values below those minima there cannot
be an intersection due to the convex hull property of Bézier
patches. Further, the ray does not intersect the patch if

If the parametric candidate domain is small enough to
meet the stopping criterion, e.g. its projected size in screen
space drops below one pixel, the centroid of , and

 is taken as the parametric point of intersection.

Otherwise, the patch is subdivided according to the min-
ima found (see Figure 9). Subdivision of triangular Bézier
patches with respect to three arbitrary internal points r, s
and t was first introduced by Goldman 11 and clarified by
Boehm and Farin 3. We follow the more general equivalent
notation of Seidel 20 and find the sub–patch control points

 with respect to the triangular sub–domain as

(6)

with

and d referring to the control points of the projected patch
according to (4). The notation in square brackets in (6) is
the so–called blossoming principle 8, 15, 16. It can be inter-
preted as taking i de Casteljau steps with respect to r, fol-
lowed by j steps with respect to s and steps with
respect to t. The clipping procedure then continues on the
resulting sub–patch as shown in Figure 9.

3.5. Convex hull determination

As we have seen in the previous section, each clipping iter-
ation requires finding the convex hull of three side views of
different distance patches. Using Figure 8 as an example,

we will investigate the procedure of efficient determination
of such a convex hull and the corresponding value .

In a first step, the maxima and minima for pro-
jected points of equal s parameter values are determined.
The and define two polylines, and respectively
(see Figure 10). Finding the convex hull of all points can
now be divided into finding the upper convex hull from
and the lower convex hull from . This can be accom-
plished using an iterative approach. It turns out, however,
that a complete determination in general is not required 5.

Before proceeding to further computations one should
decide whether the s axis intersects the convex hull at all.
To this aim, we compute the maximum of all and
the respective minimum . If or there
is no intersection of the convex hull and the ray will not
intersect the patch.

For all other cases, three situations have to be dealt with:

: Only the upper convex hull of the points to
 has to be determined.

: Only the lower convex hull of the points to
 has to be computed.

: (as is the case for in Figure 7)

4. Reporting of Wrong Hits

The original Bézier clipping algorithm can report wrong
intersections (see e.g. 4). Nishita et al. in 14 proposed the
following enlargement of the parametric candidate region in
order to cope with what they considered numerical prob-
lems:

Campagna and Slusallek in 4 showed that the problem is
inherent to the algorithm and not due to numerical round–

Figure 9: Subdivision of patch according to clipping min-
ima rmin, smin and tmin

rmin smin tmin+ + 1>

rmin smin
tmin

cij r s t, ,()

cij d r i〈 〉 s j〈 〉 t n i– j–〈 〉, ,[]=

r 1 smin tmin–– smin tmin, ,()=

s rmin 1 rmin tmin–– tmin, ,()=

t rmin smin 1 rmin smin––, ,()=

n i– j–

–2

–1

1

2

3

4

plane 1

–3 –2 –1 1

plane 0

t = 1

s = 1

r = 1

rmin

smin

tmin

s = 1

r = 1t = 1

t r

s

smin

tmin

rmin

Figure 10: Computation of upper and lower convex hull

smin

hi li

hi li Ph Pl

Ph
Pl

s

0.2 0.4 0.6 0.8 1.0

h0

l0 = lmin

l1

h1

l2

h2

h3 = l3 = hmax

3

2

1

0

-1

-2

ds

smin
Pl

Ph

hmax hi
lmin hmax 0< lmin 0>

h0 0< h0
hmax

l0 0> l0
lmin

h0 0≥ smin 0= rmin

smin 0.99 smin⋅= smax 0.99 smax⋅ 0.01+=,
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
off. They proposed both a more subtle enlargement of the
candidate region and an extension of the algorithm which
ensures correct results, unfortunately at the cost of addi-
tional computations. After a short description of the prob-
lem in the tensor product setting, we will show that a
comparable situation in the set–up of triangular patches is
very improbable, nay close to impossible.

In short terms, the error can occur whenever the convex
hull of projected distances intersects the corresponding
parameter axis even if the patch actually does not. If the
candidate region computed due to this intersection happens
to be very small, the iteration may terminate and report a
wrong intersection if, by coincidence, the second paramet-
ric candidate region drops below the threshold, too.

Figure 11 illustrates the situation on the example of pro-
jected distances. The slight intersection of the convex
hull yields a small candidate region between and

. At the same time, the convex hull of projected
distances converts to a line which results in a collapsing
candidate domain in v. Thus, a potentially wrong intersec-
tion is reported. As we can see, the coincidence mentioned
above is not very improbable as a collapsing domain results
whenever the projection of the patch in one dimension is
undistorted as in Figure 11 and the convex hull of projected
distances consequently converts to a line. Obviously, the
error can only occur for non–interpolating control points.

There are several reasons why a similar situation for tri-
angular patches is difficult to construct. First and possibly
most important, the algorithm only makes use of ,
and but does not take into account the respective max-

ima. Thus, if the three minima in one iteration do not sum
up to approximately 1 and therefore cause the iteration to
stop, in the following clipping iteration steps the error is
likely to disappear. This is due to the fact, that the control
nets of subsequent subdivisions approximate the patch bet-
ter and better. Second, distances are computed with respect
to three coordinate directions, which due to the barycentric
setting are linearly dependent and thus to some respect
redundant. As a consequence of these two facts, wrong
intersections can only occur if both of the following condi-
tions are met:

• In at least one projective view of distances, one non
interpolating control point lies above or below the
respective axis and the others do not.

• The minima , and accidentally sum up
to approximately but not more than 1.

It is the second condition that makes triangular Bézier
clipping far less error–prone. Figure 12 clarifies these con-
ditions: The situation is very similar to the tensor product
example in Figure 11. In the projective view of dis-
tances one control points lies slightly above the r axis. Fur-
ther, the convex hull of projected distances converts to a
line. The tensor product error conditions are hereby met. In
the triangular case, due to the second of the above condi-
tions, an erroneous intersection is reported only if in the
third projective view happens to evaluate accidentally
to approximately .

Figure 11: Potential reporting of wrong intersections for
Bézier clipping of a cubic tensor product patch:
(a) reduced problem and lines Lu, Lv perpendic-

ular to u,v parameter directions
(b) projection of Lu distances along v and corre-

sponding small candidate region between
umin and umax

(c) projection of Lv distances along u and cor-
responding collapsing candidate region
vmin = vmax

Lu
umin

umax Lv

rmin smin
tmin

umin

u

umax

0 1

vmin = vmax

v
0 1

Lu

uv

Lv

plane 0

plane 1
(a)

(b)

(c)

Figure 12: Potential reporting of wrong intersections for
Bézier clipping of a cubic triangular patch:
(a) reduced problem and lines Lr, Ls and Lt
(b) projection of Lr distances and correspond-

ing rmin
(c) projection of Ls distances and correspond-

ing smin
(d) projection of Lt distances and correspond-

ing tmin

rmin smin tmin

Lr

Ls

tmin
1 rmin smin––

Lr

Ls

Lt

s = 1

r = 1

t = 1

plane 0

plane 1

rmin = 0.249

r
0 1

smin = 0.486

s
0 1

t

tmin = 0.255
0 1

(a)

(b)

(c)

(d)
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
5. Results

As a proof of concept we extended the object oriented ray
tracer (OORT) of Wilt 24 to handle triangular Bézier
patches. The object oriented design of this ray tracer makes
it easy to integrate new types of objects. Unfortunately, its
shading capabilities are limited to some extent.

To speed up the Bézier clipping algorithm we addition-
ally implemented a bounding sphere hierarchy (BSH)
which eliminates the first clipping iterations. Although
bounding spheres are far from optimal with respect to tight
enclosure of the patch, we have chosen spheres for their
simplicity and fast intersection testing. The BSH is built by
subdividing the triangular Bézier patch into four sub–
patches until a flatness criterion is met (see Figure 13). We
define the flatness of a patch as its height h. The height is
computed as the extent of the control points along the nor-
mal of the plane spanned by the patch’s corner nodes

with the normalized plane normal and

Finding intersections now consists of a BSH traversal
and subsequent Bézier clipping on the leaf sub–patch.

In order to test the implementation, we converted the
Utah teapot from 32 bicubic tensor product patches to 64
sextic triangular Bézier patches using the approach of Gold-
man and Filip 12. On the one hand, patches of degree six are
a demanding task for a ray tracer. On the other hand, the
teapot geometry features patches of different curvature.
Figure 14 shows the sextic control net and the correspond-
ing ray traced image. The pairs of red and blue triangular
patches represent the original bicubic rectangular patches.

Figure 15 shows a close–up of the knob. As a conse-
quence of degenerated patches in the original model, the
four red patches at the knob suffer from a collapsing trian-
gle edge (seven control points coincide). In general, unlike
rectangular models, a model made of triangular patches
would not require degenerated edges. Such degeneracies

need special treatment in the Bézier clipping algorithm
since the line L is not defined for collapsing edges. In fact,
we in such a situation determine L using the two adjacent
control points on the non–degenerated edges.

Due to the very straightforward implementation, it is dif-
ficult to make a quantitative performance analysis. What
can be stated qualitatively is that Bézier clipping is clearly
slower than a pure BSH based ray–patch intersection. Since
the cost of the clipping operation grows with the cube of the
patch’s degree, ray tracing of sextic patches using Bézier
clipping is roughly ten times slower than with pure BSH.
Combining BSH and Bézier clipping, this ratio drops to
about five. For patches of lower degree, the efficiency of
Bézier clipping improves.

Figure 13: (a) Subdivision of a patch for hierarchy
build–up

(b) Computing the height of a quadratic patch

b00

bn0

b0n

b10

b01

b11h

(a) (b)

1 to 4 subdivision

h max 0 max
0 i j+ n≤ ≤

n bij⋅(),

min 0 min
0 i j+ n≤ ≤

n bij⋅(),

–=

n n n⁄= n

n b0n b00–() bn0 b00–()×=

Figure 14: (a) Control net of Utah teapot made of 64 trian-
gular sextic Bézier patches

(b) Corresponding ray traced image

Figure 15: (a) Close-up of control net at knob
(b) Corresponding ray traced image

Figure 16: Textured teapot

(a) (b)

(a) (b)
© The Eurographics Association and Blackwell Publishers 2001.

to appear in EUROGRAPHICS 2001 Proceedings COMPUTER GRAPHICS Forum, Volume 20 (2001), Number 3
6. Conclusions

We presented a new approach to ray tracing triangular
Bézier patches using an extension of Bézier clipping. We
have shown that the accuracy of triangular Bézier Clipping
equals tensor product Bézier clipping while its reliability
even excels the original algorithm. In combination with a
hierarchy of nested bounding volumes, triangular Bézier
clipping yields results of highest quality in reasonable time.

Future work includes the incorporation of trimming
which can be done similar to the original work on Bézier
clipping in 14. Further, a more efficient implementation of
the algorithm (e.g. as a POV–ray extension, http://
www.povray.org/) will yield quantitative information about
the performance of triangular Bézier clipping.

References

1. C. L. Bajaj, F. Bernardini, and G. Xu. “Automatic
Reconstruction of Surfaces and Scalar Fields from 3D
Scans.” In SIGGRAPH’95 Conference Proceedings,
Annual Conference Series, pages 109–118. ACM SIG-
GRAPH, Addison Wesley, 1995.

2. W. Barth and W. Stürzlinger. “Efficient Ray Tracing
for Bézier and B-Spline Surfaces.” Computers &
Graphics, 17(4):423–430, 1993.

3. W. Boehm and G. Farin. “Letter to the Editor.” Com-
puter-Aided Design, 15(5):260–261, 1983.

4. S. Campagna and P. Slusallek. “Improving Bézier
Clipping and Chebyshev Boxing for Ray Tracing Para-
metric Surfaces.” In B. Girod, H. Niemann, and H.-P.
Seidel, editors, Proceedings of 3D Image Analysis and
Synthesis ’96, pages 95–102, 1996.

5. S. Campagna, P. Slusallek, and H.-P. Seidel. “Ray
Tracing of Spline Surfaces: Bézier Clipping, Cheby-
shev Boxing, and Bounding Volume Hierarchy – A
Critical Comparison with New Results.” The Visual
Computer, 13(6):265–282, 1997.

6. G. Farin. “Triangular Bernstein-Bézier Patches.” Com-
puter Aided Geometric Design, 3(2):83–127, 1986.

7. G. Farin. “The Use of Triangular Patches in CAD.” In
M. Wozny, H. McLaughlin, and J. Encarnação, edi-
tors, Geometric Modeling for CAD Applications, pages
191–194. North-Holland, Amsterdam, 1988.

8. G. Farin. Curves and Surfaces for Computer Aided
Geometric Design. Academic Press, 1990.

9. A. Fournier and J. Buchanan. “Chebyshev polynomials
for boxing and intersections of parametric curves and
surfaces.” In COMPUTER GRAPHICS Forum, Vol.
13, No. 3, pages 127–142. Eurographics, Basil Black-
well Ltd, 1994. EUROGRAPHICS’94 Conference.

10. A. Glassner, editor. An Introduction to Ray Tracing.
Academic Press, 1989.

11. R. N. Goldman. “Subdivision Algorithms for Bézier
Triangles.” Computer-Aided Design, 15(3):159–166,
1983.

12. R. N. Goldman and D. J. Filip. “Conversion from
Bézier Rectangles to Bézier Triangles.” Computer-
Aided Design, 19(1):25–27, 1987.

13. J. T. Kajiya. “Ray Tracing Parametric Patches.” In
SIGGRAPH’82 Conference Proceedings, Annual Con-
ference Series, pages 245–254. ACM SIGGRAPH,
Addison Wesley, 1982.

14. T. Nishita, T. W. Sederberg, and M. Kakimoto. “Ray
Tracing Trimmed Rational Surface Patches.” In SIG-
GRAPH’90 Conference Proceedings, Annual Confer-
ence Series, pages 337–345. ACM SIGGRAPH,
Addison Wesley, 1990.

15. L. Ramshaw. “Blossoming: a Connect–the–Dots
Approach to Splines.” Technical report, Digital Sys-
tems Research Center, Palo Alto, CA, 1987.

16. L. Ramshaw. “Blossoms Are Polar Forms.” Computer
Aided Geometric Design, 6(4):323–359, 1989.

17. S. H. M. Roth, P. Diezi, and M. H. Gross. “Triangular
Bézier Clipping.” In PACIFIC GRAPHICS 2000 Pro-
ceedings, pages 413–414. IEEE, IEEE Computer Soci-
ety, 2000.

18. S. H. M. Roth, M. H. Gross, S. Turello, and F. R.
Carls. “A Bernstein-Bézier Based Approach to Soft
Tissue Simulation.” In COMPUTER GRAPHICS
Forum, Vol. 17, No. 3, pages C285–C294. Eurograph-
ics, Blackwell Publishers Ltd, 1998. EUROGRAPH-
ICS’98 Conference.

19. T. W. Sederberg and D. C. Anderson. “Ray Tracing of
Steiner Patches.” In SIGGRAPH’84 Conference Pro-
ceedings, Annual Conference Series, pages 159–164.
ACM SIGGRAPH, Addison Wesley, 1984.

20. H. Seidel. “A General Subdivision Theorem for Bézier
Triangles.” In T. Lyche and L. L. Schumaker, editors,
Mathematical Methods in Computer Aided Geometric
Design, pages 573–581. Academic Press, Inc., 1989.

21. W. Stürzlinger. “Ray Tracing Triangular Trimmed
Free Form Surfaces.” IEEE Transactions on Visualiza-
tion and Computer Graphics, 4(3):202–214, 1998.

22. M. Sweeney and R. Bartels. “Ray-Tracing Free-Form
B-Spline Surfaces.” IEEE Computer Graphics and
Applications, 6(2):41–49, 1986.

23. D. L. Toth. “On Ray Tracing Parametric Surfaces.” In
SIGGRAPH’85 Conference Proceedings, Annual Con-
ference Series, pages 171–179. ACM SIGGRAPH,
Addison Wesley, 1985.

24. N. Wilt. Object-Oriented Ray Tracing. Wiley, 1st edi-
tion, 1994.

25. J. Yen, S. Spach, M. Smith, and R. Pulleyblank. “Par-
allel Boxing in B-Spline Intersection.” IEEE Computer
Graphics and Applications, 11(1):72–79, 1991.
© The Eurographics Association and Blackwell Publishers 2001.

	Abstract
	1. Introduction
	2. Related Work
	2.1. Nested bounding volumes
	2.2. Parameter interval iteration
	2.3. Ray tracing triangular patches

	3. Triangular Bézier Clipping
	3.1. Triangular Bernstein–Bézier patches
	3.2. Ray–patch intersection problem
	3.3. Reduction to two dimensions
	3.4. Finding intersections
	3.5. Convex hull determination

	4. Reporting of Wrong Hits
	5. Results
	6. Conclusions
	References

