
EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne Volume 20 (2001), Number 3, pp. C-8–C-16
(Guest Editors)
JAPE: A Prototyping System for
Collaborative Virtual Environments

Oliver G. Staadt, Martin Näf, Edouard Lamboray, Stephan Würmlin

Computer Graphics Group
Computer Science Department

ETH Zurich, Switzerland
E-mail: {staadt, naef, lamboray, wuermlin}@inf.ethz.ch

http://graphics.ethz.ch

Abstract
We present JAPE, a flexible prototyping system to support the design of a new advanced collaborative virtual
environment. We describe the utilization of different hard- and software components to quickly build a flexible,
yet powerful test bed for application and algorithm development. These components include a 3-D rendering
toolkit, live video acquisition, speech transmission, and the control of tracking and interaction devices. To
facilitate the simultaneous design of applications and algorithms that take advantage of unique features of new
collaborative virtual environments, we provide the developer with a flexible prototyping toolkit which emulates
the functionality of the final system. The applicability of JAPE is demonstrated with several prototype applica-
tions and algorithms.

1. Introduction

Advanced virtual environments, such as spatially immer-
sive displays (SIDs) 4, 9, make great demands on applica-
tion programming interfaces, often referred to as virtual
reality toolkits. This is due to special and often unique fea-
tures provided by those environments that make it neces-
sary to either extend existing multi-purpose toolkits or to
design new toolkits which are tailored to specific require-
ments of the environment.

We are currently developing a novel collaborative virtual
environment (CVE), the blue-c, which combines immersive
projection with real-time video acquisition and advanced
multimedia communication 22. Eventually, multiple blue-c
portals, connected via high-speed networks, will allow
remotely located users to meet, communicate and collabo-
rate in a shared virtual space.

The development of large immersive environments over
the past decade has revealed that good applications are cru-
cial for the success of a VR system. Hence, instead of
adapting existing applications to a mere technology-focused
environment once it is completed, the application designer
should be able to influence the development of the VR sys-
tem right from the beginning 21.

Unfortunately, design and implementation of a full-fea-
tured application programming interface (API) and the
actual VR environment are often carried out simulta-
neously. Thus, it is necessary to provide application design-
ers with an alternative design and prototyping environment
that emulates important features and concepts that will
eventually be available in the final API. Moreover, it will
provide developers of core system components with a flexi-
ble test bed for novel algorithms and methods.

Obviously, the provision of the prototyping environment
should not be delayed until important design and implemen-
tation decisions of the VR system have already been taken.
Therefore, reuse of immediately available hard- and soft-
ware components, which constitute the prototyping envi-
ronment, allows for application design at an early stage of
the project.

In this paper, we present JAPE, a prototyping environ-
ment which has been built to support application design and
algorithm development for the blue-c project. Our goal is
not to introduce a novel system, but to reuse and combine
suitable components in short time. Note further that we do
not intend to build our blue-c API directly on top of this
prototyping system. Some of the JAPE components, will
© The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Staadt et al. / JAPE: A Prototyping System for Collaborative virtual Environments
eventually be integrated into the final API. This will ensure
a smooth transition from JAPE to the blue-c API.

The remainder of this paper is organized as follows.
After a brief summary of the blue-c project in Section 2, we
discuss related work in Section 3. Section 4 outlines the dif-
ferent components comprising the prototyping environ-
ment, followed by a detailed description of the core system
and individual components. The point-based rendering
method introduced in Section 7 is an example for the inte-
gration of a new component into JAPE. Finally, we present
some prototype applications in Section 8.

2. The blue-c Project

The blue-c is a joint research project between several insti-
tutes at ETH Zurich, including the Computer Graphics
Group, the Center of Product Development, the Computer
Aided Architectural Design Group, and the Computer
Vision Group.

Our research aims at investigating a new generation of vir-
tual design, modeling and collaboration environments. The
blue-c system foresees simultaneous acquisition of live
video streams and projection of virtual reality scenes 22.
Color representations with depth information of the users
will be generated using real-time image analysis. These
human inlay representations will be integrated into a com-
puter generated virtual scene, that will be projected in an
immersive display environment. Thus, unprecedented inter-
action and collaboration techniques among humans and vir-
tual models will become feasible.

Several applications that take advantage of the novel fea-
tures of the blue-c are currently being designed. Developers
from different application fields, including architecture and
mechanical engineering, utilize JAPE for the development
of prototype applications and for the study of new interac-
tion techniques. The final applications, however, will be
designed for the blue-c platform. The blue-c project has
started in April 2000 and its first phase is expected to be
completed by spring 2003.

3. Related Work

During the past decade, many different architectures for
building virtual reality applications have evolved. We have
analyzed a variety of commercial toolkits as well as
research systems.

Commercially available toolkits include Sense8 (http://
www.sense8.com/), which provides an easy to use interface
for non technical users, and MultiGen-Paradigm Vega
(http://www.multigen.com/), which offers powerful tools to
create realistic worlds for real-time simulations, including
sensor simulation. Examples for non-commercial architec-
tures are the VR-Juggler 1 and the MR Toolkit 20.

Recent research efforts concentrate on building distrib-
uted virtual reality environments. Although various distrib-
uted military simulations have been developed during the
past decade 3, 23, solutions for computer supported collabo-
rative work (CSCW) in virtual reality environments is still
an area of very active research. A basic toolkit with focus
on networking primitives, avatar handling and basic data-
base functions in the CAVE 4 environment is CAVERNsoft
10, 14. In addition, CAVERNsoft provides a set of Per-
former-based high-level modules, which can accelerate the
construction of collaborative virtual reality applications. In
the future however, we plan to use advanced communica-
tion technology and protocols with QoS support. CAVERN-
soft, concentrating on TCP, UDP and HTTP, does not fulfill
all the requirements we established for the blue-c system.

Avango 24 (a.k.a. Avocado) takes a different approach at
distributed virtual reality. It replicates a Performer scene
graph across all sites over the network. In addition to this
base functionality, it supports a new scripting language for
rapid application development. TELEPORT 2 is a tele-pres-
ence system, which allows for the integration of a real per-
son into a virtual office environment. A similar approach is
taken with the Office of the Future project 17. Both systems,
however, are currently restricted to uni-directional opera-
tion.

The Distributed Interactive Virtual Environment
(DIVE) 5 is a toolkit covering several important aspects of
virtual environments, including graphics, audio and net-
working. The MASSIVE System 6, developed at the Uni-
versity of Nottingham, also provides a framework for
distributed virtual environments and puts special emphasize
on a spatial model of interaction for awareness manage-
ment. MASSIVE and DIVE were both designed for Inter-
net-based virtual environments with hundreds, or even
thousands of users. Hence their target applications are dif-
ferent from those of the blue-c system, where only a few
sites will be interconnected via a high-speed network, and
where the applications will run on high-end graphics hard-
ware.

Ongoing research at the University of Manchester lead to
the development of novel techniques for display and inter-
action management (Maverik) 8 as well as to an interesting
paradigm for large-scale multi-user virtual environments
(Deva) 15. The Deva implementation, which covers the
communication aspects of the distributed virtual environ-
ment, has not yet been released.

We have come to the conclusion that none of the above
toolkits were immediately suitable for the blue-c without
significant extensions and modifications. The final blue-c
application building toolkit will thus be built directly on top
of OpenGL Performer. Consequently, we have decided not
to employ any of those toolkits for the purpose of applica-
tion design and prototyping.
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative Virtual Environments
4. System Overview

The JAPE environment comprises the system core and sev-
eral interchangeable components for remote data acquisi-
tion. See Figure 1 for a schematic overview of the JAPE
architecture.

The system core is implemented using the OpenGL Per-
former library, which provides basic functionality such as
scene graph management and rendering. Currently, Per-
former is the only library that efficiently supports multi-
pipe rendering on an SGI Onyx, which is the target platform
of the blue-c environment.

Three major components currently integrated with JAPE
are video, audio and tracking. We have built a separate
interface, the InputServer, that connects these components
with the core system. This enables us to hide implementa-
tion details of the remote acquisition from the application.

A prototype application is built on top of the core system
through which it communicates with individual compo-
nents. When the application is started, the core system ini-
tiates the start of an InputServer instance on a number of
remote client hosts, which are responsible for data acquisi-
tion and rendering (the rendering concept on remote clients
will be introduced in Section 5.2). Note that the application
is responsible for importing scene information.

The core system functionality can further be extended by
adding additional algorithms. One example is the integra-
tion of a new point-based object as described in Section 5.4.

5. System Core
5.1. Shared scene graph

In our prototype environment, we use a scene graph based
on the OpenGL Performer 2.4 library for storing and ren-
dering the virtual scene. The development library includes
thin wrapper classes for the scene graph, window manage-
ment, and user interface elements such as mouse, keyboard
and 3-D tracking devices. These are designed for rapid
application prototyping while still allowing for direct access
to the underlying Performer interfaces for advanced devel-
opers.

The prototype implements a pseudo-multiuser mode.
Each user has his own view of the scene and user interface

devices such as keyboard, mouse and trackers or 3-D mice.
The application code, however, runs within a single pro-
cess. This application process maintains a single copy of the
scene graph. User interface input is multiplexed sequen-
tially, allowing for consistent scene graph updates without
additional synchronization.

5.2. Multi-head rendering

We exploit the multi-pipe rendering capabilities of Per-
former for rendering different views of the scene for each
user, who is assigned a dedicated virtual graphics pipe
which connects to any Xserver over the network. This does
not only allow us to open multiple independent views on
the same scene, but also to retrieve user interface input from
standard X11 devices. This mechanism results in excellent
rendering performance on our SGI Onyx 3200 system con-
figured with two local consoles. A different configuration
using SGI O2 workstations as remote terminals for scenes
with reduced geometry and texture complexity still delivers
adequate performance for prototype applications. Figure 2
depicts the concept for multi-head rendering with JAPE,
illustrating the associated cull and draw processes of each
virtual pipe.

Note that the system does not impose a hard limit on the
number of users participating in the virtual environment. In
practice, however, the available network bandwidth for
remote rendering limits scalability to a small number of
users. Our application examples described in Section 8 have
all been carried out with a two–user setup.

5.3. Video billboards

The visual representation of each user in JAPE is integrated
into the scene graph. Each representation is derived from a
Performer group node which hosts a textured billboard. The
alpha channel in the texture is used for masking the person.
This construction allows to treat the user representation just
like any other standard geometry object.

Live-video data is acquired by the InputServer described
in Section 6.

Figure 1: Overview of the JAPE architecture.

core system
algorithms

applications

InputServer

audio trackingtrackingvideo

screen
scene

data

audio

Figure 2: The multi-head rendering concept.

application
process

Xserver1
display

pipe1

CULLscene graph

pipek

CULL

DRAW

DRAW Xserverk
display

...

n
e

tw
o

rk
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative virtual Environments
5.4. Point-based objects

In addition to application design, JAPE serves as a test bed
for new core algorithms. A first example is a point-based
rendering algorithm, which can be separated into two main
components:

• A new pseudo-geometry object which is added to the
scene graph. From the perspective of the rendering
system, the point-object is a unit cube around the ori-
gin, which can be translated, scaled and rotated using
regular dynamic coordinate system (DCS) group trans-
formation nodes. Runtime optimization such as view
frustum culling can be applied safely.

• Calculation engines for each point-based object are
instantiated for each rendering channel. These engines
continuously calculate new point sets depending on
current camera and viewport parameters as well as
object transformation. The parameters are updated
during the culling phase for each frame. Callback rou-
tines render the most recent result in the drawing
phase.

The algorithm developer can easily plug different types of
image warping or point rendering algorithms into this
framework without knowing the innards of Performer. This
model allows for easy compositing including correct occlu-
sion handling as long as the object remains within the limits
of the unit cube.

5.5. Application integration

All user application code runs in a single process to relieve
the application programmer from tedious and error prone
synchronization tasks. The application is in charge of load-
ing its data files, e.g., the virtual scene description. The
overall organization of an application running concurrently
with the JAPE processes is illustrated in Figure 3. The Per-

former rendering system spawns a cull and a draw process
for each user. The virtual pipes are synchronized for a con-
sistent view of the scene among all users.

A set of additional processes are spawned to decouple the
achievable frame rate from acquisition and calculation tasks
and to fully exploit the available processing power:

• There is one video receiver process for each video
source. It manages two image buffers including status
information in a Performer shared memory arena. One
buffer always represents the current image, the other is
the target for network transmission. The billboard tex-
ture is updated for each rendered frame using sub-
loading in a draw process callback.

• Each point-based object has its own calculation pro-
cess for each pipe. The calculation is triggered by a
position and camera update from the cull process. The
resulting vertices are again managed in a double-
buffer. The draw process renders the most recent point
set. This approach may lead to small inconsistencies
between the calculated data and the actual view if the
data takes longer than a single frame to calculate. This
disadvantage is fully compensated by the improved
visual impression gained with a higher frame rate,
though.

• User interface input is handled asynchronously by sep-
arate acquisition processes. These processes either
receive input information from the distributed Input-
Server components or poll the locally attached
devices. The input handler manages queues and state
objects to pass events and current state to the applica-
tion process.

• Additional helper processes start and control the dis-
tributed InputServers.

Figure 3: Dataflow of a typical JAPE application.

n
e

tw
o

rk

rendering

DRAWvideo data

CULL

PointWarper

X input

tracker data

audio data

InputServer

UI handler

synthetic data

application

screenaudio
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative Virtual Environments
The asynchronous data acquisition adds a small latency
penalty because the available data is not always rendered
immediately. At high frame rates, however, this latency
penalty can be neglected, especially when considering the
scene-update–to–render latency of three frames that is
inherent to Performer in multi-processing mode.

5.6. Navigation and interaction

The development of the rapid prototype environment was
initiated by the need for a test bed for new human-machine
interaction paradigms. As a consequence, the system does
not provide high-level interaction tools. The system pro-
vides only the raw input data such as mouse position, key-
board events and tracker data in a real world coordinate
system. Additional services for object picking are provided
by Performer. It is up to the application developer to inter-
pret the user interface input in order to navigate in and to
interact with the virtual world.

6. Remote Acquisition

The InputServer grabs live video images and tracker state
information, and streams them to the application host.
Moreover, it handles audio conferencing with its partner
sites, i.e., another workstation running an InputServer (see
Figure 3). The InputServer uses the Real-time Transport
Protocol (RTP) 19 as its transport protocol above UDP/IP.
We used Jori Liesenborgs’ RTP implementation jrtplib, ver-
sion 2.3 (http://lumumba.luc.ac.be/jori/jrtplib/jrtplib.html).

6.1. Live video

Live video acquisition is carried out on SGI O2 worksta-
tions with video option. The images of a user standing in
front of a blue background are captured in RGBA format. A
simple chroma-keying is performed to extract the user’s
texture. The RGB values of the background pixels can be
set to the same value as their corresponding alpha value.
This leads to long runs of identical byte values, which can
be compressed efficiently with run-length encoding. After
the acquisition and preprocessing steps, the image is
streamed to the application host.

For run-length encoding, we used the implementation
from the SGI digital media library. We analyzed three test
cases with different amounts of background pixels:

• The user’s body covers about 10–20 per cent of the
input image. This is a typical situation where the user
is allowed to move during the session.

• The user’s body covers the complete image frame, i.e.,
the user is tracked by a camera, or is not allowed to
move during the session.

• The image frame only covers the user’s head, which
would be typical in a “video-conferencing” style appli-
cation.

Table 1 shows the results for the three typical test cases. As
expected, the achievable compression ratio depends on the
proportion of background information in the captured
image. We measured approximate compression ratios of
about 18:1, 3:1 and 1.6:1 for the three test cases respec-
tively. Furthermore, the frame rate at which the InputServer
operates depends on the image resolution. Already for half-
frames, we risk having too small frame-rates for real-time
interaction.

Chroma-keying is very sensitive to the image quality of
the input image, which in turn depends on lighting condi-
tions and camera hardware. In order to obtain a good user
extraction from the background, we used a consumer-level
video camera. If correct background extraction is not
important for the target application, inexpensive webcams
can also be used. In order to increase the number of pixels
covered by the user’s body, we used the camera in an on-
end configuration.

6.2. Tracking

We integrated a conventional magnetic motion tracking
device, the Flock of Birds system by Ascension Technology
Corporation. The tracker acquires position and orientation
data up to 145 Hz per sensor, with an accuracy of 2 mm and

, respectively. It is possible to operate multiple sensors
simultaneously at high update rates.

We implemented a driver for the system, which allows us
to choose the number of tracking sensors. In addition, we
support sensors with integrated buttons like a space mouse.
The InputServer collects tracker information which is
streamed to the application host.

6.3. Audio

For audio communication, we integrated the open-source
streaming application Robust Audio Tool (RAT, http://
www-mice.cs.ucl.ac.uk/multimedia/software/rat/) into the
InputServer. Our choice of RAT was guided by the follow-
ing features:

• Availability for all important platforms.

test case image size compression
ratio

capture
frequency

288 x 360 19.3 : 1 14 Hz
192 x 238 18.9 : 1 26 Hz
144 x 192 16.8 : 1 27 Hz
288 x 360 3.4 : 1 10 Hz
192 x 238 3.3 : 1 23 Hz
144 x 192 2.8 : 1 27 Hz
288 x 360 1.7 : 1 7 Hz
192 x 238 1.6 : 1 18 Hz
144 x 192 1.6 : 1 26 Hz

Table 1: Compression ratio and capture frequency for
three test cases.

0.5°
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative virtual Environments
• Support of multi-party audio conferencing and use of
RTP as transport protocol above UDP/IP.

• Large range of different speech coding algorithms
from low-bandwidth linear prediction coding up to
high-quality linear coding at 48 kHz sampling rate. For
sample recovery or substitution in case of packet loss,
some advanced techniques like redundant or inter-
leaved coding as well as receiver-based repair strate-
gies are supported.

• The open-source distribution allows for seamless inte-
gration of RAT into an application.

We linked RAT to the InputServer such that the audio con-
ferencing application starts automatically without its own
graphical user-interface. The necessary user operations that
are normally required for starting listening using the work-
station’s loudspeakers and talking using a separate micro-
phone are all performed in software. The choice of
sampling frequency and of the audio codec as well as the
playback configuration are specified in RAT’s own configu-
ration file.

Since we used the prototype only in a local-area-network,
we chose linear encoding at 48 kHz without silence sup-
pression. This produces a high quality audio stream at
768 kbps per user. For this prototype environment, synchro-
nization of audio and video streams is not required.

7. Rendering of Point-based Objects

The use of video billboards as described in Section 5.3 is a
simple way of integrating dynamic real-world objects into a
three-dimensional synthetic environment. The blue-c sys-
tem, however, will eventually integrate point-based objects
that are reconstructed form multiple live video streams into
the virtual environment. JAPE is used as a test bed for
point-based rendering algorithms. We implemented a first
approach to render static objects from multiple reference
images with additional depth information using 3-D image
warping 12. With this method we want to give a proof of
concept for compositing 3-D point-based objects into the
geometry-based OpenGL Performer scene graph using the
interface provided by JAPE (see Section 5.4).

7.1. 3-D image warping

In order to render images with depth information, we
adapted the 3-D image warping equation 12. Let be a
point in Euclidian space and be its projection on
the plane of image . The projection of into a new
image plane is given by

,

where denotes projective equivalence. is the cam-
era’s center-of-projection associated with image and
is its camera matrix. is the generalized disparity

of a source image pixel , which is defined by the
range value of that point and its position to the center-of-
projection:

.

The 3-D warping equation can be rewritten as rational
expressions, which is computationally efficient and allows
for incremental computations along individual scanlines.
Note that the mapping of the 3-D warping equation is not
homeomorphic, thus, resolving visibility is required. We
have implemented the technique proposed by McMillan and
Bishop 12, which essentially keeps a specific warping order,
back-to-front, to resolve this problem. As an extension, we
plan to implement a shear-warp factorization of the 3-D
warping equation13 to further increase performance of the
warper by exploiting texture mapping hardware.

In contrast to systems like QSplat 18 or Surfel ren-
dering 16, we have a sparser sampling of points since PAL
video images have a resolution of pixels, which
leads to a total of 442,368 pixels. Our example objects
cover only a fraction of the reference images (see Figure 4).
This leads to reduced quality in the rendered images com-
pared to the above systems, but the quality is still adequate
for a prototype (see Figure 4b).

7.2. Multiple reference images

In order to render an object from arbitrary view points, a
single reference image does not provide sufficient informa-
tion. We represent an object with ten reference images,
eight on a circle around the object and one on the bottom
and on top of the object. Currently, we choose the two refer-
ence images from the nearest camera positions with respect
to the position of the desired view. The number of reference
images that are employed simultaneously could be
increased to find an optimal balance for the total number of
points in each warped image. Note that the number of
points being warped is constant. The contribution of each
reference image is inverse proportional to the distance from
the position of the reference views to the desired view.

X·

us vs,()
is X·

it

xt δ xs()Pt
1– C· s C· t–() Pt

1– Psxs+=.

=. C· k
ik Pk

3 3× δ xs()

Figure 4*: a: Warped point cloud with 45,000 points.
b: Splatted surface.

us vs,()
r

δ xs()
Psxs

r-------------=

768 576×

(a) (b)
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative Virtual Environments
7.3. Surface reconstruction

Individual point samples are rendered using simple splat
primitives. In an initial implementation, we employed a
push-pull filter 7 which leads to high quality images at
reduced performance. We decided to implement a splatting
in the fashion of QSplat, where the footprint of the splats is
fixed and the splat size can be variable. In our example pro-
totype, we used fixed splat sizes for better performance.

7.4. Integration and compositing

Our method represents objects from multiple images with
depth, which is similar to the concept of layered depth
cubes 11. The goal of the blue-c is the real-time reconstruc-
tion of humans and other real-world objects and their inte-
gration into virtual environments. The described rendering
technique is the first step towards that goal.

As described in Section 5.4, the warped object is inserted
into the scene graph as a point-based object. The point sam-
ples are rendered very efficiently using glVertex primi-
tives with splat size defined by glPointSize. Note that
the OpenGL state change induced by glPointSize is
expensive and reduces the rendering performance by 50 per
cent. Thus, frequent changes of the splat size should be
avoided. Table 2 lists performance measurements for the
different models shown in Figure 4b and Figure 5. The
frame rates were measured on a SGI Onyx 3200 using one
400 MHz MIPS R12000 processor and a single
InfiniteReality3 pipe.

Note that the performance is proportional to the number
of points. When we render only a subset of 9,000 points of
the woman model, we achieve a rate of 38 frames per sec-

ond. The resulting visual quality is sufficient for a moving
object.

8. Application Scenarios

8.1. Entertainment

Entertainment applications such as multi-user games are
common scenarios for collaborative virtual environments.
We have implemented a multi-user version of the popular
Moorhuhn game (http://www.moorhuhn.de/).

Each user gets a view on the scene with chickens flying
in front of a background composed of several layers of tex-
tured polygons. The chickens are simple textured polygons.
Polygon vertices and texture coordinates are updated for
every frame for a smooth and dynamic flight.

The framework gathers mouse and keyboard input from
the consoles of the players. Mouse and keyboard handler
objects store interaction events for each user. The applica-
tion main loop handles all input once per frame and updates
the global scene and individual user views accordingly. Hit-
testing is based on the Performer channel picking feature.

Making the game multi-user capable required very little
additional development effort thanks to the shared scene
graph and trivial synchronization resulting therefrom.
Figure 6 shows two people playing our multi-user version
of Moorhuhn.

8.2. Virtual museum

Tele-teaching and virtual guides are promising application
areas for collaborative virtual environments. The traditional
tele-conferencing approach, which separates the representa-
tion of the remote users and the data, leads to an unnatural
way of interaction. Recent immersive collaborative systems
therefore try to integrate all users directly into the scene.

The virtual museum example depicted in Figure 7, illus-
trates the concept of an integrated video avatar as a tour
guide, who explains the virtual exhibits to a point-based
visitor. The position of the video billboard is given by the
camera position of the remote user. The users can either
navigate with the keyboard, mouse or the 3-D tracker. The
users can talk to each other over the audio system and keep
eye contact, leading to a natural way of conversation within
the virtual scene.

9. Conclusions

In this paper we presented JAPE, a flexible prototyping sys-
tem for collaborative virtual environments. Instead of
employing a complex VR toolkit that might not be suitable
for the final CVE, we demonstrated that it is possible to
build a prototyping system from basic hard- and software
components. This enables us to provide application design-
ers of the blue-c project with a development framework that
already includes important components of the final system.

Figure 5*: Examples for point-based objects.
a: Head. b: Teapot.

data set warped
points

fixed
splatting

variable
splatting

push-pull
filter

woman 45,000 18.0 fps 8.0 fps 3.5 fps
head 70,000 14.5 fps 4.5 fps 3.5 fps
teapot 120,000 12.0 fps 3.5 fps 2.5 fps

Table 2: Rendering performance for frame buffer
resolution 768 x 576.

(a) (b)
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative virtual Environments
The system core is based on the OpenGL Perfomer
library, which allows us to exploit the multi-pipe rendering
capabilities of our target hardware. A set of remote data
acquisition components has been implemented to support
video and tracking input as well as audio transmission. The
core system’s flexible interface allows us to incorporate
additional algorithmic and data acquisition components.

Note that the application scenarios presented in this paper
are not intended for the final blue-c environment. They
demonstrate, however, the suitability of JAPE for rapid
development of a variety of prototype systems. Applica-
tions for the blue-c are currently being designed using JAPE
by developers in the fields of architectural design and

mechanical engineering. We plan to migrate these applica-
tions to the final system once the blue-c API is available.

Acknowledgments

We would like to thank Markus Gross and all members of
the blue-c team for many fruitful discussions. We also thank
Stefan Hösli for implementing parts of the point-based
object rendering method and Rolf Koch for the head data
set.

The Moorhuhn data is courtesy of Phenomedia AG, Ger-
many. This work has been funded by ETH Zurich as a
“Polyprojekt”.

Figure 6: Picture of two authors playing the JAPE version of Moorhuhn.

Figure 7*: Example of the museum scene.
© The Eurographics Association and Blackwell Publishers 2001.

Staadt et al. / JAPE: A Prototyping System for Collaborative Virtual Environments
References

1. A. Bierbaum, C. Just, P. Hartling, and C. Cruz-Neira,
"Flexible application design using VR Juggler". Tech-
nical sketch presented at SIGGRAPH 2000, New
Orleans, July 2000.

2. C. J. Breiteneder, S. J. Gibbs, and C. Arapis. “TELE-
PORT – An augumented reality teleconferencing envi-
ronment.” Proceedings of EUROGRAPHICS Virtual
Environments and Scientific Visualization '96, pp. 41–
49, 1996.

3. M. Capps, D. McGregor, D. Brutzman, and M. Zyda.
“NPSNET-V: A new beginning for virtual environ-
ments.” IEEE Computer Graphics & Applications, pp.
12–15, Sep./Oct. 2000.

4. C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. “Sur-
round-screen projection-based virtual reality: The
design and implementation of the CAVE.” Proceedings
of SIGGRAPH 93, pp. 135–142, Aug. 1993.

5. E. Frécon and M. Stenius. “DIVE: A scalable network
architecture for distributed virtual environments.” Dis-
tributed Systems Engineering Journal, 5, pp. 91–100,
1998.

6. C. Greenhalgh, J. Purbrick, and D. Snowdown. “Inside
MASSIVE-3: Flexible support for data consistency and
world structuring.” In Proceedings of Collaborative
Virtual Environments 2000, pp. 119–127, San Fran-
cisco, September 2000.

7. J. P. Grossman and W. J. Dally. “Point sample render-
ing.” In Proceedings 9th Eurographics Workshop on
Rendering, Rendering Techniques, pp. 181–192, 1998.

8. R.Hubbold, J.Cook, M.Keates, S.Gibson, T.Howard,
A.Murta, A.West and S.Pettifer. “GNU/MAVERIK: A
micro-kernel for large-scale virtual environments.” In
Proceedings of ACM Symposium on Virtual Reality
Software and Technology 1999 (VRST’99), London,
pp. 66–-73, Dec. 1999.

9. E. Lantz. “The future of virtual reality: head mounted
displays versus spatially immersive displays (panel).”
In Proceedings of SIGGRAPH 96, pp. 485–486, Aug.
1996.

10. J. Leigh, A. E. Johnson, and T. A. DeFanti. “CAV-
ERN: A distributed architecture for supporting scalable
persistence and interoperability in collaborative virtual
environments.” Journal of Virtual Reality Research,
Development and Applications, 2(2), pp. 217–237,
Dec. 1997.

11. D. Lischinski and A. Rappoport. “Image-based render-
ing for non-diffuse synthetic scenes.” In Proceedings of
the 9th Eurographics Workshop on Rendering 98, Ren-
dering Techniques, pp. 301–314, 1998.

12. L. McMillan and G. Bishop. “Plenoptic modeling: An
image-based rendering system.” In SIGGRAPH 95

Conference Proceedings, ACM SIGGRAPH Annual
Conference Series, pp. 39–46, 1995.

13. M. M. Oliveira, G. Bishop, and D. McAllister. “Relief
texture mapping.” In SIGGRAPH 2000 Conference
Proceedings, ACM SIGGRAPH Annual Conference
Series, pp. 359–368, 2000.

14. K. Park., Y. Cho, N. Krishnaprasad, C. Scharver, M.
Lewis, J. Leigh, and A. Johnson. “CAVERNsoft G2: A
toolkit for high performance tele-immersive collabora-
tion.” Proceedings of the ACM Symposium on Virtual
Reality Software and Technology 2000, Seoul, Korea,
pp. 8–15, 2000.

15. S. Pettifer, J. Cook, J. Marsh and A. West. “DEVA3:
Architecture for a large scale virtual reality system.” In
Proceedings of ACM Symposium on Virtual Reality
Software and Technology 2000 (VRST’00), Seoul,
October 2000.

16. H. Pfister, M. Zwicker, J. van Baar, and M. Gross.
“Surfels: Surface elements as rendering primitives.” In
SIGGRAPH 2000 Conference Proceedings, ACM Sig-
graph Annual Conference Series, pp. 335–342, 2000.

17. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs. “The office of the future: A unified approach
to image-based modeling and spatially immersive dis-
plays.” Proceedings of SIGGRAPH ‘98, pp. 179–188,
July 1998.

18. S. Rusinkiewicz and M. Levoy. “QSplat: A Multireso-
lution point rendering system for large meshes.” In
SIGGRAPH 2000 Conference Proceedings, ACM Sig-
graph Annual Conference Series, pp. 343–352, 2000.

19. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. “RTP: A transport protocol for real-time applica-
tions.” RFC 1889, January 1996.

20. C. Shaw, M. Green, J. Liang, and Y. Sun. "Decoupled
simulation in virtual reality with the MR Toolkit",.
ACM Transactions on Information Systems, 11(3), pp.
287–317, July 1993.

21. S. P. Smith and D. J. Duke. “Binding virtual environ-
ments to toolkit capabilities.” Proceedings of EURO-
GRAPHICS 2000, pp. C-81–C-89, 2000.

22. O. G. Staadt, A. Kunz, M. Meier, M. H. Gross. “The
blue-c: Integrating real humans into a networked
immersive environment.” Proceedings of ACM Collab-
orative Virtual Environments 2000, pp. 202–202, 2000.

23. “Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) – Framework and rules.”
IEEE Standard 1516, Sep. 2000.

24. H. Tramberend. “Avocado: A distributed virtual reality
framework.” Proceedings of the IEEE Virtual Reality
1999, pp. 14–21, 1999.
© The Eurographics Association and Blackwell Publishers 2001.

	JAPE: A Prototyping System for Collaborative Virtual Environments
	1. Introduction
	2. The blue-c Project
	3. Related Work
	4. System Overview
	5. System Core
	5.1. Shared scene graph
	5.2. Multi-head rendering
	5.3. Video billboards
	5.4. Point-based objects
	5.5. Application integration
	5.6. Navigation and interaction

	6. Remote Acquisition
	6.1. Live video
	6.2. Tracking
	6.3. Audio

	7. Rendering of Point-based Objects
	7.1. 3-D image warping
	7.2. Multiple reference images
	7.3. Surface reconstruction
	7.4. Integration and compositing

	8. Application Scenarios
	8.1. Entertainment
	8.2. Virtual museum

	9. Conclusions

