
The blue-c Distributed Scene Graph

Martin Naef1, Edouard Lamboray1, Oliver Staadt2, Markus Gross1

1Computer Graphics Laboratory 2Computer Science Department
Swiss Federal Institute of Technology, Zurich University of California, Davis

{naef, lamboray, grossm}@inf.ethz.ch staadt@cs.ucdavis.edu
Abstract

In this paper we present a distributed scene graph archi-
tecture for use in the blue-c, a novel collaborative immer-
sive virtual environment. We extend the widely used
OpenGL Performer toolkit to provide a distributed scene
graph maintaining full synchronization down to vertex and
texel level. We propose a synchronization scheme including
customizable, relaxed locking mechanisms. We demonstrate
the functionality of our toolkit with two prototype applica-
tions in our high-performance virtual reality and visual sim-
ulation environment.

Keywords
Distributed graphics, scene graph, collaborative virtual
environments, networked virtual reality

1. Introduction
Most immersive VR applications are based on scene

graph toolkits which provide a hierarchical object-oriented
scene representation. Toolkits used in stand-alone VR sys-
tems are usually not immediately suited for distributed
applications due to the lack of built-in mechanisms for shar-
ing application data in a consistent fashion across multiple
sites. Thus, distributed scene graphs have been developed to
solve this problem.

We have developed the blue-c Distributed Scene Graph
(bcDSG) in the context of the blue-c project [5] – a collabo-
rative tele-presence environment with simultaneous acquisi-
tion of 3D video and immersive projection. We employ
OpenGL Performer [3], which is one of the most widely-
used toolkits for high-performance immersive VR applica-
tions, as the underlying scene graph.

The bcDSG shared nodes are replicated and fully syn-
chronized down to vertex and texel level. Furthermore, we
do not rely on specific notification mechanisms and do not
change the API paradigm of the underlying scene graph.

2. Related work
Various methods have been proposed to build networked

virtual environments, such as NPSNET, RING, DIVE and
DIS/HLA. A detailed overview of these and similar systems
can be found in [4]. These systems focus on large-scale vir-
tual environments with synchronization happening at the
application level as opposed to the geometric representa-
tion. Recently, shared scene graph architectures have been
proposed for cluster-based rendering [2]. They are not
immediately suitable for distributed applications, though.
Architectures more closely related to the approach taken in
bcDSG include Avango [6], Distributed Open Inventor [1],
and Repo-3D. Our approach differs from these in that we do
not change or even create a new programming interface to
the scene graph, completely synchronize down to vertex and
texel level, and base on a toolkit that provides high render-
ing performance, multi-processing, and multi-pipe support.

3. System overview
The blue-c API provides an application development

environment which offers flexible access to all blue-c fea-
tures, including graphics and sound rendering, device input,
3D video, and scene distribution. These subsystems are pro-
vided as services and managed by the blue-c core (Fig. 1).

The blue-c distributed scene consists of the following
base components:
• The shared partition of the scene graph is built using

special node classes. These shared nodes are derived
from Performer objects and inherit an additional syn-
chronization interface. This allows us to add the neces-
sary functionality without needing access to the
Performer source code. Derived nodes include both the
traditional scene graph nodes (such as groups, transfor-
mations, and geometry containers) as well as attribute
classes (such as materials, textures, and highlighting).

• The synchronization service traverses the shared por-
tion of the scene once per frame. It generates, sends, and
handles scene operation messages. The synchronization
service also includes the class factory, and the node and
ID management.

blue-c Core

SyncManager

ClassFactory

NodeManager

Networking

Scene Graph

Shared

Graphics Rendering

Audio Rendering

Application

Figure 1: System overview.

• The consistency, locking, and ownership management
mechanisms are implemented as part of the synchroniza-
tion service.

• The network interface sends and receives scene opera-
tion messages. It also provides session and ID manage-
ment.

4. Scene operations
The scene graph is kept consistent among the participat-

ing sites by sending messages with node modification oper-
ations. For identification across sites, each shared node has
its own NodeID structure which consists of a main identifi-
cation number (ID), a generation number, ownership, and
serial numbers for both connectivity and attribute state.

4.1 Node status and update messages
Each shared node keeps a set of flags, encoded in a sin-

gle integer. These flags are:
• New: The node has just been created.
• State Dirty: Attributes of the node have changed.
• Connectivity Dirty: The connectivity of the node has

changed.
• Request Ownership: The local system wants to become

owner of the node. No request has been sent yet.
• Ownership Request Pending: An ownership request for

the current node has been sent.
The application programmer is responsible for setting

the state flags whenever Performer attributes or node con-
nectivity has changed.

During the traversal, scene update messages are created
according to the state of the visited node. The following
messages are used to keep the scene synchronized: Create
node, Update state, Update connectivity, and Delete node.
Additional messages for requesting and passing ownership
are used to guarantee a consistent state in the presence of
concurrent modifications of the scene. State serial numbers
are used to handle inconsistent message ordering between
different sites.

The state of a single node is always transferred as one
atomic operation. This granularity proved to be well suited
for most applications.

5. Consistency and locking
For the blue-c distributed scene graph, a relaxed locking

scheme based on object ownership was implemented. By
default, it provides immediate response to user interface
actions by allowing for local modifications of nodes before
ownership is acquired. For scenarios where a strict locking
scheme is appropriate, the application developer may easily
change the semantics as required.

6. Networking
The consistency of the distributed scene graph is guaran-

teed by a reliable transmission of the scene graph operations

from each participating site. However, no total ordering of
the scene graph operations is required. In order to fulfill
real-time requirements, we implemented an appropriate
scheme for reliable data transmission based on the connec-
tionless and unreliable UDP protocol and on explicit posi-
tive and negative acknowledgements. Our system is based
on the TAO/ACE framework (http://www.cs.wustl.edu/
~schmidt/TAO.html) and on the CORBA A/V Streaming
Service.

7. Example applications
We implemented two collaborative example applications

based on the blue-c distributed scene graph: A distributed
chess, and a collaborative painting tool1. The applications
take advantage of the full scene graph synchronization,
including texture updates, and use different locking
schemes.

Acknowledgements
We would like to thank all members of the blue-c team

for many inspiring discussions. This work has been funded
by ETH Zurich as a “Polyprojekt” (grant no. 0-23803-00).

References
[1] G. Hesina, D. Schmalstieg, A. Fuhrmann, and W. Purgathofer.

“Distributed open inventor: A practical approach to
distributed 3D graphics.” In D. Brutzman, H. Ko, and
M. Slater, editors, Proceedings of the ACM symposium on
Virtual reality software and technology, pages 74–81. ACM
Press, 1999.

[2] D. Reiners, G. Voss, and J. Behr. “OpenSG - Basic concepts.”
1. OpenSG Symposium, 2002.

[3] J. Rohlf and J. Helman. “IRIS Performer: A high performance
multiprocessing toolkit for real-time 3d graphics.” In
Proceedings of SIGGRAPH 94, ACM SIGGRAPH Annual
Conference Series, pages 381–395, 1994.

[4] S. Singhal and M. Zyda. Networked Virtual Environments:
Design and Implementation. ACM Press - SIGGRAPH Series.
Addison-Wesley, 1999.

[5] O. G. Staadt, A. Kunz, M. Meier, and M. H. Gross. “The blue-
c: Integrating real humans into a networked immersive
environment.” In Proceedings of ACM Collaborative Virtual
Environments 2000, pages 201–202, San Francisco, Sept.
2000. ACM Press.

[6] H. Tramberend. “Avocado: A distributed virtual reality
framework.” In Proceedings of IEEE Virtual Reality 99, pages
14–21, 1999.

1. The applications are illustrated in the video proceedings.

Figure 2: (a) Distributed chess. (b) Collaborative painter.

(a) (b)

	The blue-c Distributed Scene Graph
	1. Introduction
	2. Related work
	3. System overview
	4. Scene operations
	4.1 Node status and update messages

	5. Consistency and locking
	6. Networking
	7. Example applications

