
EUROGRAPHICS 2003 / C. Niederberger and M. Gross Volume 22 (2003), Number 3

© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Hierarchical and Heterogenous Reactive Agents
for Real-Time Applications

C. Niederberger, M. Gross

Departement of Computer Science
ETH Zürich

CH-8092 Zürich
Switzerland

Abstract
We present a generic concept for autonomous agents with reactive behavior based on situation recognition in
real-time environments. Our approach facilitates behavior development through specialization of existing
behavior types or weighted multiple inheritance in order to create new types. Additionally, the system allows
for the simultaneous generation of hierarchical and semi-individual group organizations using specification
and recursive or modulo-based patterns. Our framework is designed to support the creation of large numbers of
secondary characters with individual and group behavior in simulation environments such as game engines.
The engine allows for the specification of a maximal time-per-run in order to guarantee a minimal and constant
frame-rate. We demonstrate the usefulness of our approach by various examples with up to hundreds of indi-
viduals.

Categories and Subject Descriptors (according to ACM CCS): I.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems, I.6.7 [Simulation Support Systems]: Environments

1. Introduction

Secondary characters in games often lack personality
because they all have the same underlying behavior pat-
terns. We propose a system that simplifies the creation of
new individuals by allowing multiple inheritance of basic
behaviors in order to build complex individuals based on
simple ones, as shown in Figure 1 on the top. This allows
for the easy definition of specialized characters. However,
since many characters should manifest subtle differences in
order to display their own personality, we also weight the
inheritance to magnify or scale down the probability of rec-
ognizing certain situations. Therefore, we compose differ-
ent types of agents rather than building special ones for
every type. In order to generate individual knowledge, we
can use randomized attributes to further personalize indi-
viduals of the same type.

Furthermore, we allow for the construction of collective
behavior by introducing attributes which contain a refer-
ence to another agent. This enables actions to communicate
and collaborate between single agent instances, e.g. by

informing other members of a group about an event or by
querying the position of a leader and thereby following that
position. This is shown in the middle of Figure 1. Building
groups with our system can easily be done by defining
abstract group patterns that are later instantiated with a
specified count of agents, depicted in Figure 1 at the bot-
tom. We permit specialization within the abstract group by

Figure 1: Generating new types, grouping together and in-
stantiation of the group including the hierarchy.

Leader Base Follow Young

Father

Type Definitions

Abstract Group

Mother Kid

ElephantFamily

#1: Father #2: Mother Default: Kid

Group Instance Family1 : ElephantFamily ; Count = 6

F M

K K K K

Follow Follow

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

using simple rules, e.g. “individual #1 is the father”, mod-
ulo-based rules, e.g. “every second individual is male, every
other female”, and recursive definitions, e.g. “a group con-
sists of a leader and five followers, each becoming also a
leader of a similar group”. During instantiation, our system
generates the specified number of instances by using the
predefined types for each agent. The above mentioned ref-
erence attributes are also automatically updated from the
abstract definition to the real group thereby allowing the
usage of generic group behavior within an unknown orga-
nized group.

Our system is especially designed for adding a large
number of secondary characters with individual and group-
based reactive behavior to game engines. To support con-
stant or minimal frame-rates independent of the number of
simulated agents, the engine is capable of specifying the
maximum amount of time per run. The engine only simu-
lates as many agents as possible using a round-robin sched-
uling algorithm and then returns the control.

2. Related Work

Since the seminal paper by Reynolds in 1987 17 the number
of publications on the use of behavior modeling to generate
computer animations has increased substantially. Almost all
approaches have used the concept of autonomous agents 18

where each instance has its own perception, behavior, and
effectors. Commonly, these approaches have tried to gener-
ate artificial life that emerges from a small predefined set of
behavior rules. Reactive agents with or without internal
states 17,23 are the primary approach for real-time environ-
ments, because they are implemented easily and quickly.
We expect games such as “SimCity” 19 and “The Sims” 21

to use similar approaches as presented for the behavior of
their individuals.

Such individual behavior, including movement and loco-
motion, has been researched in many different fields of
study, mainly on animals. The motion dynamics of snakes
and worms by Miller 13 were followed by Terzopoulos’
movements of fish 9, Tu and Terzopoulos’ physics, locomo-
tion, and perception of fish 23, and finally Terzopoulos’ per-
ception and learning of fish 22. Bio-inspired modeling has
been employed for the commercial computer game Crea-
tures 7 to create simple pets which can be played with. Cog-
nitive Modeling by Funge 6 introduces a cognitive
modeling language which easily generates sophisticated
behavior of individuals through a knowledge representation
that allows for reasoning and planning in addition to reac-
tive behavior. More recent publications have dealt with
learning of movements 10,22,20 or learning of
behavior 26,12,3, emotions 5,25,8, motivations 5, beliefs, obli-
gations, intentions, and desires 4 or goal-oriented behavior
in real-time environments 11. As a limitation, these behav-
iors are hard-wired and especially designed for a specific
individual. Perlin et al. 16 developed a general framework

for scripting interactive actors. They introduced a layered
behavior model for creating complex behaviors.. Blando et
al. 2 presented a system which models behavior by using
hierarchical inheritance to specialize instances by compos-
ing them from basic behavior types. Subtle differences,
however, can only be achieved by defining multiple unique
base components. Hierarchical sensors, actions and con-
texts were introduced by Atkin et al. 1 that allow more com-
plex behaviors and also group engagement. Group behavior
has also been thoroughly investigated in 14, 24. Musse and
Thalmann 15 presented a hierarchical model for simulating
virtual human crowds.

Our approach presents weighted multiple inheritance and
allows for the definition of convenient complex and heter-
ogenous group behavior. Section 3 gives an overview of the
concept, the core components are described in Section 4.
Section 5 presents the method for generating agents.

3. System Overview

Our system is comprised of three main components as
depicted in Figure 2. First, the game engine acts as the main
controller of the framework. Second, each agent controlled
by the agent engine has a well defined sense-think-act cycle
which is the same for every agent. The difference between
two agents is generated from the associated knowledge base
components and is therefore agent-centric. Therefore, the
common knowledge base is the third main component of
the system. It stores the complete knowledge of every agent
and, since it can contain shared objects, provides access for
other agents thereby enabling collaborative behavior. The
knowledge base components are agent representations, sen-
sors, situations including actions and conditions, and
attributes. The sensors are allowed to query the game
engine to gather information through a sensor interface,
while actions can use the effector interface to change values
such as orientation or the actual state, e.g. walking or run-
ning.

Figure 2: The core components of the agent system.

Agent Engine

Controller

Game Engine

Common Knowledge Base

Agents

Situations

Sensors

Actions

Attributes

Conditions

Sensor Interface
Effector InterfaceCONTROL

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

The engine is intended to support a game simulation
without lowering the frame rate below a given value. We
therefore allow the system to run for only a few millisec-
onds during the simulation cycle of the world and then
return the control. Thus, we primarily expect to stay over a
minimal frame rate independent of the underlying hardware
resources and to have short simulation cycles independent
of the number of agents simulated by the agent engine. An
increase in the quality of behavior is achieved when faster
hardware is used and the frame rate remains the same.

4. Core Components

In this section, we introduce the core modules of the sys-
tem. We start with the agent engine itself before explaining
the main components of a single agent. Finally, we describe
the knowledge base and its components.

4.1. Agent Engine

The agent engine is the main controller for all agents. For
each run, the engine receives a time frame during which it is
allowed to simulate any number of agents depending on
their time consumption. The controller maintains a list of all
agents and decides which agents should be activated during
a run. Since it can run only a short time during each cycle,
we have to assume that not every agent can be activated on
each run. Currently, we use a round-robin controller that
traverses all agents regularly. In the future, a more advanced
scheme might take into account that agents out of sight or at
a large distance do not have to receive as much computation
time as the agents which are closer to the user or camera.

4.2. Agents

Every agent is responsible for one simulation instance. It
runs the same cycle independent of the associated know-
ledge for every instance.

On each call, the agent first senses the environment by
traversing its associated sensors to gather agent-specific
information, for example the nearest neighbor or the posi-
tion of another agent. Every sensor gathers its information
and updates the values in the knowledge base of the agent
to make it available. The sensors have to be predefined and
can be parametrized through attributes.

Subsequently, the situation awareness module is used to
determine the current situation of the agent by traversing all
associated situations. A situation is a state that can be deter-
mined by using internal and external knowledge. A situa-
tion has a probability that indicates how much it needs to
get activated. It therefore checks all associated conditions
and only if all conditions return true, it determines the prob-
ability of this situation. Therefore, each situation has to pro-
vide a method for determining its probability using the
current knowledge of the agent. The situation that returns
the highest value is selected and queried about which action

to carry out. Each situation can have several associated
actions. The best matching action is then selected to be car-
ried out and therefore inserted into the action queue.

The action queue offers two different methods for insert-
ing actions, one for reactions and one for normal actions.
This is displayed in Figure 3. Since a reaction should be
executed as fast as possible, we place it on the top of the
queue. Other actions, for example path-finding actions, are
placed at the end of the queue in order to maintain a sequen-
tial order. The execution system fetches the top item of the
queue for the next action.

Every action provides methods for initialization, execu-
tion and termination. Additionally, it can have a set of pre-
conditions which are tested before it is activated. An action
ends when all postconditions have been reached and/or the
duration has been exceeded. Afterwards, it is removed from
the action queue.

4.3. Common Knowledge Base

The common knowledge base is the central component of
our system. It stores the knowledge of all agents in one
large container. The knowledge base provides several basic
types such as KBAgents, sensors, situations, actions, condi-
tions, and attributes. Every type has a factory for generating
new instances of the desired type. Additionally, we created
a container for each type which can store any number of
instances of this type. Thus, we made each type an attribute
container and can therefore add any number of attributes to
every type.

Figure 3: Inserting an action.

Figure 4: An example of an agent. It has sensors to perceive
and situations to recognize.

. . .

Reaction

Action

Insert
Reaction

Action

Action

Action

Queue

KBAgent

Sensors

Attributes

Situations

Attributes

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

Currently, we support attributes which can store either an
integer, float, boolean, vector, or string values. Every
attribute excluding the latter, also supports random values.
The user can specify minimal and maximal values or a
probability in the case of the boolean type. Each attribute
has an evaluation type which determines if the attribute is
evaluated only once, during the initialization, or every time
the value is requested. The user can also re-evaluate the ran-
dom attributes on demand even if the attribute should be
evaluated only once.

Every agent within the engine is associated with one
KBAgent instance which works as a container for the com-
plete knowledge of this instance, shown in Figure 4. A
KBAgent consists of sensors for perceiving the environ-
ment, some attributes, and certain situations that can be rec-
ognized. A situation is recognized, when its associated
conditions evaluate to hold. As Figure 5 illustrates, a situa-
tion has multiple actions and also some attributes. When
one of these actions is selected according to the situation
and knowledge of the agent it is inserted into the action
queue. Before an action is executed, its preconditions are
tested. It ends, when either the duration has been exceeded
or the postconditions have been fulfilled. Figure 6 exempli-
fies an action. Currently, the framework does support nei-
ther hierarchical actions nor hierarchical situations. With
very little effort, the action system could be enhanced to
support both hierarchical actions and situations.

In order to enable sensing the environment and executing
actions, the knowledge base has a sensor interface which
provides hooks for the global simulation. On one hand, this
environment has to provide methods for gathering the
required information, for instance the position, orientation,
velocity, or neighborhood information. On the other hand,
the effector interface is used to set values such as orienta-
tion and velocity. A simulation in which the position is
physically correct according to velocity and orientation is
expected, therefore, the position cannot be set by the agent.

5. Agent Generation

This section presents the agent generation process, a pre-
processing stage, in which all instances are created and
linked together. It is based on descriptions in an agent defi-
nition language. Like a construction set for children with
which complex buildings can be built out of simple bricks,
we create more sophisticated behavior by combining simple
basic components.

5.1. Definition of Agent Instances

Our agent definition language uses XML and enables the
user to compose new types of behavior for instances and
generate groups of instances. New behavior is not scripted
in this language, rather with the aforementioned concept of
attributes. With this method, the user can easily use
attributes to parametrize all knowledge linked to an agent.
That assumes a set of generic behavior patterns that can be
individualized by attributes.

An agent instance is a single agent and can be either real
or abstract. Real agents will actually get linked to an agent
in the engine as a simulation object, while abstract agents
just represent templates for other agent instances and are
not intended to be activated at any time. An instance can
inherit its knowledge from one or multiple parents or it can
create a new type of agent by specifying the knowledge
base components which must be used to create it. Since our
intention is to create many agents with different behavior,
the inheritance is also weighted to adjust the behavior of the
new instance by manipulating the evaluation values of situ-
ations. During inheritance, the return value is multiplied by
this weight. Thus, we can easily define abstract basic
behavior agents and compose new agents by thoroughly
weighting the basic agents into a new one. Figure 7 illus-
trates this process. Therefore, situations should have a con-
tinuous return function which is not clamped to values in
[0..1]. This is automatically done by the situation awareness
module during run-time.

Figure 5: An example of a situation for a simple agent. It
has access to conditions and actions.

Attributes

Situation

Actions

Attack

Flee

Wait

other==tiger

distance < visible

Conditions

Attributes

Figure 6: An action needs preconditions, postconditions, or
a duration.

Attributes

Action

Flee

other==enemy

distance > min

PreConditions

distance > noFear

PostConditions

!other.visible()

Duration

Attributes

Attributes

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

Agent groups are introduced in order to build collabora-
tive behavior. Agent groups represent more than one
instance where the group instance is the parent of all further
group members. As a single instance, an agent group can
also be abstract and provide a powerful template. Abstract
groups only have to provide templates for a future instantia-
tion of the group and its members. Non-abstract groups
have to generate the explicitly specified number of children.

First, we look at simple groups. A group is defined simi-
lar to an agent instance, however, the instances of the group
can be additionally specified. We can specify additional
attributes, situations, sensors, etc. And, we can also enhance
the instances by inheriting knowledge from other agents, as
described in the above section on single instances. Addi-
tionally, we can do this for any single instance individually.

For example, we can specify a family by adding a father
with male and adult behavior to specify his knowledge and
behavior, adding an instance which inherits female and
adult behavior as the wife. In an abstract group we could
also specify that every additional instance should inherit
child behavior. When, at a later stage, we realize this
abstract pattern with an instance count of five, the engine
generates two parents with three children as depicted in Fig-
ure 8. Since the group itself is also an agent, we can add
family behavior, for example, grouping at lunch time. The
group could then inform all instances to gather at the family
house.

To enhance the group building process, we introduce
modulo rules which can be used to easily specify regular
patterns in large groups. With these rules, we can specify
for example that every second member of a group should be
male, while every other should be female, or every tenth
should be able to do a certain task. Since all members of a
group are consecutively numbered, we can easily apply
such rules during creation. For every modulo specification,
we create a new agent with this specific behavior. During
the generation of the real instances, we always check if
there is a modulo group matching the current counter and
copy the modulo groups knowledge into the current
instance as shown in Figure 9.

A key element of organized groups is recursive defini-
tions, which are only allowed within abstract groups. If one
or more instances of an abstract group inherits the knowl-
edge of the group itself, it is considered to be recursive.
During generation, this instance inherits the knowledge of
the group to which it belongs and is able to generate
instances by itself as a sub-group. For example, if an
abstract group defines two instances out of three in order to
inherit the group, a concrete instantiation of this group with
21 members would generate a group according to Figure
10.

5.2. Single Instance Generation

In order to generate a new instance of a single agent, the
following steps are always carried out, including abstract
agents:

Agent CreateAgent(definition)
{

// create a new agent with a unique ID
Agent a = Engine.CreateNewAgent();

// use the default parent to construct a base KBAgent
if (definition contains default parent)

a.KBAgent = DefaultParent.clone();
else

a.KBAgent = DefaultAgent.clone();

// add the knowledge of other parents with their weight
for each (parent in definition)

a.KBAgent.add(parent, parent.weight);

Figure 7: Composing agents using building blocks of sim-
ple basic behavior.

Figure 8: A simple group with specializations and its in-
stantiation.

BaseAgent1

Add Situations
Add Actions to Situations
Add Sensors
Set Attributes

BaseAgent2

Add Situations
Add Actions to Situations
Add Sensors
Set Attributes

InheritAgent
 : BaseAgent1

Has Knowledge of BaseAgent1

Add further Knowledge

Change Attributes

...

MultiInheritAgent
 : BaseAgent2
 : InheritAgent

BaseAgent3

Add Situations
Add Actions to Situations
Add Sensors
Set Attributes

Has Knowledge of
BaseAgent2 and InInheritAgent

Add Knowlededge

Overwriwrite Attributes

....

WeightedAgent
 : BaseAgent3 (0.8).8).8)
 : MultiInheritAgAgent (1.2)Ag

Has Knowlwledge of wle BaseAgent3
and MulultiInheritAgentult

Situtuations of tu MultiInheritAgtAgenttAg
gget more important, theg hese of he
BaseAgent3 less impoportantpo

...

0.8

1.2

AbstractGroup

Instance #1
 : AgentType1

Specializations

Instance #2
 : AgentType2

Other Specializations

DefaultInstance
 : AgentType3

Further Specializations

Group
 : AbstractGroup

#1 : AgentType1

#2 : AgentType2

#3 : AgentType3

#4 : AgentType3

#5 : AgentType3

 ...

Figure 9: A modulo group and its instantiation.

AbstractModuloGroup

Instance 1mod2
 : AgentType1

Group
 : AbstractModuloGroup

Instance 2mod2
 : AgentType2

Instance 1mod3
 : AgentType3

Instance 2mod4
 : AgentType4

 ...

#1 : AgentTy AgentType1: AgentTy
: AgentType333

#2 : AgentTy AgentType2 AgentTy
: AgentType444

#3 : AgentTy AgentType1: AgentTy

#4 : AgentTy AgentType2: AgentTy
: AgentType333

#5 : AgentTy AgentType1: AgentTy

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

// load and init attributes, sensors, situations, actions, and conditions
for all (knowledge in a.KBAgent) {

knowledge.load();
knowledge.init();

}

// add KBAgent to knowledge base
KB.Add(a.KBAgent);

// add the agent to the agent engine
Engine.addAgent(a);

return a;
}

These steps are repeated for every agent instance.
Abstract agents are removed from the engine after the pre-
processing steps.

5.3. Group Instance Generation

Abstract and real groups are generated differently. Abstract
groups only have to prepare the neccessary abstract
instances to generate any real instance of the group and
thereafter of the group members. This is independent of the
number of instances a concrete instantiation will have. The
following pseudo code shows the preparation of such
instances:

PrepareInstances(group-definition)
{

// create the group representative and parent of all members
AgentGroup group = CreateAgent(group-definition);

// create specialized member templates
for each (specification in group-definition)

AbstractAgent spec = CreateAgent(specification);
KB.Add(spec);

// create modulo rule based templates
for each (modulo rule in group-definition)

AbstractAgent modulo = CreateAgent(modulo rule);
group.AddModuloRule(modulo rule);
KB.Add(modulo);

// create default template
AbstractAgent default = 0;
if (group-definition contains a default specification)

default = CreateAgent(default specification);
else

default = CreateAgent(group-definition);

KB.Add(default);
KB.Add(group);

}

This procedure generates an abstract instance for every
possible base type of this group. This includes the group
itself, all specifications, modulo rules, and the mandatory
default instance. These are added to the knowledge base to
make them available for a later instantiation of the group.

The steps to create a non-abstract group are very similar
since such groups can also specify further knowledge. The
number of instances has to be explicitly denoted. First, a
group representation instance is generated. Then, every
member is generated by loading the globally specified set-
tings and overwriting these with the settings specified for
all instances. If the parent has modulo rules, the appropriate
rules for this specific instance are used to overwrite the set-
tings. In the case that the current instance is specified
explicitly, these settings are applied in a final step. Each
member stores a reference to the group representation as
parent. For recursive groups, the ID of the parent is calcu-
lated based on the number of recursive agents in the group
template. Therefore, the hierarchy defined through a recur-
sive pattern is maintained. In each case, every instance has a
parent and can access or modify its knowledge directly.

5.4. Group Behavior

To simplify group behavior, we introduce an attribute which
stores a reference to an agent or an agent group. We can use
this method, for example, to denote a leading instance. By
using this reference, we can easily access the knowledge of
this instance and make the decisions dependant on this
information. The name of the target has to be specified in
the definition and is updated during instantiation from the
according abstract group. It is replaced by the name of the
group member which has been instatiated from the origi-
nally specified target. If members of a recursive group have
such references to other members of the recursive group,
they will be automatically set to the according instance in
the hierarchy tree.

It is easy to implement, for example, a leader-follower
situation which uses a reference to a leading instance, an
allowed distance, and a path distance as attributes. This sit-
uation is illustrated in Figure 11 including the actions and
attributes. If the allowed distance is exceeded, the agent will
move directly towards the leader or to a point within the
neighborhood of the leader (Leader.Pos +). Even if the
leader moves around, the agent will automatically adapt its
direction. However, it is possible that an instance loses con-
tact to its leader due to an obstacle, unfortunately this situa-
tion is unavoidable. If the distance exceeds the path
distance, the agent will use the path planning unit to find a
correct path and follow it. Although this path will not adapt
to the positional changes of the leader, it is necessary to find
a way out of such deadlock situations. Additionally, the
instance can inform the leading instance about its situation
and slow it down to catch up. Thus, members of a group can

Figure 10: A recursive group and its instantiation.

AbstractRecursiveGroup

Instance #1
 : AgentType1
 : AbstractRecursiveGroup

Group
 : AbstractRecursiveGroup

Instance #2
 : AgentType2
 : AbstractRecursiveGroup

Instance #3
 : AgentType3

#2 : AgentType2

#3 : AgentType3

#1 : AgentType1

#4 : AgentType1

#5 : AgentType2

#6 : AgentType3

#7 : AgentType1

#8 : AgentType2

#9 : AgentType3

... ...

......

......

......

∆

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

follow the group instance and and, therefore, automatically
stay together. This reduces path planning costs within the
group to a minimum since only the group has to regularly
plan a path. The others will automatically follow their
leader and only need to plan a path when their leader is too
far away.

6. Results

We demonstrate the usefulness of our approach by vari-
ous examples which exemplify complex behavior that has
been created by using simple base definitions. We assign a
time-per-run of 5 ms to each simulation step. All our exper-
iments were computed on a Pentium IV 2.8 GHz PC with 2
GB main memory and a GeForce4 graphics accelerator. As
can be seen in the accompanying video, the simulation fea-
tures frame-rates above 100 Hz for several hundred agents.
The test scene is a hilly terrain with a few lakes that serve as
obstacles, as depicted in Figure 12. All agents in our exam-
ples inherit a base behavior that prohibits them from walk-
ing across lakes or from leaving the terrain. Most of the
examples were coded in less than a hundred lines of XML
definition.

Figure 13 shows a group with specialized members cre-
ated using 3 modulo rules. The rules divide the group into
two parts, color coded with red and blue. Furthermore, the
color of every third member is overwritten with white.

We made use of specialization to implement the generic
family presented in Figure 1. Family members include a
father, a mother and a number of children, as illustrated in
Figure 14. Although we employed the same models to ren-
der the adult animals, their behavior is different. This is
highlighted using color codes in Figure 15.

A larger herd is shown in Figure 16. In this example, we
created a multilevel hierarchy by recursively defining the
group including leader-follower behavior. The color codes
in Figure 17 reveal the type of agent and its behavior. Red
agents are leaders at different levels, while the blue ones are
followers of a particular leader. Due to the multilevel hier-
archy the red leaders on a lower level are as well followers

of leaders which belong to higher levels. The three front-
most leaders are followers of the group instance which is
not visible. The thick black line indicates a preplanned path
of the group instance, whereas the thin one represents its
actual trace. They do not match exactly because we adapted
the orientation, hence, the path was adapted to the slope of
the terrain. In this case, only one path planning action has to
be computed in order to guide the entire group to its goal. In
a flat, unorganized group without hierarchy each individual
would have to plan its own path. Since path planning is
computationally expensive, our hierarchical approach is
much more efficient. Path computation in our example
costs about 1 ms. If every group member were to individu-
ally plan a path, the overall computational costs would
amount to 70 ms. This takes 14 full engine cycles for path
planning given the 5 ms time limitation, as compared to 1
ms which we have achieved with our method.

Figures 18 and 19 show a large scenario with approxi-
mately 700 agents featuring all the different types of behav-
ior presented thus far. Although only two thirds of the
agents can be simulated during the assigned 5 ms time-per-
run the frame-rate lies well above 100 Hz. Such real-time
performance would not be feasible using a flat, unstructured
simulation.

The first part of the video presents a real-time animation
of the basic behavior of independent animals moving aim-
lessly around. They all avoid lakes and the border region of
the terrain. Their behavior is defined using two simple mod-
ulo rules. All agents inherit the base type, where half of
them has a higher weight for the water avoidance situation.
Additionally, the velocity attribute is different for the two
subgroups. Further animations show the scenarios pre-
sented in Figures 14, 16, and 18. In the last example, the
number of agents exceeds the controller’s time limit. As a
result, every agent cannot be simulated during a single run.
Nonetheless, we can not detect any substantial decrease in
the quality of the resulting behavior.

7. Conclusions and Future Work

We have developed a framework for autonomous agents
with reactive behavior. It supports behavior definition for a
wide range of different behaviors through weighted multi-
ple inheritance and specification. The system provides
mechanisms for group behavior and group definitions. The
collective behavior is enabled by automatically updating
references to other agents, for example to a leader. Groups
can be defined by specifying individual instances separately
or by creating default instances. Modulo-based patterns
allow for the enhancement of behaviors in parts of the
group. Additionally, recursive definitions can be used to
hierarchically organize groups. Through the specification of
a maximal time-per-run, our framework guarantees minimal
and constant frame-rates for up to several hundred agents.
We believe that the presented concept is especially useful

Figure 11: The leader-follower situation with attributes
and actions.

Leader

O

GoTo (Leader.Pos +)

)PlanPath (Leader.Pos +

wedDistancewAllowww

PathDistancean

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

for interactive simulations involving multiple agents, such
as games.

In the future, we plan to investigate more sophisticated
scheduling algorithms. In addition, time-dependent
attributes such as interval-based epistemic fluents 6 would
allow for the enhancement of the presented behaviors.

References

1. M. S. Atkin, G. W. King, D. L. Westbrook, B. Heeringa,
and P. R. Cohen. “Hierarchical agent control: a framework
for defining agent behavior.” In Proceedings of the fifth
international conference on Autonomous agents, pages
425–432. ACM Press, 2001.

2. L. Blando, K. Lieberherr, and M. Mezini. “Modeling
behavior with personalities.” In International Conference
on Knowledge and Software Engineering, 1999.

3. B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. P.
Johnson, and B. Tomlinson. “Integrated learning for inter-
active synthetic characters.” In Proceedings of the 29th
annual conference on Computer graphics and interactive
techniques, pages 417–426. ACM Press, 2002.

4. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and
L. der van Torre. “The boid architecture: conflicts
between beliefs, obligations, intentions and desires.” In
Proceedings of the fifth international conference on
Autonomous agents, pages 9–16. ACM Press, 2001.

5. D. Canamero. “Modeling motivations and emotions as a
basis for intelligent behavior.” In W. L. Johnson, editor,
Proceedings of the First International Conference on
Autonomous Agents, New York, NY, pages 148–155. ACM
Press, 1997.

6. J. Funge, X. Tu, and D. Terzopoulos. “Cognitive model-
ing: knowledge, reasoning and planning for intelligent
characters.” In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages
29–38. ACM Press/Addison-Wesley Publishing Co.,
1999.

7. S. Grand, D. Cliff, and A. Malhotra. “Creatures: artificial
life autonomous software agents for home entertainment.”
In Proceedings of the first international conference on
Autonomous agents, pages 22–29. ACM Press, 1997.

8. J. Gratch and S. Marsella. “Tears and fears: modeling
emotions and emotional behaviors in synthetic agents.” In
Proceedings of the fifth international conference on
Autonomous agents, pages 278–285. ACM Press, 2001.

9. R. Grzeszczuk and D. Terzopoulos. “Automated learning
of muscle-actuated locomotion through control abstrac-
tion.” In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 63–
70. ACM Press, 1995.

10. R. Grzeszczuk, D. Terzopoulos, and G. Hinton. “Neuro-
animator: fast neural network emulation and control of
physics-based models.” In Proceedings of the 25th annual
conference on Computer graphics and interactive tech-
niques, pages 9–20. ACM Press, 1998.

11. N. Hawes. “Real-time goal-oriented behvaiour for com-
puter game agents,” 2000.

12. C. Isbell, C. Shelton, M. Kearns, S. Singh, and P. Stone.
“A social reinforcement learning agent,” 2001.

13. G. S. P. Miller. “The motion dynamics of snakes and
worms.” In Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, pages
169–173. ACM Press, 1988.

14. S. R. Musse and D. Thalmann. “A model of human crowd
behavior.” In Proceedings of the Workshop of Computer
Animation and Simulation of Eurographics’97, 1997.

15. S. R. Musse and D. Thalmann. “Hierarchical model for
real time simulation of virtual human crowds.” IEEE
Transactions on Visualization and Computer Graphics,
7(2):152–164, 2001.

16. K. Perlin and A. Goldberg. “Improv: A system for script-
ing interactive actors in virtual worlds.” Computer Graph-
ics, 30(Annual Conference Series):205–216, 1996.

17. C. W. Reynolds. “Flocks, herds and schools: A distributed
behavioral model.” In Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques,
pages 25–34. ACM Press, 1987.

18. S. Russel and P. Norvig. Artificial Intelligence - A Modern
Approach. PrenticeHall, 1996.

19. SimCity. Electronic Arts Inc. (EA).
http://www.simcity.com.

20. K. Sims. “Evolving virtual creatures.” In Proceedings of
the 21st annual conference on Computer graphics and
interactive techniques, pages 15–22. ACM Press, 1994.

21. T. Sims. Electronic Arts Inc. (EA). http://thesims.ea.com.

22. D. Terzopoulos, T. Rabie, and R. Grzeszczuk. “Perception
and learning in artificial animals.” In Proceedings of the
Fifth International Conference on the Synthesis and the
Simulation of Living Systems, pages 346–353, 1996.

23. X. Tu and D. Terzopoulos. “Artificial fishes: Physics,
locomotion, perception, behavior.” Computer Graphics,
28(Annual Conference Series):43–50, 1994.

24. B. Ulicny and D. Thalmann. “Crowd simulation for inter-
active virtual environments and VR training systems.” In
Proceedings of the Eurographics Workshop of Computer
Animation and Simulation’01, pages 163–170. Springer-
Verlag, 2001.

25. I. Wilson. “The artificial emotion engine.” 2000 Spring
Spymposuim on AI and Interactive Entertainment, 2000.
(available only online)

26. S.-Y. Yoon, B. M. Blumberg, and G. E. Schneider. “Moti-
vation driven learning for interactive synthetic charac-
ters.” In Proceedings of the fourth international
conference on Autonomous agents, pages 365–372. ACM
Press, 2000.

C. Niederberger and M. Gross / Hierarchical and Heterogenous Reactive Agents for Real-Time Applications

© The Eurographics Association and Blackwell Publishers 2003.

Figure 12: Our test scene: a hilly terrain with lakes. All
agents inherit lake-avoidance as a basic behavior.

Figure 14: A close-up of a family with two parents and five
children. Their behavior forces them to herd.

Figure 16: A recursively defined group with hierarchical
leader-follower behavior and 70 members.

Figure 18: A full scene with approximately 700 agents with
complex behavior.

Figure 13: A group with specialized group members using
modulo rules. The colors illustrate the various types of
agents.

Figure 15: Family in color codes. The father (leader) is
red, the mother blue, and the children are yellow.

Figure 17: The group from figure 16 following a pre-
planned path (black). Leaders are red, followers blue.

Figure 19: Same scene as figure 18. The groups and indi-
viduals are color-coded to illustrate the diversity.

