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Abstract

We introduce an algorithm that consistently and accurately processes arbitrary intersec-

tions in tetrahedral meshes in real-time. The intersection surfaces are modeled up to the cur-

rent cut tool position at every point in time. Tetrahedra are subdivided by using a progressive

method, which inserts the required sub-structures step by step. A state machine tracks the

topology of each tetrahedron and controls the progressive subdivision. In order to keep the

state machine as small and clear as possible, each topological pattern of a tetrahedral intersec-

tion appears only once. These topological patterns are mapped onto the actual case of a tet-

rahedral intersection by some given transformation operations. The state transitions, which

contain the specific subdivision operations, are described in a predefined lookup table, which

is written in a simple script language. The handling of reverse movements and possible trem-

bling of the users hand, as well as a recursive continuation of the state machine concept, com-

plement the proposed algorithm. In three examples, covering free form modeling, volume

visualization, and surgery simulation, we indicate the large field of applications in which

our algorithm can be utilized.
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1. Introduction

In modern interactive simulation and modeling environments the ability to cut

three-dimensional geometry in real time is of fundamental importance. This creates

the need for efficient cutting algorithms that process the underlying representation.
Such methods can be utilized in a wide spectrum of applications including surgical

interventions, free form modeling, or scientific visualization. In surgery simulation,

for instance, interactive cutting algorithms enable the dynamic simulation of scalpel

intersections that open immediately behind the scalpel. In the case of free-form mod-

eling or sculpting, dynamic cutting supports a precise positioning and guidance of a

cutting tool. In scientific visualization, real-time cutting algorithms create new

opportunities for the interactive analysis of volume data sets. Seismic data sets, as

an example, can be cut arbitrarily along interesting strata. The cut of a three-dimen-
sional solid, however, changes the topology of the underlying data structure and thus

poses a great technical challenge. The complexity of a cut algorithm largely depends

on the underlying discretization. Very often, three-dimensional material is repre-

sented by an unstructured tetrahedral mesh. As opposed to regular voxel cells, tetra-

hedral meshes are much more flexible allowing to represent complex data with less

primitives. In addition, such meshes frequently serve as a basis for physically-based

modeling methods, since they are much more efficient when calculating realistic

deformations. The dynamic modeling of intersections and topological changes in
such meshes, however, is non-trivial.

In this paper, we present a novel algorithm which accurately represents and tracks

arbitrary cuts of tetrahedral meshes in real-time. The algorithm tracks topological

changes and inserts new intersection faces dynamically and on-the-fly. Central to

our approach is a state machine model to control the topological patterns, where

each change induces a state transition. In order to keep the number of possible states

small, we exploit the symmetry of cut patterns. Our method is robust and can cope

with reverse movements and tremor of the user�s hand.
2. Previous work

Due to the complexity of volume based algorithms, cutting algorithmswere first ap-

plied to surface meshes. There already exist some concepts for dynamically updating

surface meshes that handle topological changes. In [1], Basdogan et al. use a strategy

to determine and duplicate the vertices of the polyhedra that are close to the collision
points along the line of cut. Recently, Bruyns and Montgomery [5] introduced a face

subdivision scheme that enables a more accurate representation of surface cuts. Addi-

tionally, this work supports the simultaneous cutting of multiple surface layers. Obvi-

ously, surface-based methods do not allow cutting of volumetric models.

An approach to cutting voxel-based representations can be found in the Chain

Mail algorithm [10]. During cutting, intersected connections between neighboring

voxels are split up. Unfortunately, bumpy intersection faces are unavoidable when

using voxel representations.
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In regards to volume meshes, all previous research has designed cutting algo-

rithms which work on tetrahedral mesh decompositions. Considering the number

of possible intersections, tetrahedra are topologically simpler than all other volu-

metric primitives. A simple realization of cuts in tetrahedral meshes is the re-

moval of entire tetrahedra, exemplified in [7]. It is real-time, but generates very
uneven surfaces and a large gap between the two intersection faces. The proce-

dure introduced in [13] does not create this gap. It spans the cut surface along

existing mesh nodes. However, the generated surfaces exhibit uneven surfaces

which are similar to [7] where entire tetrahedra are removed. Subsequent work

presented in [12,14] allows existing nodes to be shifted into the actual intersection

surface and thus improves the previous approach. Realignment of nodes does not

increase the complexity of the mesh and is therefore advantegeous with respect to

the performance of the respective physical simulation. On the other hand, the gi-
ven degrees of freedom do not allow for representations of general intersection

surfaces.

To our knowledge, the geometrical subdivision algorithm presented in [4] was the

first algorithm that allowed real-time cutting of volume meshes. The infinite number

of possible cut topologies of a tetrahedron is reduced by discretizing permitted inter-

sections on a tetrahedron. The proposed discretization processes only one intersec-

tion per tetrahedral edge and per tetrahedral face. The evolving tetrahedral

subdivisions are established by using a lookup table approach. The algorithm is
effective for arbitrary, irregular tetrahedral meshes and captivates with a high level

of accuracy and topological freedom. However, the universal subdivision scheme

proposed in this work may lead to a rapidly increasing number of tetrahedra for

large cuts and may produce cracks in a physical representation of the model.

An improved algorithm [2] solves these problems by applying individual subdivi-

sion patterns for each cut topology. The consistency of the mesh subdivision is

achieved by restricting the allowed subdivisions of tetrahedral faces to the three types

displayed in Fig. 1. An arbitrary combination of these face types results in the six
subdivision patterns presented in Fig. 2. The algorithm demonstrated in [2] not only

remeshes intersections, but also consistently inserts the entire substructure of the

mesh, and provides correct junctions of neighboring elements. As a result, the sim-

ulation enables topological changes such as intersecting incisions or the complete

severance of a model.

Only recently, Bruyns and Montgomery [6] integrated the aforementioned cutting

algorithm in their surgical simulator. Additionally, the approach was extended to

multi-resolution grids by Ganovelli et al. [8,9].
Fig. 1. Allowed subdivisions of tetrahedral faces.



Fig. 2. Individual subdivision patterns for each subdivision topology of a tetrahedron.
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The cutting algorithms described so far processes the individual tetrahedral ele-

ments only after they have been completely passed and all intersection positions have

been determined. As a result, the representation of the intersection surface is not

continuous with respect to time, but contains discontinuities along the trajectory

of the cut tool. In modeling and visualization applications, the incomplete intersec-

tion surface is unacceptable and complicates the precise guidance of the cutting tool.

In regards to surgery simulation, the intersections are opened too late. At this point,
a progressive construction of the tetrahedral subdivisions is desirable. Mor and Ka-

nade [11] enhanced the original algorithm described in [4] by such a progressive rep-

resentation of the tetrahedral intersections in a simple way. Each intermediate

topology of a tetrahedron in the process of being subdivided is represented by the

corresponding subdivision topology. For example, the sequence of patterns A, B,

and C in Fig. 2 is applied to model the subdivision depicted in pattern C. After each

edge or face intersection, the entire data structure of the subdivision is removed, only

to be replaced by the next subdivision pattern. Due to the large number of removal
operations, this procedure is computationally expensive. Furthermore, the algorithm

presented in [11] does not elaborate on successive incisions into a model.
3. Concept

In this paper, we suggest a progressive continuation of the tetrahedral subdivision

algorithm applied in [2]. In contrast to [11], our subdivision of a tetrahedron is built
incrementally from an undivided tetrahedron up to a complex subdivision with min-

imal removal operations. A state machine thereby tracks the topological pattern and

controls necessary updates of each tetrahedron. This results in a fast algorithm for



402 D. Bielser et al. / Graphical Models 66 (2004) 398–417
the dynamic simulation of very accurate volumetric trajectories in real-time. At every

point in time, it presents the intersection surface up to the current position of the cut

tool and allows intersecting trajectories. In order to handle all possible cut trajecto-

ries, the progressive algorithm is continued in a recursive way. It subdivides a tetra-

hedron and continues the subdivision on the next lower subdivision level whenever
the subdivision rules are not general enough to handle a particular tetrahedral inci-

sion. Thereby, a correct continuation of intercepted intersection surfaces on the sub

tetrahedra level has to be guaranteed.

The pseudo-code below sketches our intersection algorithm. Before any geometric

modifications can be processed, the intersections between a cut tool and the tetrahe-

dral mesh have to be registered by a collision detection algorithm. The algorithm de-

scribed in [2,3] consistently determines all edge and face intersections, even for

dynamically deforming tetrahedral meshes. As long as no new edges or faces are
intersected for a tetrahedron, the existing face intersection points of the tetrahedron

are adjusted to the current intersection positions. When a new edge or face intersec-

tion occurs, the new subdivision state is checked for validity (only one intersection

per edge and face). For valid states, the subdivision of the tetrahedron is performed

by calling the procedure SubdivideTetrahedron(). This procedure first determines the

transformation between the new topological pattern of the tetrahedron and its actual

geometric representation, and then applies the state transition as predefined in the

state machine. In the rare cases of invalid subdivision states, the tetrahedron gets
completely subdivided according to its last valid subdivision state. Then, a repeated

collision detection step marks all intersections between the cut tool and the sub

tetrahedra.

Each sub tetrahedron affected by the intersection also gets subdivided after the

transition from its parent tetrahedron is completed.

mark all tetrahedra currently affected by the cut;

for (all these tetrahedra)

if (tetrahedron has new intersections)

determine new subdivision state;

if (new subdivision state is valid)
Subdivide Tetrahedron();

else

determine last valid state;

subdivide tetrahedron completely;

mark all sub tetrahedra affected by the cut;

for (all these sub tetrahedra)
handle transition from parent to subtetrahedron;

Subdivide Tetrahedron();

else

adjust face intersection positions;
procedure Subdivide Tetrahedron()

determine transformation of topological pattern;

apply state transition;
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The following sections describe the algorithm in detail. Section 4 explains the

functionality of the state machine, which is the core of our algorithm. Section 5 de-

scribes some extensions that handle reverse movements of a cut tool, and Section 6
introduces the recursive continuation of the state machine concept. Finally, Section 7

presents three applications of the introduced intersection algorithm.
4. State machine based tetrahedral subdivision

The key of our approach is a state machine which tracks the modification of a tet-

rahedron from an undivided state to a particular subdivision. This state machine
clearly and efficiently handles the complex problem of arbitrary progressive subdivi-

sions. In the state machine of Fig. 3, each state depicts a combination of edge and

face intersections, defining a particular topology of an intersected tetrahedron.

The states are labeled uniquely with a letter fixing the topology of the edge intersec-

tions and a number representing the topology of the face intersections. In the de-

picted state machine the states are sorted by the number of edge intersections

from the left to the right and by the number and type of face intersections from

top to bottom. Each tetrahedron stores its current subdivision state. The state O0
stands for the initial state of a tetrahedron. Whenever an additional edge or face

is cut, the tetrahedron changes its state. The corresponding state transition describes

the modification of the current subdivision. After some state transitions each tetra-

hedron arrives at one of the end states labeled with 3 where the cut tool has left the

tetrahedron. The subdivisions of the states A3–E3 correspond to the subdivision pat-

terns already depicted in Fig. 2.
Fig. 3. State machine diagram.
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The consideration of all combinations of edge and face intersections would result

in a state machine of more than 3000 states. Thus, we implement a state machine

exclusively for the topological pattern of the subdivision. This approach results in

a much smaller state machine, but requires the correct handling of all transforma-

tions from the general pattern to the particular subdivision. In Fig. 3, the transfor-
mation type that has to be considered for each state transition is denoted. The

indicated transformations are explained in more detail in Section 4.4.

4.1. Basic cut functionalities

In a first step, the transformations are ignored and the operational sequence is ex-

plained with the help of the generic subdivision depicted in Fig. 3. The following

example exemplifies the functionality of the progressive subdivision.

Example 1. (State transition without transformations)

As mentioned, the final subdivision of a tetrahedron is constructed incrementally,

where in each intermediate state the tetrahedron has a consistent mesh represen-

tation. Remove operations in a state transition are minimized for the sake of
efficiency. In the example shown in Fig. 4 an intersection starts with an untouched

tetrahedron (a), whose state is O0. When the first collision between the cut tool and

one of the tetrahedras faces occurs in (b), the state of the tetrahedron is changed to

O1 and the first new elements are inserted in the tetrahedron. At this position one

node has to be inserted to store the entry point of the cut tool and another new node
Fig. 4. Generic example for state transitions (without transformations).
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(named ENP as an abbreviation for entry point) will move with the current

intersection position of the cut tool inside the face. Both nodes are strut to the

surrounding face nodes. As long as no further edge collision is registered the ENP

moves along the face (c).

When the cut tool crosses one of the edges of the tetrahedral face, as depicted in
(d), the corresponding edge has to be cut and the tetrahedral face is split in order to

model the cut. The tetrahedrons state changes to the next state A1. The ENP moves

over to the next face and some connecting edges, faces, and tetrahedra have to be

inserted. Then the cut tool continues moving inside the new face (e).

In (f) a second edge has been cut. Now, the previous tetrahedral face has to be

split completely. The processing of the tetrahedron continues in this way until the cut

tool leaves the tetrahedron entirely.

The described procedure presents one major complication. For a partially inter-

sected face it is not known in advance, if the cut may be continued and which edge

will be affected. Since a consistent face subdivision has to be guaranteed at all times,

the face has to be triangulated before its exact end-state is known. In order to illus-

trate this, a partially intersected face (A,B,C) is depicted in Fig. 5b. The current cut
tool intersection is marked by the node n1 in the center of the face. The cut tool has

entered the face over the edge (A,C). The cut tool has two means for leaving the face,

it can either leave it without cutting any further edge, over the edge (B,C) as depicted

in Fig. 5c, or it can leave the face over the edge (A,B) (Fig. 5d). If in an implemen-
Fig. 5. Virtual nodes for a progressive face subdivision.
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tation the two faces (B,C,n1) and (A,B,n1) were created by using the straightfor-

ward method of storing their vertices as references to the tetrahedral nodes, then a

comparatively costly retrieval functions would be required in order to remove one

of these faces shortly after. It would be computationally expensive to decide which

of the two faces has to be removed when one of the tetrahedron�s faces is changing
from the state depicted in Fig. 5b to the state in Figs. 5c or d. Additionally, it would

be difficult to decide which of the already inserted faces, edges and tetrahedra have to

be reassigned to the new face node n2 in Figs. 5c and d.

This problem can be solved by introducing an indirection at data-structure level.

For this purpose one can think of a tetrahedral face to be virtually pre-split (Fig.

5a). In such a virtually pre-split face the three potentially new mid nodes ABC1,

ABC2, and ABC3 (virtual nodes) are included in the data structure. When entering

the face there is still only one real face mid node n1 created. The three virtual nodes
point to n1 as depicted in Fig. 5b. All elements that are constructed at this stage refer-

ence the virtual nodes anddonot reference the real noden1.At this time, if amidnode is

split, a second real node n2 is inserted and referenced by the corresponding virtual

node. As a result, all references of objects attached to the virtual node are reassigned

automatically.
4.2. Transformation operations

Since the state machine depicted in Fig. 3 only describes the topological pattern of

the tetrahedral intersections for one given example, one has to incrementally deter-

mine the transformation between this generic pattern and a particular case of inter-

section. The transformations, that have to be performed before applying the state

transitions from the generic pattern to a particular intersection case, are restricted

to specific types of rotations and mirror operations. Fig. 6 lists all types of transfor-

mations as they occur in the state machine of Fig. 3. All transformation types are

described by the transformation from a source object to its destination object. The
source object is the edge or face that is cut next according to the topological pattern

of the state machine, whereas the destination object is the most recently intersected

edge or face of the current tetrahedral representation. Thus, the transformation real-

izes the mapping of the object, for which the intersection is described in the generic

state machine, to the object that has been actually intersected.

If multiple state transitions are performed for a tetrahedron, a sequence of transfor-

mations is applied to the tetrahedron. The current transformation state of a tetrahe-

dron is built incrementally and has to be stored. For this reason, correspondences
between the original and transformed vertices are stored. So, in our implementation,

transformation operations are mapped to reassignments of vertices.

Example 2. (state transition including transformations)

In the state machine shown in Fig. 3, the transformations to be considered are
noted along each state-transition by use of the abbreviations defined in Fig. 6. If one

looks again at the state transitions of Example 1, the transformations are rf for

O0fi BO1, rif for O1fi BA1 and m for A1fi B1. These are relative transforma-



Fig. 6. Transformations: (A) identity, (B) mirror, (C) double mirror, (D) rotate inside face, (E) rotate over

edges, and (F) rotate over faces.
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tions between two states. Fig. 7 gives a closer look at the incremental construction of
the pattern�s absolute transformation. The left column shows the tetrahedron�s
topological state, as it appears in the generic state machine pattern of Fig. 3. In the

right column, a particular state of a tetrahedron in the process of being cut is drawn.

The figures located in the middle column depict the pattern on the left after they have

been transformed according to the needs of the particular intersection case which is

shown on the right.

The pattern on the top left describes the first face intersection to appear in the face

(A,B,D). Note that in reality any of the four tetrahedral faces could be intersected
first. Thus, the source face (A,B,D) has to be mapped onto the face where the first

intersection occurs. In the example shown on the right, this is the face (C,B,D).

Therefore the nodes of the tetrahedron have to be transformed accordingly. This is

done by a rotation over tetrahedral faces, namely rf((A,B,D), (C,B,D)). Similarly,

for the state transition O1fi A1, the transformed pattern O1 only describes the cut

of edge (A,B), although the intersected face could be left over each of the three edges

of the face. So the already rotated pattern has to be transformed again. The edge

(A,B) has to be mapped onto the edge (A,D) which was actually cut in the particular
cut situation (image in the bottom right corner) by applying a rotation inside the face

(A,B,D), namely rif((A,B,D), (A,B), (A,D)). The accumulated incremental trans-

formation of a tetrahedron during its presence in the state machine, named absolute

transformation, is stored in the tetrahedron together with its current state. The



Fig. 7. Simple example for transformations.
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absolute transformation of our example after the edge cut is rif(rf(. . .)) with

parameters for rf(. . .) and rif(. . .) as given above.
4.3. Multiple state transitions

Thus far, it has been assumed that a tetrahedrons state always changes to the

immediate successor state in the state machine, which is caused by one atomic cut

event. In practice, the movement of the cut tool from one registered position to

the next can simultaneously intersect several edges or faces of an individual tetrahe-

dron. If the current state of a tetrahedron is not reachable from the previous state

within a single state transition, the modification of the tetrahedron is split up into

a sequence of state transitions. The path in the state machine from the previous to
the current state is then determined by some fixed traversal rules. If an untouched

tetrahedron is completely split during one time step, direct state transitions exist

in which all operations can be performed more efficiently. If multiple state transitions

affect more than one edge, the correct sequence of edge selections has to be found for

the individual state transitions. In the state machine shown in Fig. 3, a direct neigh-

bor of the already processed edges is always chosen.
4.4. Lookup table based topology processing

The actual topological modifications of the tetrahedra are processed by using a

lookup table that contains an entry for every state transition. In order to deal with
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the complex construction of the tetrahedral subdivisions, a simple script language

supports various instructions for inserting tetrahedra, different types of faces, edges,

as well as instructions for placing and splitting nodes. Even conditional branches are

required for some subdivisions. The script language is built upon a clear nomencla-

ture referring to a pre-split reference tetrahedron including all potential edge and
face splits. The clearly aligned and comment script file is parsed and translated into

a fast, dynamic lookup table data structure at program start.
5. Reverse movement

Up to this point, the movement of the cut tool has been restricted to forward

movement, but in various situations the cut tool will cut edges or faces in reverse
direction. A user may tear the cut tool back, after he has already performed an inci-

sion into the model. This case is depicted in Fig. 8A. Furthermore, the users hand

can tremble which causes several direction changes in the trajectory of the cut tool.

This behavior is crucial when the cut tool is located very near to an edge of the tet-

rahedral mesh and will, therefore, cut the edge several times, as visualized in Fig. 8B.

The described situations are very difficult to handle since the backwards movement is

not a state of the entire cut tool, but rather a state of a section of the cut tool. Fig. 8C

depicts the situation of a cut tool that is turning around its cross axis. The cut tool
section from the tip to the rotation axis is moving forward, whereas the other section

of the cut tool is moving backward.

In order to overcome this problem the direction of the cut has to be determined

for every single edge. To this end the position of the edge intersection is projected

onto the previous and the current cut tool line. The projections are named Pprev
Fig. 8. Simple example for transformations.
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and Pcurr and depicted in Fig. 8C. The vector pointing from Pprev to Pcurr is then

compared to the direction of the cut tools movement vtool. As long as the scalar-

product between the cut tools movement direction and the direction of the edge

cut is larger than zero, the edge has been cut by forward motion. In the other case,

it has been cut backwards.

(Pcurr � Pprev) Æ vtool > 0 fi forward cut

Any backward movements should not alternate the volume model because only

the front side of the cut tools blade has a sharp edge. Consequently, edges and faces

of the volume mesh are cut only if the cut tool touches them by forward movement.

5.1. Trembling

Trembling of the users hand can cause abrupt directional changes leading to many

edge subdivisions. In order to suppress unnecessary edge subdivisions, intersections

resulting from a backward movement get registered in the respective edges. A further

cut in forward direction is then allowed for these edges, still without any subdivision.

Example 3. (trembling)

Fig. 9 shows an example of a multiple cut over an edge. Fig. 9a depicts the

situation after a first cut of the edge (B,C). The cut tool currently intersects face

(B,C,D) and has the faces mid node BCD attached. The cut tool moves backwards

in figure (b) over the edge (B,C) already cut once, and the backwards intersection

gets marked in edge (B,C). The cut tool now intersects face (A,B,C) and the mid

node ABC is attached again to the cut tool. Shortly after (c) the cut tool is moving
forward again and cuts the edge (B,C) a third time. The intersection position of edge

(B,C) is replaced by the newer intersection, and the intersection state of this edge is

reset to one forward cut. A renewed cut of the same edge, thus, results in a repetition

of the described procedure.

The trembling of the cut tool not only generates multiple edge intersections, but it

can also affect faces. The tip of the cut tool can possibly penetrate a tetrahedrons face

in quick succession. When entering a tetrahedron for the first time, its entry face has
Fig. 9. Simple example for transformations.
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to be subdivided. If the tetrahedron is left again shortly afterwards, the introduced

face subdivision does not yield much profit. Therefore, it is reversed as long as none

of the edges of the face have been intersected. This procedure decreases the number

of newly created mesh simplices and is integrated in the lookup table as the state

transition from state O1 to state O3 and the state transitions O2 fi O1, A2fi A1,
B2 fi B1, and F2 fi F1 depicted in Fig. 3 as dotted arrows.

5.2. Pulling cut tool back

When performing an incision it should be possible to stop the cut and pull the cut

tool back. Most of the solution for this task is already provided by suppressing

unnecessary edge subdivisions, as described at the beginning of this section. How-

ever, the faces in which the cut trajectory of the cut tool changes its direction to leave
through the same edge as it entered have to be treated specially in order to find a

practical turning point. For that purpose the trajectory of the intersection point be-

tween cut tool and face is sampled, and its incrementally calculated average position

serves as a turning point. Fig. 10A shows an example of an averaged position for the

turning point.

Although one could try to determine the farthest point inside the face as turning

point, the averaged mid node has the additional advantage, that it can be used for all

other face mid nodes too. In each completely split face, there exists a mid node that is
used as long as the cut tool intersects the face, but has to be set to a meaningful posi-

tion after the cut tool has left the face. The averaged position is practical for this pur-

pose, it increases the smoothness of the modeled trajectory of the cut tool. Fig. 10B

compares the averaged mid node in a completely split face to an arithmetic middle

point.
6. Recursive continuation

While the described approach is effective for the large majority of tetrahedral

intersections, it fails when the discretization assumption of only one intersection

per edge and face is not met. In order to handle these cases as well, the algorithm
Fig. 10. Sampling for midface node position: (A) turning point and (B) face midpoint.
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continues the introduced state machine concept recursively. Whenever an intersec-

tion occurs that could not be handled with the basic state machine (i.e., a double

cut edge) the affected tetrahedron gets completely subdivided, and the modeling

of the intersections is continued on the sub tetrahedra level. The difficulty is

guaranteeing the correct continuation of the interrupted cut surfaces on the sub
tetrahedral level.

Example 4. (hierarchical subdivision)

An example of a very simple hierarchical subdivision illustrates the idea of the

hierarchical continuation of the state machine concept. Fig. 11A shows a
tetrahedron that is intersected over one edge. According to the state machine

shown in Fig. 3, the corresponding state is A0. A second intersection of the edge

already cut, as shown in Fig. 11B, does not appear in the state diagram. For this

reason the tetrahedron has to be completely subdivided to the end state A3 of the last

valid state A0. By applying the corresponding state transition, the tetrahedron is

subdivided into six sub tetrahedra. A repeated collision detection step shows that the

cut tool has left the tetrahedron and none of the sub tetrahedra is intersected with the

cut tool anymore. Before processing the sub tetrahedra, the positions of the started
intersection surface are marked as interconnection nodes, from where the intersec-

tion surface will be continued. In the given example, only the subtetrahedron, from

which the cut tool has left, is affected and has to be updated. In order to construct a

continuous intersection surface as depicted in Fig. 11C, the separated tetrahedron

has to be split away from the two interconnection nodes.

As one can see in this example, the continuation of the intersection surface in-

volves a new topology of a tetrahedral intersection. Whereas tetrahedra have always

been cut over edges, they can now be split along edges or over nodes.

6.1. Additional types of tetrahedral subdivisions

Fig. 12 enumerates all additional topologies required for a consistent handling of

the transitions between two hierarchy levels of tetrahedra. Two categories of topol-
Fig. 11. Simple example for hierarchical subdivision.



Fig. 12. Additional cut topologies.
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ogies are distinguished: The first category includes tetrahedra that contain two inter-

connection nodes. Their intersections start along the edge that contains the two

interconnection nodes. All tetrahedra that contain only one interconnection node fall

into the second category, whose intersections begin over a tetrahedral node. Further

differences between the depicted tetrahedra intersections depend on the number and

position of the registered face intersections.

The continued intersection from Example 4 corresponds to the intersection topol-

ogy BNN0 of Fig. 12 and its following state CNN0 in which the opposite edge is cut
as well. The example shows that the cut topologies depicted in Fig. 12 are only the

start states of the new topologies. If one includes all further possible edge and face

intersections, each of the topologies of Fig. 12 results in a separate state machine,

which has a similar structure as the basic state machine already described in Section

4. The realization of these additional state machines is a large effort and would re-

quire a new operator that splits existing corner nodes.

6.2. Mapping onto states of the basic state machine

In order to avoid the costly implementation of eight additional state machines, the

new state machines and their topologies are mapped onto the tetrahedral states of

the basic state machine described in Section4. The idea is to interpret the intersection

topologies of the additional state machines as tetrahedral states, as they appear in

the initial state machine diagram of Fig. 3. The split corner nodes of the new tetra-

hedral topologies are represented by nodes of an edge split that are shifted into the

corner, and by shifted face mid nodes. One of the initial edge or face mid nodes is
thereby merged with the corner node of the tetrahedron. Both of these merge oper-

ations are depicted in Fig. 13.

Example 5. (mapping a basic topological state A1 to the new topologies AN1 and

ANF1)
Fig. 13a contains the state A1 as it appears in the basic state machine of Fig. 3. As

illustrated in Fig. 13b the edge mid node AB1 is first mapped onto the corner node

A, and then (C) the face mid node ABD is mapped onto corner node D. The

achieved topology corresponds then, as desired, to that of state ANF1.



Fig. 13. Mapping of basic state to new state: (a) basic state A1, (b) merge edge mid-node, and (c) merge

face mid node.
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The described mapping onto states of the basic state machine certainly simplifies

the algorithms for the recursive continuation of the state machine considerably, but

it also introduces a disadvantage. The inverse mapping from the detected new topol-

ogies to the topologies of the state machine of Fig. 3 is not unique for certain topol-

ogies. As a consequence the resulting algorithm is not able to consistently handle all

situations of recursive subdivisions. In order to reach a closed algorithm, all eight

additional state machines have to be realized separately by introducing the men-

tioned node split operator.
7. Applications

Various applications require the sort of accurate modeling of intersections which

is described in this work. The following examples illustrate possible applications in

the areas of visualization, surgical simulation and virtual sculpting.

7.1. Interactive visualization of volume data

The 3D visualization of volume data-sets is a popular component in various appli-

cation scenarios. In these scenarios, an interactive cutting of volume data-sets intro-

duces a new intuitive interaction paradigm for volume data. It allows to clearly and

simply create new interior views of a given data-set. In particular, the oil industry is

interested in a fast and accurate method for processing large amounts of seismic

data. The introduced intersection algorithm enables them to arbitrarily cut seismic
volume data-sets along specific strata. Fig. 14 illustrates a sequence of interactions

with a seismic data-set. After performing a first intersection (Fig. 14A), the separated

pieces can be selected and repositioned as depicted in Fig. 14B. The repositioning

provides new views and enables further intersections. Intersection and realigning

procedures can be continued until the region of interest is reached (Figs. 14C–E).

Figs. 14A and C demonstrate that the intersection surface dynamically follows the

cut tool. The intersection surface thereby is modeled up to the actual position of

the cut-tool. Thus, the user gets a precise feedback of the cut-tools current position



Fig. 14. Interactive visualization of a seismic volume data set.
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within the volume. Additionally, the surrounding surface is transparent during an

intersection in order to support the navigation in the data-set. Fig. 14C illustrates

the dynamic mesh subdivisions by displaying the underlying tetrahedral mesh.

7.2. Surgery simulation

In surgical interventions, cutting is one of the most important tasks. The correct

and precise execution of intersections is the basis for a successful surgical outcome,
e.g., in tumor removal. There is a large need for simulators that enable physicians to

train and rehearse operations, especially in the area of minimal invasive surgery. Fig.

15 presents the opening of skin tissue with a surgical scalpel, which is a task in open

surgery. In this example, the skin tissue is simulated as pre-stressed deformable

model.

7.3. Virtual sculpting

The presented intersection algorithm is an intuitive tool for interactively process-

ing meshed volumetric models, as they are used in many simulation environments.
Fig. 15. Simulation of open surgery.



Fig. 16. Virtual sculpting.
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With such a tool, a mechanical component can be rapidly prototyped or adjusted.

Fig. 16 presents the processing of an irregular tetrahedral model consisting of

3000 tetrahedra. In Fig. 16A, a first notch is cut-off. The intersection surface is drawn

up to the current position of the cut-tool and the surface of the model is transparent

during cutting. Fig. 16B depicts the tetrahedral mesh representation after two further

intersections. It is clearly visible how the node density increases towards the intersec-

tion surfaces. This provides sufficient degrees of freedom for the accurate modeling

of the performed intersections. In conclusion, Fig. 16C presents the resulting model.
8. Conclusion and ongoing work

We have presented an algorithm that consistently and accurately processes arbi-

trary intersections in tetrahedral meshes in real-time. The algorithm is based on a

state machine, that tracks the topology of tetrahedra and controls their progressive

subdivision. Three examples have exhibited the large field of applications for this
algorithm.

The recursive continuation of the algorithms, that breaks the discretization

assumption of only one intersection per edge and face could still be improved to en-

sure the convergence of the algorithm in all cases. Future work will mainly focus on

this problem.
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