
Real-Time Streaming of Point-Based 3D Video

Edouard Lamboray Stephan Würmlin Markus Gross
Computer Graphics Laboratory

Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

{lamboray, wuermlin, grossm}@inf.ethz.ch

Abstract
Free-viewpoint video is a promising technology for

next-generation virtual and augmented reality applica-
tions. Our goal is to enhance collaborative VR applica-
tions with 3D video-conferencing features. In this paper,
we propose a 3D video streaming technique which can be
deployed in telepresence environments. The streaming
characteristics of real-time 3D video sequences are inves-
tigated under various system and networking conditions.
We introduce several encoding techniques and analyze
their behavior with respect to resolution, bandwidth and
inter-frame jitter. Our 3D video pipeline uses point sam-
ples as basic primitives and is fully integrated with a com-
munication framework handling acknowledgment
information for reliable network transmissions and appli-
cation control data. The 3D video reconstruction process
dynamically adapts to processing and networking bottle-
necks. Our results show that a reliable transmission of our
pixel-based differential prediction encoding leads to the
best performance in terms of bandwidth, but is also quite
sensitive to packet losses. A redundantly encoded stream
achieves better results in presence of burst losses and
seamlessly adapts to varying network throughput.

1. Introduction

In recent years, there has been an increasing interest in
generating free-viewpoint video sequences from multiple
camera views. Apart from purely image-based approaches
[11, 17], free-viewpoint video can be computed by extract-
ing geometry and texture information from a set of concen-
tric views of the same object. We will refer to this
geometry-enhanced video streams as 3D video. Today, the
robust generation and transmission of real-time 3D video
is still a challenging problem. Figure 1 shows exemplary
frames generated in real-time by our 3D video system.

Our research on real-time 3D video systems is moti-
vated by our interest in novel immersive projection and
acquisition environments for telepresence [7]. At ETH, we
developed the blue-c, two networked virtual reality portals
consisting of a CAVE-like environment, augmented by an
array of cameras and an active lighting system. Thus,
blue-c combines the simultaneous acquisition of multiple
video streams with advanced 3D projection technology.

Both portals can be used for 3D video acquisition and, as
depicted in Figure 2, in full operation mode they enable
networked collaborative applications enhanced by 3D
video-conferencing features.

Even though most efforts in rendering and compression
of 3D data focus on meshes, we opted for point samples as
the basic primitive in our 3D video representation. In our
opinion, point samples can be considered as a straightfor-
ward generalization of 2D video pixels into 3D space [27].
Furthermore, a general approach handling dynamic objects
must allow for topology changes, and a topology change
on a 3D mesh is a costly operation and hard to achieve in
real-time. As demonstrated in Figure 1, already the simple
arm movements from Figure 1a to Figure 1c lead to a
topology change in the 3D data set representing the human
person.

In particular, our 3D video system is composed of 16
camera nodes, which acquire images and perform 2D
image processing. The resulting information is streamed to
a reconstruction node, which computes the actual 3D rep-
resentation of the observed object. Camera and reconstruc-
tion nodes are at the same physical location and are
connected in a local area network. The 3D video data is
then streamed to a rendering node, which, in a real-world
telepresence application, runs at a remote location. As
explained in Section 2, rendering and reconstruction nodes
need to share a common data structure, and, depending on

Figure 1: Three examples from a 3D video se-
quence: a) and c) result from a reliable transmission
to the rendering node, b) is the result after a lossy
transmission of a redundantly encoded stream.

b) c)a)

the 3D video streaming procedure, this data structure must
satisfy different consistency requirements. The overall sys-
tem architecture is depicted in Figure 3.

The main contribution of this paper consists in propos-
ing a communication framework for distributed real-time
3D video reconstruction and rendering and in analyzing
the transmission of the subsequent streams with respect to
changing networking conditions.

After a short discussion of related work, Section 2 sum-
marizes the components of our 3D video system and intro-
duces the supported operation modes. Section 3 describes
the communication software. Section 4 presents perfor-
mance characteristics of the system with respect to differ-
ent networking conditions.

1.1. Related work

3D video representations and systems can still be con-
sidered as an emerging technology. In the past, several sys-
tems for real-time and off-line reconstruction of dynamic
objects have been developed [3, 15, 16, 19, 26, 28], but the
encoding and compression of the resulting 3D video data
remains largely unexplored. In fact, most systems recon-
struct and render the object on the same node. Such a
setup, however, does not correspond to the situation one
encounters in telepresence or video-conferencing systems.

In [27], we propose a point-based system for real-time
3D reconstruction, streaming and rendering which does
not make any assumptions about the shape of the recon-
structed object. Hence, we pursue a more general approach
to the problem of 3D video than in [3], and, unlike
approaches based on animated 3D meshes [9], we are able
to handle changes in the topology of the reconstructed
object.

In the past, many efficient compression algorithms for
meshes have been developed [8, 20], whereas compression
for point representations is still in the fledglings stage.
Rusinkiewicz and Levoy presented Streaming QSplat [22],
a view-dependent progressive transmission technique for a
multi-resolution rendering system, which is based on a
hierarchical bounding sphere data structure and splat ren-
dering [21]. In [1], Botsch et al. use an octree data struc-
ture for storing point sampled geometry and they show that
typical data sets can be encoded with less than 5 bits per
point. Lee et al. developed a progressive encoding scheme
for isosurfaces using an adaptive octree and fine level
placement of surface samples [13]. They achieve similar
performance for coding connectivity and geometry infor-
mation. However, the above techniques efficiently encode
large but static data sets.

Briceno et al. propose to reorganize the data from
dynamic 3D objects into 2D images [2]. This representa-
tion allows for high compression rates using standard
video coding techniques, but the transformation from 3D
to 2D space appears to be too complex for real-time appli-
cations.

2. 3D video pipeline

A point-based representation describes a 3D object as a
set of point samples where each sample has a collection of
attributes, e.g. position, color, and surface normal vector.
From a general point of view, a point data structure can be
dynamically updated over time by the following operators:
INSERT adds a new point sample into the representation;
UPDATE changes one or several attributes of an existing
point sample; DELETE erases a point sample from the rep-
resentation.

2.1. 3D video processing

Figure 4 depicts the processing steps of our 3D video
system. N previously calibrated cameras grab images of
the same scene from different angles. A hardware trigger
guarantees consistent image acquisition. In each camera
image, the static background is subtracted first. The silhou-
ettes covering regions of connected foreground pixels are
determined. We limit the number of contour edges and
improve the speed of the reconstruction algorithm by using
piecewise linear contour segments [28]. In our current
implementation, we use a pixel-based differential update
scheme, which exploits the spatio-temporal inter-frame
coherence, i.e. pixels which change from background to
foreground are interpreted as insert operations and already
inserted pixels are analyzed with respect to color changes.
Currently, we use 16 cameras and each camera has a dedi-
cated host for image acquisition and the previously
described 2D image processing. Note that the texture is
scanned according to a linear pixel sampling pattern,
which also allows for load balancing in case of perfor-
mance or transmission bottlenecks.

The reconstruction process transforms the 2D pixels
into 3D point samples using the geometry information pro-
vided by the silhouettes. We use a variant of the image-
based visual hull algorithm [16]. In each frame, the recon-
structed 3D object can be described by a stream of point
sample operators, which insert, delete or change the
attributes of individual point samples. In particular, we dis-
tinguish between UPDATECOLOR and UPDATEPOSITION
operations. A detailed description of the differential update
scheme can be found in [27].

At the remote site, the point sample operators update a
data structure which is used for rendering the 3D object to
screen. If we exploit the spatio-temporal inter-frame coher-
ence, the data structures at the acquisition and at the ren-
dering site need to be consistent. As explained in Section
2.3, some strategies may require a totally consistent dis-
tributed data structure (hard synchronization), other strate-
gies content themselves with a soft synchronization, which
guarantees consistency over time, but not at every single
time instant.

Figure 2: The two blue-c portals in action.

2.2. Dynamic system control

For performance and algorithmic reasons it is reason-
able to take into account viewpoint feedback during the
computation of free-viewpoint video. The framework pro-
posed by the MPEG committee for 3D video suggests a
backward channel for viewpoint transmission [25].

In our system, the rendering node transmits the current
viewpoint to the reconstruction node which then computes
a new system configuration for the next frame. The system
configuration describes which cameras need to provide sil-
houette and texture information for an optimal 3D shape
given the current viewpoint. Furthermore, taking into
account performance measures from the reconstruction
process of the previous frames and monitoring the quality
of the 3D video transmission, the 3D video frame rate can
be improved by downsampling the texture information
using the image sampling pattern. Thus, reducing the num-
ber of 3D video operators allows to overcome networking
bottlenecks.

2.3. Operation modes

The popular MPEG video compression standard defines
three different types of video frames: I-frames are coded
without any references from past frames, they are self-con-
tained; P-frames use motion-compensated prediction from
the past I- or P-frame; B-frames use bidirectional predic-
tion from the most recent and the closest future I- or P-
frame [23].

Note that the predicted P- and B-frames achieve the
highest compression rates, but a sequence encoded exclu-
sively with prediction frames can only be rendered cor-
rectly if the receiver retains the complete data stream.
Problems may occur in many situations, e.g. parts of the
data stream are lost during network transmission or the
sender and the receiver are started asynchronously. More-
over, prediction errors accumulate over time. In the fol-
lowing, we use the nomenclature from 2D video coding for
describing three different modes of our 3D video pipeline.
I-mode (Full-Reconstruction). The 3D object is com-
pletely reconstructed in each frame, no information from
previous frames is used. Hence, the complete 3D data
needs to be recomputed and transmitted. The resulting
stream is composed of I-frames only and is highly redun-
dant.

P-mode (Reliable-Prediction). This setup keeps track of
all the previous frames and only computes and transmits
changes in geometry and color. In this case, reconstruction
and rendering nodes need to share a totally consistent data
representation and hence a reliable data transmission is
required (hard synchronization). Speaking in MPEG terms,
the data stream consists exclusively of P-frames.

R-mode (Redundant-Prediction). This setup too, exploits
differential information over several input frames, but also
reconstructs parts of the 3D representation at regular inter-
vals, such that the complete 3D data is regularly recom-
puted over time. In this case, no reliable transmission is
required and errors due to an inconsistent shared data rep-
resentation between reconstruction and rendering nodes
only occur temporarily (soft synchronization).

The experimental results of Section 4.3 suggest that, in
real-time, only a limited number of point samples can be
computed per frame. A traditional use of I- and P-frames is
thus not recommendable. The R-mode circumvents this
problem by equally distributing the computation and trans-
mission of redundant data over several frames.

Hence, a characteristic parameter of the 3D video pipe-
line is the recomputation frequency fg of the geometry
information. In the I-mode, fg is identical to the acquisition
frame rate. Apart from the aperiodic geometry recomputa-
tions triggered by the spatial consistency conditions of the
prediction scheme [27], fg is a user-defined parameter in
the R-mode and equals to infinity in the P-mode.

Further note that only the P-mode requires a reliable
transmission between the reconstruction and the rendering
node. The subsequent quality and performance trade-offs
will be discussed in Section 4. Finally, we do not exploit
prediction based on future frames because we want to min-
imize the latency of the real-time streaming system in tele-
conferencing applications.

3. Communication framework

The distributed virtual reality platform of the blue-c
uses a communication framework supporting all data types
which occur in a networked virtual environment. For the
3D video subsystem in particular, an efficient real-time
streaming scheme is essential.

Cam 1 Cam 2 Cam N... 3D reconstruction

Encoding

Communication layer

Data acquisition

2D image processing

Decoding

Rendering

LAN

Distributed point data structure

(hard or soft synchronization)

WAN

Dynamic system configuration Viewpoint

Figure 3: 3D video system architecture.

3.1. Data transmission

The communication layer API offers channel interfaces
for transmitting and receiving data. The shared application
data is organized in message objects which provide an
interface for writing their payload into a transmission
buffer. At the receiver, the transmission buffer is parsed,
the messages are decoded and a callback mechanism
informs the application of the arrival of a new message of a
given type. Flow control and retransmission algorithms are
applied to the transmission buffers only. A single transmis-
sion buffer may contain a set of messages of the same type
or a collection of messages of different types. If the mes-
sage size is greater than the size of a transmission buffer, a
single message can be fragmented and distributed in multi-
ple transmission buffers. All buffers are handled by mem-
ory pools such that all memory allocation is performed
during start-up. The communication software also handles
issues of cross-platform interoperability, e.g. little-/big-
endian conversions.

Real-time streaming data is transmitted by a communi-
cation channel consisting of a forward channel for payload
data and a backward channel for control information and
application feedback. This approach is inspired by the
RTP/RTCP protocol suite, where RTP is used for unreli-
able streaming of payload data and RTCP is used for peri-
odical exchange of control messages, indicating packet
loss rates, packet jitter values and possibly application spe-
cific data [24].

The communication framework also offers a collection
of codecs. Typically the data is entropy encoded before
network transmission. We use a computation efficient vari-
ant of arithmetic coding for this purpose [14].

3.2. Reliable streaming

As suggested in Section 2.3, the P-mode requires a loss-
free, in-order data transmission. The conventional TCP
protocol offers this functionality, however, its deployment
in real-time systems is critical. Its retransmission and con-
gestion avoidance algorithm achieves reasonable perfor-
mance in best effort networks for data transmissions which
are not critical with respect to latency or jitter. If a packet
loss is detected, TCP reduces the data rate at the network
level. However, this behavior inhibits its use in real-time
applications if the rate of data generated by the application
is not reduced accordingly. Hence, an efficient communi-

cation pipeline must allow for coordinated flow control at
the network level and adaptation at the application level
[4]. Note that packet loss does not only occur in saturated
network links or error-prone wireless channels. In case of
an asymmetric setup between sender and receiver, i.e. a
slow receiver communicating with a faster sender, packet
losses occur because the receiving host is not capable of
processing the data fast enough. Also in this situation it
makes sense to use adaptation schemes at the application
level which allow to minimize packet loss and maximize
end-to-end data throughput. In recent years it has been
shown that TCP can be outperformed by more elaborate
retransmission schemes which are implemented using the
unreliable UDP protocol. Keshav and Morgan propose the
use of selective retransmission with packet-pair flow con-
trol and achieve goodput values of 90% in overloaded net-
works [12]. Reliable Blast UDP, which uses UDP for data
transmission and TCP for signalling and aggregated
acknowledgements, has been proposed as a technique for
bulk data transfers in high-speed or dedicated networks
[10].

The reliable real-time data streaming in our system is
implemented using selective retransmission. Since the
dynamic configuration features at the application level of
our system need low latency state information from the
receiver, we decided to emit backward channel messages
on a packet-per-packet basis. Each backward channel mes-
sage carries either a cumulative acknowledgement or the
sequence number of the first missing packet. In presence
of a negative acknowledgement, the missing packet is
retransmitted. Similar to [12], the detection of a lost packet
does not lead to the complete retransmission of the sending
window. As suggested in [10], the feedback channel could
easily be augmented by a bitmap tally of missing packets.

3.3. Service API

Our communication framework also includes a number
of services which are based on the CORBA standard for
distributed object computing [5]. The associated Naming
Service is used for locating distributed objects. The Time
Service offers synchronized timestamps across the net-
work. The Notification Service can be used for distributing
sporadic events across interested nodes. The connection
management of the communication channels is based on
the CORBA Audio/Video Streaming Service. Our imple-

Figure 4: Overview of the 3D video processing steps.

mentation is based on the TAO/ACE toolkit (http://
www.cs.wustl.edu/~schmidt/TAO.html). The communication
framework architecture is depicted in Figure 5.

3.4. The 3D video system

Figure 6 shows how the 3D video system uses various
services offered by the communication framework. The
camera nodes run a daemon which allows for the remote
start-up and shut-down of applications. The reconstruction
node identifies the camera nodes using the Naming Service
and remotely starts the acquisition applications. The trans-
mission channels between camera and reconstruction
nodes are configured using the Connection Management
Service. This service also keeps track of the state of the
connections, and hence allows to deal with camera node
failures. The pre-processed data from the camera nodes,
i.e. silhouette and texture information, is streamed over
reliable transmission channels. The associated backward
channels carry the dynamic system configuration which is
determined for each frame at the reconstruction node. Fur-
thermore, the distribution of a global frame ID enables the
synchronization of the running 3D video process with late
joining camera nodes.

4. Streaming experiments

4.1. Experimental setup

During our streaming experiments, we simulate various
networking conditions for different operation modes of our
3D video pipeline. We recorded a synchronized input
sequence and stored each frame as JPEG image. During a
test run, we synchronize the camera nodes using the hard-
ware trigger, but overwrite the camera image with the data
from the pre-recorded sequence. This procedure allows for
a close simulation of the dynamic behavior of the real-time
3D video system, but also allows to use identical input data
for all experiments. If not stated, the experiments run with
an acquisition frame rate of 8 frames per second.

In order to limit the number of degrees of freedom in
the experimental setup, we run all experiments for the
same static viewpoint. Using the load balancing and cam-
era blending algorithm described in [27], the selected
viewpoint requires texture information at 100% and 70%
from two cameras respectively. Dynamic viewpoint
changes naturally lead to an increase of network traffic and
to a lower resolution at the rendering node.

Our multi-threaded image based visual hull implemen-
tation runs on a dual processor machine with two AMD
AthlonMP 2400+ CPUs. The rendering node is a 1.8 Ghz
Pentium4 machine equipped with an NVIDIA
GeForce4 Ti200 graphics accelerator. All nodes are inter-
connected in a Fast Ethernet local area network at 100
Mbps.

Note that we simulate in our experiments only packet
losses for packets carrying 3D video data, i.e. packets that
are transmitted from the reconstruction node to the render-
ing node. No loss is simulated for control messages carry-
ing acknowledgement and system data. The consequences
of missing backward channel messages are twofold: the
perceived system delay increases, since the difference
between the local viewpoint and the computed representa-
tion increases, and the retransmission of lost data packets
is potentially delayed. The overall system functionality
however is not impaired in case of missing feedback mes-
sages. Also no losses are simulated in between camera and
reconstruction nodes, since these nodes share a dedicated
local area network.

4.2. Quality assessment

The community of free-viewpoint and 3D video
research is still in lack of an overall framework for quality
assessment. A first step has been made by the MPEG-
3DAV subgroup in its report on exploration experiments
[18]. However, no approach reflecting all possible errors
which might occur during the reconstruction, coding and
transmission of a 3D video stream has yet been proposed.
Ideally the error metric distinguishes between reconstruc-
tion and coding errors and thus allows for a fair compari-
son of reconstruction algorithms and encoding schemes.

In this paper, we compare the operation modes of our
system with respect to the average number of points they
maintain in the remote 3D data structure. Of course, this
argument does not take into account the accuracy of the 3D
points, but gives a reasonable first approximation. Further-
more, our experience has shown that the absolute numbers

IP Network

Connection

Management
Naming

Time Notification

Communication Channel

Coding

Network Protocol
Object Request Broker

(CORBA)

Data Transmission API Service API

Figure 5: Communication framework architecture.

Service

Data
Camera

Node i

Service

Data
Camera

Node j

3D Recon-

struction

Node

DataData

Naming Server

Connection Server

Service

Renderer

Network Protocol

Entropy Encoding

Data
Network Protocol

Entropy Decoding

Network

Simulation

Figure 6: Services for real-time 3D video.

for resolution and bandwidth are quite dependent on the
test scenarios, i.e. viewpoint changes and motion of the
person to be reconstructed.

In order to compare the coding efficiency of the differ-
ent representations, we compare the average number of
bytes required for coding one point sample. The coding
efficiency C can be computed as

,

where b is the average bandwidth in megabytes per sec-
ond, n the average number of points per frame and f the
frame rate.

A lossy transmission inevitably leads to artifacts in the
rendered 3D video object, see Figure 9. Within our frame-
work of INSERT, UPDATE and DELETE operations, the arti-
facts can be classified into different patterns. Missing
UPDATE or DELETE operators lead to ghosting artifacts
around the person or incorrect texturing of the point sam-
ples. Floating points can be eliminated in the rendering
process by an outlier detection which can be calculated
without much effort during dynamic point density estima-
tion [27]. Visible artifacts due to incorrect texturing can be
reduced by blending the point samples during splat render-
ing. Holes in the representation due to missing INSERT
operations can also be alleviated to some extent by the
point density estimation, but big holes as shown in Figure
9c cannot be completely eliminated in real-time.

4.3. Lossless network

In the first experiment, we did not simulate any packet
losses, and hence all bottlenecks reside on the reconstruc-
tion and rendering nodes. The curves in Figure 10 show
cumulative probability distributions, where P(x>X)
expresses the probability of x being larger than X. We see
that the extensive geometry computations required by the
I-mode considerably limit the number of points per frame,
i.e. the resolution of the reconstructed object is rather low.
On average, the P-mode achieves a better resolution than
the R-modes, which can be explained by the fact that the
P-mode does not perform any redundant geometry compu-
tations. On average, the bandwidth requirements for the R-
modes are three times as high as for the P-mode. However,
the R-mode allows to trade-off bandwidth against recon-
struction accuracy by decreasing . In this example,
equals 1 and 1.5 seconds respectively. Also note that the P-
mode is especially favorable if the viewpoint remains
static. Table 1 summarizes the results of this experiment.

4.4. Bandwidth-limited network

We simulate a bandwidth-limited network using a con-
strained packet rate channel model, i.e. the throughput of
the transmission channel is limited by a deterministic ser-
vice rate . This simple model simulates e.g. a network
router connected to a low data rate link. A network with
varying throughput can easily be simulated using a
Markov-modulated rate process. In this case, the current
service rate depends on the current state in the
Markov chain, see Figure 7. We used for
the varying throughput experiment A and

 in experiment B. All service rates are
indicated in megabit per second. Furthermore, the transi-
tion probabilities and were higher in experiment
B than in experiment A. Hence, experiment B simulated
bandwidth variations at a higher frequency than experi-
ment A. We did not simulate lower throughput than 0.75
megabit per second, since this appears to be the minimum
required for our current 3D video representation at 8
frames per second.

The results in Figure 11 show that both P- and R-modes
are capable of dealing with the simulated situation. How-
ever, the R-mode considerably reduces the inter-frame jit-
ter at the times the network varies from a high to a low
throughput. We also emphasize that the considerable dif-
ference in the resolution of the object, which is observable
in the lossless transmission experiment between P- and R-
modes, has vanished. The characteristic parameters of the
test sequence are summarized in Table 2. The relatively
high standard deviation of the inter-frame period indicates
the irregular frame updates in the P-mode.

C b n f⋅()⁄=

fg fg
1–

λ

λi i
λi 2 0.75 1, ,{ }∈

Table 1: Characteristic parameters for the test se-
quence with no simulated packet loss. R1 used
fg=1 Hz and R1.5 used fg=0.6 Hz. The computation
intensive I-mode was also tested at 3 frames per
second.

Operation Modes @ 8 fps
I@3fps I P R1 R1.5

Average resolution
[points per frame] 12734 4012 25922 15157 17748

Average bandwidth
[megabit per second] 3.3 2.9 1.0 3.5 3.4

Peak bandwidth
[megabit per second] 4.3 4.6 5.5 5.5 6.1

Coding efficiency
[bytes per point] 10.8 11.3 0.6 3.6 3.0

Table 2: Characteristic parameters for the test se-
quence with varying network throughput.

Experiment A Experiment B
P R1 P R1

Average resolution [points per frame] 16472 13535 11769 13272
Average inter-frame period [ms] 125 125 123 124
Standard deviation of the inter-frame
period [ms] 159 53 149 51

Maximum inter-frame period [ms] 3023 381 2308 385

λi 1.5 0.75 1, ,{ }∈

p0 1, p1 0,

0 1

p
0,0

p
1,1

p
0,1

p
1,0

N-1 N

p
N-1, N-1

p
N,N

p
N-1, N

p
N,N-1

...

Rate λ
0

Rate λ
N-1

Rate λ
N

Rate λ
1

Figure 7: Markov-modulated rate process.

4.5. Burst losses

We simulate burst losses using a two-state Markov
chain, see Figure 8. The average number of iterations in
the two states is respectively. Table 4 gives an
overview of the four experimental scenarios.

We observe that in the P-mode, the average number of
points per frame decreases even more than in the variable
bandwidth experiment. The average number of points in
the R-mode is of the same order of magnitude than for the
lossless transmission. However, the most dramatic effect is
again the important inter-frame jitter in the P-mode. Espe-
cially the subsequent loss of retransmitted packets in pres-
ence of frequent burst losses leads to a high inter-frame
jitter. The R-mode is still capable of achieving a reason-
able update rate at the renderer. Note that in the burst loss
R-mode experiment, we do not adapt the reconstruction
process according to the packet loss rate. The information
which is lost during irregular bursts is naturally corrected
by the redundant coding of the R-mode. However, tempo-
ral visual artifacts are present. The characteristic parame-
ters for the test runs with burst losses are summarized in
Table 3, the cumulative probability distributions are pre-
sented in Figure 12.

5. Conclusions and outlook

Our results show that real-time 3D video streams can be
efficiently represented using points as basic 3D primitives,
combined with an inter-frame prediction based on differ-
ential updates. This compact encoding, which relies on a
reliable transmission, can be used in favorable networking
conditions or if the receiver end permits buffering before
replay. If the network is unstable with respect to available
bandwidth or if frequent packet losses occur, a redundant
encoding scheme guarantees better performance.

In a multicasting setup where multiple viewers should
receive the same 3D video stream, the redundant encoding
scheme is easier to deploy. The reconstruction node how-
ever, needs to take into account the possibly disparate
viewpoints. If the viewpoints cover many different view-
ing directions, the resolution for every single viewing
direction will decrease because of processing bottlenecks
and each viewer will only render a fraction of the informa-
tion contained in the multicasted stream.

In the future, we plan to develop better compression
schemes for 3D video data. Furthermore, we would like to
investigate adequate error metrics for 3D video compres-
sion.

Acknowledgements

The authors would like to thank Wojciech Matusik for
providing the IBVH source code, Michael Waschbüsch for
proofreading the manuscript and all blue-c project mem-
bers for the many fruitful discussions. This work has been
funded by ETH Zurich as a “Polyprojekt” (grant no. 0-
23803-00).

References

[1] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high
quality rendering of point sampled geometry. In Proceedings
of the 13th Eurographics Workshop on Rendering, pages 53–
64, 2002.

[2] H. Briceno, P. Sander, L. McMillan, S. Gortler, and
H. Hoppe. Geometry videos. In Proceedings of ACM Sym-
posium on Computer Animation 2003, July 2003.

[3] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel.
Free-viewpoint video of human actors. In Proceedings of
SIGGRAPH 03, pages 569–575. ACM Press / ACM SIG-
GRAPH, July 2003.

[4] D. D. Clark and D. L. Tennenhouse. Architectural consider-
ations for a new generation of protocols. In Proceedings of
ACM SIGCOMM ’90, pages 200–208, September 1990.

Table 3: Characteristic parameters for the test sequence with burst losses.
Burst(95, 25) Burst(98, 80) Burst(99, 50) Burst(99, 80)
P R1 P R1 P R1 P R1

Average resolution [points per frame] 10286 15095 10644 15292 15315 15381 12393 15411
Average inter-frame period [ms] 124 127 129 40 125 127 125 128
Standard deviation of the inter-frame period [ms] 162 53 212 50 119 50 157 59
Maximum inter-frame period [ms] 3365 806 2849 371 1589 346 1998 360

Figure 8: Two-state Markov chain modelling a Gil-
bert-Elliot packet erasure channel [6].

Table 4: Parameters of the burst loss experiments.

EXPERIMENT
AVERAGE NUMBER

OF PACKETS
DESCRIPTION

 PASS FAIL
Burst(95, 25) 20 1.3 Numerous but short burst losses.
Burst(98, 80) 50 5 Less frequent but longer burst losses.
Burst(99, 50) 100 2 Occasional but short burst losses.
Burst(99, 80) 100 5 Occasional but longer burst losses.

1 1 p–()⁄

PASS FAIL

p
PASS

p
FAIL

1-p
PASS

1-p
FAIL

[5] The common object request broker: Architecture and specifi-
cation, version 3.0. Object Management Group, July 2002.

[6] E. O. Elliott. Estimates of error rates for codes on burst-noise
channels. Bell System Technical Journal, 42:1977–1997,
September 1963.

[7] M. Gross, S. Wuermlin, M. Naef, E. Lamboray, C. Spagno,
A. Kunz, E. Koller-Meier, T. Svoboda, L. V. Gool, S. Lang,
K. Strehlke, A. V. Moere, and O. Staadt. blue-c: A spatially
immersive display and 3D video portal for telepresence. In
Proceedings of SIGGRAPH 03, pages 819–827. ACM Press/
ACM SIGGRAPH, July 2003.

[8] S. Gumhold and W. Strasser. Real time compression of trian-
gle mesh connectivity. In Proceedings of SIGGRAPH 98,
pages 133–140. ACM SIGGRAPH, Addison Wesley, 1998.

[9] M. Gutierrez, F. Vexo, and D. Thalmann. A MPEG-4 virtual
human animation engine for interactive web based applica-
tions. In Proceedings of IEEE International Workshop on
Robot and Human Interactive Communication, pages 554–
559, September 2002.

[10] E. He, J. Leigh, O. Yu, and T. DeFanti. Reliable blast UDP:
Predictable high performance bulk data transfer. In Proceed-
ings of IEEE Cluster Computing, pages 317–324, September
2002.

[11] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality:
Constructing virtual worlds from real scenes. In IEEE Multi-
Media, volume 4, pages 43–54, January-March 1997.

[12] S. Keshav and S. P. Morgan. SMART retransmission: Per-
formance with overload and random losses. In Proceedings of
INFOCOM 97, pages 1131–1138, 1997.

[13] H. Lee, M. Desbrun, and P. Schroeder. Progressive encoding
of complex isosurfaces. In Proceedings of SIGGRAPH 03,
pages 471–475. ACM Press / ACM SIGGRAPH, July 2003.

[14] G. Martin. Range encoding: an algorithm for removing
redundancy from a digitised message. In Video & Data
Recoding Conference, Southampton, 1979. http://www.com-
pressconsult.com/rangecoder/.

[15] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual
hulls for real-time rendering. In Proceedings of Eurographics
Workshop on Rendering, pages 115–126, 2001.

[16] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based visual hulls. In SIGGRAPH 2000
Conference Proceedings, ACM Siggraph Annual Conference
Series, pages 369–374, 2000.

[17] S. Moezzi, A. Katkere, D. Y. Kuramura, and R. Jain. Immer-
sive video. In Proceedings of the 1996 Virtual Reality Annual
International Symposium, pages 17–24. IEEE Computer
Society Press, 1996.

[18] MPEG-3DAV. Description of exploration experiments in
3DAV. ISO/IEC JTC1/SC29/WG11 N5700, July 2003.

[19] S. Prince, A. D. Cheok, F. Farbiz, T. Williamson,
N. Johnson, M. Billinghurst, and H. Kato. 3-D Live: Real
time interaction for mixed reality. In Proceedings of the 2002
ACM conference on Computer supported cooperative work,
pages 364–371. ACM Press, 2002.

[20] J. Rossignac. Edgebreaker: Connectivity compression for tri-
angle meshes. IEEE Transactions on Visualization and Com-
puter Graphics, 5(1):47–61, 1999.

[21] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. In SIGGRAPH
2000 Conference Proceedings, ACM Siggraph Annual Con-
ference Series, pages 343–352, 2000.

[22] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer
for networked visualization of large, dense models. In Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics,
pages 63–68. ACM, 2001.

[23] K. Sayood. Introduction to Data Compression. Morgan Kauf-
mann Publishers, 1996.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC
1889, January 1996.

[25] A. Smolic and H. Kimata. Applications and requirements for
3DAV. ISO/IEC JTC1/SC29/WG11 N5877, July 2003.

[26] S. Vedula, S. Baker, and T. Kanade. Spatio-temporal view
interpolation. In Proceedings of the 13th ACM Eurographics
Workshop on Rendering, June 2002.

[27] S. Wuermlin, E. Lamboray, and M. Gross. 3D video frag-
ments: Dynamic point samples for real-time free-viewpoint
video. In Computer and Graphics, Special Issue on Coding,
Compression and Streaming Techniques for 3D and Multi-
media Data, Elsevier Ltd, 2004. To appear.

[28] S. Wuermlin, E. Lamboray, O. G. Staadt, and M. H. Gross.
3D video recorder. In IEEE Pacific Graphics 2002 Proceed-
ings, pages 325–334. IEEE Computer Society Press, October
2002.

1%

10%

100%

0 5000 10000 15000 20000 25000 30000

Number of points per frame

I-Mode 3fps I-Mode 8fps P-Mode 8fps

R1-Mode 8fps R1.5-Mode 8fps

1%

10%

100%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Bandwidth [Mbps]

I-Mode 8fps I-Mode 3fps R1-Mode 8fps

R1.5-Mode 8fps P-Mode 8fps

Figure 10: No simulated packet loss: a) number of points per frame; b) bandwidth in megabit per second.

a) b)

1%

10%

100%

0 5000 10000 15000 20000 25000 30000

Number of points per frame

P-Mode A R1-Mode A P-Mode B R1-Mode B

0.1%

1.0%

10.0%

100.0%

0 200 400 600 800

Inter-frame period [ms]

P-Mode A R1-Mode A P-Mode B R1-Mode B

Figure 11: Limited bandwidth streams: a) number of points per frame; b) inter-frame period in milliseconds.

a) b)

0.1%

1.0%

10.0%

100.0%

0 200 400 600 800 1000 1200 1400 1600

Inter-frame period [ms]

P-Mode (95, 25) P-Mode (98, 80) P-Mode (99, 50)

R1-Mode (95, 25) R1-Mode (98, 80) R1-Mode (99, 50)

P-Mode (99, 80) R1-Mode (99, 80)

1%

10%

100%

0 5000 10000 15000 20000 25000 30000

Number of points per frame

P-Mode (95, 25) P-Mode (98, 80) P-Mode (99, 50) P-Mode (99, 80)

R1-Mode (95, 25) R1-Mode (98, 80) R1-Mode (99, 50) R1-Mode (99, 80)

Figure 12: Streams with burst losses: a) number of points per frame; b) inter-frame period in milliseconds.

b)a)

Figure 9: Examples from a 3D video sequence, show-
ing different artifacts due to a lossy transmission. a) re-
sults from a lossless transmission, b) shows the effect
of missing UPDATE and DELETE operations below the
arm, c) shows the effect of missing INSERT operations
in the right part of the body.

a) b) c)b) c)a)

