
blue-c API: A Multimedia and 3D Video Enhanced Toolkit
for Collaborative VR and Telepresence

Martin Naef Oliver Staadt Markus Gross
Computer Graphics Laboratory Computer Science Department Computer Graphics Laboratory

Swiss Federal Institute of Technology University of California Swiss Federal Institute of Technology
Zurich, Switzerland Davis, USA Zurich, Switzerland

naef@inf.ethz.ch staadt@cs.ucdavis.edu grossm@inf.ethz.ch
Abstract

In this paper we present the blue-c application programming inter-
face, a software toolkit for media-rich, collaborative, immersive
virtual reality applications. The blue-c API provides easy to use
interfaces to all blue-c technology, including immersive projection,
live 3D video acquisition and streaming, audio, tracking, and ges-
ture recognition. The integration of multimedia data, including 2D
video, 3D video, and animation, into the scene graph is presented.
We emphasize on our performance-optimized 3D video handling
and rendering pipeline, which is capable of rendering 3D video
inlays consisting of up to 30,000 fragments updated at 10 Hz in
real-time, enabling remote users to meet inside our virtual environ-
ment.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Virtual Reality

Keywords: Virtual reality software system, 3D video, multimedia,
collaborative virtual environments, telepresence

1 Introduction

The blue-c system [Gross et al. 2003] developed at ETH provides a
novel virtual environment which combines immersive projection
with 3D acquisition of the user, allowing remotely located users to
meet in a virtual world. blue-c enabling technology includes cus-
tom hardware and a new real-time video acquisition and transmis-
sion approach [Wuermlin et al. 2004].

This paper presents the multimedia integration into the blue-c
application programming interface, a software toolkit that pro-
vides easy access to all underlying blue-c technology for the appli-
cation developer. Unlike most other VR toolkits that keep
graphics, multimedia, and VR specific functionality separated, the
blue-c application programming environment is a tightly inte-
grated system, providing consistent interfaces and programming
patterns for all tasks involved in building collaborative, immersive
virtual reality applications. Besides providing access to blue-c-spe-

cific technology such as real-time 3D video for telepresence, the
blue-c API can also be used as a powerful VR toolkit outside the
blue-c portals.

After an overview of the software architecture, this paper
focuses on 2D video and performance aspects of our 3D video
integration. System aspects that are already covered in detail in
[Gross et al. 2003, Naef et al. 2003, Wuermlin et al. 2004] will be
omitted. We discuss the integration of additional media types into
the scene graph, present the different 3D video fragment rendering
techniques, and analyze the performance and trade-offs involved in
terms of pre-processing time, rendering speed, and visual quality.

The blue-c application programming environment runs on both
SGI IRIX™ and Linux operating systems. The application code is
directly portable between the two systems. The API itself has some
platform-dependent optimizations to use the available hardware to
its full potential.

The remainder of this paper is structured as follows: Section 2
gives an overview of related work. Section 3 presents the system
architecture of the blue-c API. Multimedia services are presented
in Section 4, the 3D video service in more detail in Section 5. We
conclude with applications in Section 6 and provide an outlook
into the future in Section 7.

2 Related Work

There is a significant number of virtual reality toolkits that have
been implemented in the past. Most of them mainly provide con-
figurable device I/O and setup of the rendering system. A few sup-
port collaborative work by providing some sort of network layer.
CAVElib™ development was started with the initial CAVE™
[Cruz-Neira et al. 1993] system and is available as a commercial
product (www.vrco.com). It supports device input through the
trackd system. For rendering, it relies on application-supplied
OpenGL code or the Performer scene graph system. VR Juggler
[Bierbaum et al. 2001] provides a mature, object-oriented
approach to VR. It is very actively supported. Similar to
CAVElib™, VR Juggler mostly leaves the choice of the rendering
system to the application developer and keeps only loose ties to the
scene graph. While it can be enhanced with additional toolkits, it
does not immediately provide multimedia support. DIVERSE
[Kelso et al. 2002] is another approach to VR, it offers similar ser-
vices and capabilities to CAVElib™ or VR Juggler while trying to
stay as open as possible. None of these toolkits were optimized for
media rich collaborative applications and telepresence.

Avango [Tramberend 1999] provides a shared scene graph and
interaction support. It is closely coupled to OpenGL Performer, but
it changes the scene graph interface to an Inventor-style field sys-
tem that is exposed to a scripting language. The blue-c API leaves

the Performer interfaces unchanged to support legacy applications
and to immediately support new Performer features as they are
released.

An overview of networked virtual reality environments can be
found in [Singhal and Zyda 1999]. Most of these systems aim at
efficiently connecting a large number of sites and therefore focus
on scalability issues. They rely on other toolkits for VR-specific
features. The blue-c however targets a small number of portals
with a high-speed interconnect.

There is a plethora of toolkits available that provide parts for
virtual reality systems, including tracking libraries [Reitmayr and
Schmalstieg 2001], scene graphs [Reiners et al. 2002], networking
tools [Park et al. 2000], audio servers, etc. Using them together to
build a large VR system such as the blue-c, however, requires to
learn many different interfaces and concepts, and finding ways to
get them to work together smoothly is not always trivial.

For the blue-c system, we aimed at providing a holistic, consis-
tent, and well integrated toolkit that provides strong multimedia
and collaboration support. Unlike other toolkits that separate the
scene graph from the rest of the VR system for more flexibility, the
blue-c API integrates it into the core for more coherence, allowing
us to integrate media handling directly into the scene graph with-
out compromising performance.

3 blue-c API System Architecture

This section presents the system architecture of the blue-c API. An
overview of all components and their main dependencies is given
in Fig. 1.

3.1 Core

The blue-c API core class forms the system kernel. It handles sys-
tem initialization and startup, instantiation of services, runs the
main application loop, and takes care of a clean system shutdown.

The core class is a singleton which is accessible from all pro-
cesses. It provides efficient service discovery methods. The core
also keeps a list of spawned child processes on both the master sys-
tem node as well as remote processes (e.g., 3D video server), it ter-
minates any remaining processes left over after service shutdown.

3.2 Process Management

The blue-c API is built around the OpenGL Performer scene
graph and real-time rendering system [Rohlf and Helman 1994]
and uses parts of its process and shared memory management for
process synchronization and communication.

Performer splits the rendering pipeline into three stages: App,
Cull and Draw. There is only one App process, inside which the
application can modify the scene. Cull and Draw processes are
spawned for each graphics pipeline. blue-c services are responsible
to pass data down the pipeline in a multiprocess-safe manner. On
single or dual-processor PC hardware, the different stages of the
rendering pipeline are kept in a single process for efficiency.

3.3 Services

All blue-c functionality is implemented as a set of services. These
provide a common interface for naming, startup, and shutdown.
They are instantiated by the core based on configuration scripts
(see Section 3.8). In addition to those explained in Sections 4 and
5, current blue-c services include logging, distributed scene syn-
chronization, and simulation time. Graphics rendering including
multi-pipe setup is also encapsulated as a service.

Most services spawn their own processes that communicate
through the shared arena memory segment. In addition, service
callbacks are invoked once per frame, and once for each display
channel during culling and drawing, providing processing time
whenever needed inside the rendering pipeline.

3.4 Messaging

The message passing paradigm for event signalling is a widely
accepted pattern for user interface systems (e.g. Win32, X11). It
provides simple queueing of events and allows one to easily cross
process or even machine borders.

The blue-c API uses messages to signal all user interface
events, including movement of tracking sensors and mouse, button
or keyboard presses. Messages are also generated to signal owner-
ship changes of distributed objects in the scene graph.

The messages are collected and dispatched by the message
scheduler, which is hosted by the core object. Messages can be
issued from any process, the scheduler takes care of serialization.
If low-latency handling is important, the application may register a
method which is called immediately inside the issuing process

bcAPI Core

Application

Scene Graph

Cluster
Partition

Distributed
Partition

Local
Partition

Distribution Service

Cluster Service

Graphics Rendering

Time Service

3D Video Service

2D Video Service

3D Audio Service

Logging Message Scheduler

Navigation

Picking

3D Tracking

Sy
nc

bcl

Plug-in
M

essages

Figure 1: blue-c API System overview: Services accessing the scene graph, and message scheduler with sources and plug-ins.

context. Most applications, however, will choose to receive the
messages inside the main application process.

The application developer can define and register new message
types. This can be useful to signal events from custom objects dur-
ing scene graph traversals or to implement applications-specific
device drivers without integrating them into the blue-c API.

3.5 Device I/O

The blue-c API supports 3D motion tracking devices by providing
device drivers as services. A base tracking class provides the nec-
essary state information interfaces, reference frame transforma-
tions for the sensors, messaging, and support for compound
devices such as the Fakespace Wand™. Derived classes implement
the low-level device access code.

The tracking service generates messages for button events as
well as device movements. The current position and button state is
also provided for applications that use a polling paradigm for user-
interface input.

The current tracking service supports Ascension and Polhemus
magnetic tracking systems based on our own driver code. The inte-
gration of other tracking toolkits such as trackd or OpenTracker
[Reitmayr and Schmalstieg 2001] would be straight forward.

A first prototype of a vision-based gesture recognition system
is integrated as a tracking service. Detected hand and head posi-
tions are provided to the application encapsulated as a virtual
tracking sensor.

3.6 Navigation and Interaction Plug-ins

Navigation inside the virtual world and picking of objects are com-
mon tasks in most VR applications. The blue-c API therefore pro-
vides a simple plug-in mechanism for registering navigation and
interaction modules. Simple fly-motion navigation with collision
detection and pre-defined and dynamic setting of viewpoints, as
well as basic object picking are provided by the API. They can eas-
ily be customized for individual applications, or be replaced com-
pletely with custom implementations. The picking system
generates application messages, whereas the navigation plug-in
continuously sets the viewpoint.

The plug-ins are hooked into the message passing system. They
receive all messages not explicitly flagged as handled by the appli-
cation. In addition, the navigation plug-in is called once per frame
to calculate the new viewpoint. The default navigation implemen-
tation includes an overridable position validation method which
does collision detection using Performer intersection tests.

In the demo application as shown in Fig. 2, the default collision
detection is replaced with a simple terrain follower code that uses

the application height field representation instead of the geometry
mesh for improved efficiency.

3.7 Scene Graph

The blue-c scene graph is based on OpenGL Performer. To support
collaboration and cluster rendering, it has been enhanced with
node serialization and state update interfaces. These features are
presented in [Naef et al. 2003]. Additional custom nodes and
attribute objects are integrated to support multimedia elements.
These objects are tied together with their respective services by the
use of callback methods that are invoked during application, cull,
or draw traversal (see Section 3.2). These proxy objects are
described in Section 4.

3.8 Configuration System

The configuration information is stored in a tree hierarchy. It
reflects the service structure, including sub-devices such as track-
ing sensors. The configuration scripts are human-readable text
files. Include directives allow to link different configuration files,
allowing to easily combine common items into manageable con-
figuration sets.

4 Multimedia Support

This section presents the blue-c multimedia features and their inte-
gration into the scene graph.

4.1 2D Video

The integration of 2D video streams greatly enhances the visual
appeal of virtual environments. It is significantly more efficient,
both in terms of modeling time and real-time rendering perfor-
mance, to create interesting animated backgrounds for a scene with
a video backdrop instead of animated geometry. Fig. 3 shows a
screenshot from the IN:SHOP [Lang et al. 2003] prototype appli-
cation with a video background. It provides an attractive environ-
ment with a very low polygon count.

Video-integration into the blue-c API consists of two parts. The
video service handles a list of video sources, each delivering video
data from either a file or a video camera. It includes a simple con-
trol interface for starting, pausing or stopping the video stream.
Texture attribute objects inside the scene graph then connect to the

Figure 2: Demo application, featuring efficient terrain follower
code in a customized navigation plug-in.

Figure 3: IN:SHOP application prototype with animated 2D video
background and 3D video inlay in the foreground.

video source. Texture objects are derived from standard Performer
textures, providing an identical interface to the developer. Instead
of specifying an image file to load, a “video:” prefix and the
requested filename or camera name is set. The API takes care of
starting the necessary video sources, either as defined in the con-
figuration scripts for external cameras, or dynamically by opening
the requested video files.

Video streaming and decoding is performed in a separate pro-
cess for each source, completely decoupling the video frame rate
from the 3D graphics rendering rate. Texture data is uploaded to
the graphics pipe by the video service whenever a new frame is
available in a draw callback. For video file decoding, we use the
SGI digital media library on the Irix platform, and libavcodec on
Linux. On our SGI Onyx with eight processors, several video
streams can be decoded and uploaded to texture memory simulta-
neously without a significant drop in the rendering frame rate.

A plug-in mechanism into the decoder allows to do blue-
screening for video files on the fly. This enables to use transpar-
ency effects in video files based on color keying for video file for-
mats that typically do not include alpha channels. Alpha channels
could also be used to support telepresence from portals that do not
use the full 3D video acquisition system.

4.2 3D Audio

In addition to visual output, the blue-c API provides a high-quality
spatialized 3D audio system that runs as a service. It is controlled
by active audio nodes that are part of the scene graph, which
allows to add sound as attribute to scene graph objects. Each audio
node controls a sound source object in the audio renderer. Its posi-
tion is updated once per frame following the underlying transfor-
mation nodes and the virtual to real world coordinate system
transformation that is provided by the graphics rendering system.
For a detailed description of the blue-c audio rendering pipeline,
we refer to [Naef et al. 2002].

4.3 Animation

The blue-c API supports animation of 3D geometry using the con-
cept of animation nodes. Animation nodes are transformation
nodes that update their transformation matrix for every frame. The
animation node base class calls a virtual update method once per
frame inside the application process and provides functionality to
pass the matrix down the rendering pipeline in a multiprocess-safe
way.

The main idea behind animation nodes is to provide the appli-
cation developers with a framework to integrate their own anima-
tion code. In addition, the API provides some derived animation
nodes that implement continuous rotation, and a key-frame anima-
tion class that provides linear interpolation for both position and
rotation.

As a special “fun” feature, a complex animation node supports
importing animated figures created with Curious Labs’ Poser
(http://www.curiouslabs.com). A customized file loader recon-
structs the model hierarchy from exported geometry files and
parses the respective BVH motion data. This allows for a quick
population of virtual worlds with moving characters. Fig. 5 shows
a screenshot of our virtual museum with two dancing mannequins.

5 3D Video Fragments Rendering

The support for 3D video acquisition and streaming of users is a
key feature of the blue-c system. A 3D representation of the user
standing inside our portal is acquired concurrently with the immer-
sive stereo projection. Using a shape from silhouette method, the
user is reconstructed as a cloud of 3D video fragments, which is a
generalization of the pixel concept into three-space. These frag-
ments are then encoded and transmitted incrementally across the
network to the other participating sites. For details on the 3D video
acquisition, processing and transmission pipeline we refer to
[Gross et al. 2003] and [Wuermlin et al. 2004]. The following dis-
cussion only refers to the receiver side, including rendering.

Most current point rendering systems [Rusinkiewicz and Levoy
2000], [Botsch et al. 2002] are suitable for static point sampled
models only. They focus on high quality rendering. However, the
proposed solutions are not suitable for real-time rendering of
dynamic objects because the steps required to generate the under-
lying data structures are not feasible within the given time bounds.
For the blue-c, we therefore had to optimize the full 3D fragment
rendering pipeline. Our 3D video inlays typically consist of
approximately 20,000 to 30,000 fragments that are updated ten
times per second.

The integration of 3D video streams into the blue-c API fol-
lows a two-tier approach, similar to 2D video textures. The 3D
video service as shown in Fig. 6 handles asynchronous streaming,

Video Service Scene Graph

Video Source Object Texture
Object

Buffer

Chroma-
Keying

Figure 4: Video decoding service and texture object in scene.

Figure 5: Poser-animated figures in the virtual museum.

3D Video Service Scene Graph

3D Video Stream Source

3D Object
Proxy-Node

Vertex-
Array

Network
Thread

Vertexarray
Setup

Figure 6: 3D video service with video fragment sources and proxy
object inside the scene graph. A double-buffered vertex array is
used to pass data between the processes.

decoding and data structure setup of the 3D video fragments. A
proxy node inside the scene references the source service and calls
the rendering methods.

5.1 3D Video Service

The 3D video service can host several fragment data sources. Each
source implements a pre-processing and rendering pipeline for a
single 3D video object. Fig. 7 depicts the pipeline stages, Fig. 8
shows the main data structures used. The following subsections
describe the stages and their performance properties as measured
on our SGI Onyx 3200 with 8 MIPS R12000 processors running at
400 MHz and two IR3 graphics pipes. Additional measurements
were done on a PC with a Pentium 4 2.8 GHz processor and nVidia
Quadro4 750 XGL graphics board.

Incoming data: 3D video objects are transmitted using fragment
operators [Wuermlin et al. 2004]. They are decoded and used to
update a sparse, linear data array incrementally. A hash function of
the position is used as index into this array, which enables fast
update operations if the position or color of a fragment changes
only. This data array structure holds the complete object as a col-
lection of 3D video fragments that include position, color, and sur-
face normal.

Especially on the SGI Onyx hardware, the network transmis-
sion and decoding process is currently the main bottleneck limiting
the number of active fragments. It therefore runs on its own pro-
cessor, and further processing inside the same process is kept to a
minimum.

Vertex array setup: For efficient rendering, the point samples
should be copied into a linear array which packs position, color
and texture coordinates into a data structure that can be read
directly by the graphics hardware with a single burst transfer. This
vertex array can be sent to the OpenGL rendering system with a
single system call (glVertexArray). Due to the dynamic nature of
the input data, the vertex array must be set up completely for each
incoming frame. The update must therefore be as efficient as possi-
ble. This acquisition frame rate is typically in the order of 10 Hz,
depending on the configuration of the acquisition system.

5.2 Splat Setup

For high quality rendering, we use a method which is a simplified
version of EWA splatting [Zwicker et al. 2001], [Ren et al. 2002],
accelerated by video hardware. Each 3D video fragment is treated
as a flat disc in object space with a given radius that is blended
with the neighbors according to a weight defined by a Gaussian
function.

For actual rendering, each point sample is represented with a
GL_QUAD primitive. The quad is set up perpendicular to the frag-

ment normal and has a variable size. This square primitive
includes an alpha texture representing the Gaussian function,
which is used for smooth blending. The same texture is also used
in an alpha testing step, resulting in circular splats in object space.

Four vertices, totalling 96 bytes, must be written into the vertex
array for each point sample. Setting up the splats is limited in per-
formance by the memory write bandwidth. Including traversal of
the sparse linear data structure, each splat takes approximately
1 µs on the Onyx and 0.5 - 0.8 µs on the PC, leaving very little
time for additional processing such as dynamic splat size calcula-
tion. Instead of setting up the vertex data structure inside the net-
work streaming process, we therefore create a linearized copy of
the video fragment data structure, which only takes 24 bytes per
fragment. This copy operation takes approximately 0.4 µs per frag-
ment on the Onyx, leaving about 90% of the processing time to the
network code. The copy step is necessary because the fragment
data structure does not allow for efficient concurrent access due to
unpredictable ordering of the update operations.

After creating the linear fragment list inside the network pro-
cess, a different thread is triggered to calculate the vertex array
structure from the intermediate copy. Since this thread runs on a
separate processor, a time budget of typically 4 to 5 µs per frag-
ment is available, leaving room for a heuristic calculation of the
splat size. The splat size is a function of the distance to the nearest
neighbors.

The splat size should be big enough to avoid visible holes, yet
small enough to avoid unnecessary blurring. Due to the non-uni-
form sampling, each fragment’s radius should be adapted individu-
ally according to its closest neighbors. The linear data structure,
however, does not allow for fast querying of the nearest neighbor.
Still, due to quantized encoding of the data during network trans-
mission, and due to the nature of the hashing function used to
index the sparse fragment array, many fragments are actually clus-
tered together in the data structure. Our experiments show that a
close neighbor can usually be found within a search window look-
ing at the last and next 32 fragments to be processed inside the
array. For each fragment, we therefore search for the nearest other
fragment inside this window. If the distance is below a config-
urable threshold, we use the distance as the splat radius. Other-
wise, a default size is used.

As opposed to traversing the sparse fragment array, the linear-
ized copy results in much better cache efficiency and therefore
higher read throughput, allowing one to keep the typical neighbor
search window between 32 and up to 256 fragments, depending on
the total number input fragments to be processed. The size of the
window is automatically adapted to the available processing time.

Both the intermediate fragment array and the output vertex
array are double-buffered. Buffers are locked and swapped at the
end of the calculation process. The latest complete vertex array is
therefore always available for asynchronous reading of the render-

Net. transport Copy

Vertex array setup

RenderRenderRenderRenderRenderRender

Copy

Vertex array setup

Render

Net. transport
Network transmission process

Setup thread

Asynchronous rendering process

Figure 7: Video fragment rendering pipeline.

Sparse fragment array
(updated by fragment ops.)

Intermediate copy
(double buffered)

Vertex array for rendering
(4 vert. per splat, dbl. buffered)

Figure 8: Data structures for 3D fragment processing and
rendering.

ing system.On a single processor machine, the copy step is omitted
and the splat sizes and resulting vertices are calculated immedi-
ately.

5.3 Splat Rendering

3D video objects can be referenced anywhere in the scene graph
hierarchy using proxy nodes. Rendering the fragments is triggered
by the node callback method inside the draw process.

Rendering is done using OpenGL vertex arrays in a two pass
procedure. In the first pass, the depth buffer is set up: Rendering
quads using the Gaussian textures with a greater-than alpha func-
tion results in circular splats. These are rendered into z-buffer only,
the color buffer is left untouched. During the second pass, z-buffer
writing and alpha testing is disabled. The colors are now blended
with the frame buffer color according to the alpha texture value,
which results in smooth corners and blending of overlapping
splats. A polygon offset is added to the z-value to avoid z-fighting
artefacts during blending. Splat rendering is visualized in Fig. 10.

Rendering performance: Our rendering method produces smooth
looking surfaces at interactive frame rates. On the SGI Infinite
Reality 3 graphics pipe, we achieve rendering times in the order of
1.3 µs per fragment, resulting in typical frame rates around 15 to
20 Hz in stereo mode for applications with low scene geometry
complexity.

For applications that require higher frame rates, a single pass
rendering mode is available that either renders circular splats with-

out blending, or points only. Rendering performance is mainly a
function of the number of bytes and vertices transmitted per frag-
ment. The Quadro4 graphics hardware is significantly faster than
the IR3, the relative characteristics however remain the same.
Table 1 summarizes the rendering times for both platforms. The
visual results of the different rendering methods are shown in
Fig. 9.

To save on processing power, the splat size approximation and
multiprocessed vertex array setup can be turned off. A fixed splat
size is used instead, which typically still results in acceptable
visual quality due to the low variation in sampling density of our
acquisition system.

6 Example Applications

The usability of an application programming interface is best veri-
fied by actual application development. During the three years of
the blue-c project, several applications have been developed. They
present the different blue-c features, such as immersive stereo pro-
jection, the audio system, 2D video, 3D video streaming and
recording, collaboration, animation, and user interaction.

Exploring the multimedia capabilities of the blue-c technology
for real world applications, Infoticles (see Fig. 11) and IN:SHOP
(screenshot in Fig. 3) were developed.

Infoticles [Vande Moere 2002] is an immersive data visualiza-
tion application which uses the motion of particles as a visual met-
aphor to enable the discovery of unexpected data patterns in large,
time-based datasets. It has been implemented for the analysis of
monetary flows as well as for corporate knowledge document
usage.

IN:SHOP [Lang et al. 2003] introduces a new shopping experi-
ence where a remote sales person assists a customer. The basic
idea is to extend real shopping places with portals into a virtual
world. It uses all multimedia features of the blue-c API including
2D video, 3D video, and audio for background music.

Figure 9: Comparison of fragment rendering options: a) Points, b) single pass, and c) two-pass circular splats.

rrp p

1-pass: Single circular splat 2-pass: Circular splat for z-buffer setup,
blended splat for color (alpha texture)

Figure 10: Splat rendering: Single pass and two-pass rendering
modes. Circular splats are rendered with a quad primitive and an
alpha texture as stencil. The same alpha texture is used for
blending. p denotes the fragment position, r the size of the splat.

Table 1: Rendering time per fragment.

Platform Point
Circular

1 pass
Circular

2 pass

SGI Onyx / IR3 0.1 µs 0.5 µs 1.3 µs

nVidia Quadro 4 0.02 µs 0.15 µs 0.3 µs

7 Conclusions and Future Work

This paper presents the blue-c application programming interface,
a new virtual reality development toolkit which combines collabo-
ration, telepresence, multimedia, high performance rendering, and
interaction tools, into a single, coherent package. It combines cur-
rent state of the art in real-time 3D video technology and multime-
dia into a VR environment.

Future work will focus on application development, testing the
possibilities and limitations that the blue-c system and application
programming interface offer for collaborative virtual environments
and telepresence. We will also exploit programmable graphics
hardware for higher performance 3D video rendering and to
improve the visual quality of the virtual environments. Especially
point-sprite primitives supported by the latest generation of graph-
ics accelerators enable to reduce the bandwidth requirements
between main memory and the graphics system.

Acknowledgements

We would like to thank all members of the blue-c team for many
inspiring discussions. Special thanks to those who contributed
code and applications: Oliver Kreylos, Edouard Lamboray, Silke
Lang, Sascha Scandella, Andrew Vande Moere, Tim Weyrich, and
Stephan Würmlin. Additional thanks go to CIPIC at UC Davis for
providing the environment for the Linux port. This work has been
funded by ETH Zurich as a “Polyprojekt” (grant no. 0-23803-00).

References

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER, A., AND
CRUZ-NEIRA, C. 2001. VR Juggler: A virtual platform for virtual
reality application development. In Proceedings of the IEEE Virtual
Reality Conference 2001 (VR 2001). IEEE, IEEE Computer Society
Press, Yokohama, Japan.

BOTSCH, M., WIRATANAYA, A., AND KOBBELT, L. 2002. Efficient high
quality rendering of point sampled geometry. In Proceedings of the
13th Eurographics Workshop on Rendering. 53–64.

CRUZ-NEIRA, C., SANDIN, D. J., AND DEFANTI, T. A. August 1993.
Surround-screen projection-based virtual reality: The design and
implementation of the cave. Proceedings of SIGGRAPH 93, 135–
142.

GROSS, M., WÜRMLIN, S., NAEF, M., LAMBORAY, E., SPAGNO, C., KUNZ,
A., KOLLER-MEIER, E., SVOBODA, T., VAN GOOL, L., LANG, S.,
STREHLKE, K., VANDE MOERE, A., AND STAADT, O. 2003. blue-c: A
spatially immersive display and 3D video portal for telepresence. In
SIGGRAPH 2003 Conference Proceedings. ACM SIGGRAPH
Annual Conference Series.

KELSO, J., ARSENAULT, L. E., SATTERFIELD, S. G., AND KRIZ, R. D. 2002.
DIVERSE: A framework for building extensible and reconfigurable

device independent virtual environments. In Proceedings of the IEEE
Virtual Reality Conference 2002 (VR 2002). IEEE, IEEE Computer
Society Press, Orlando, Florida, 183–190.

LANG, S., NAEF, M., GROSS, M., AND HOVESTADT, L. 2003. IN:SHOP:
Using telepresence and immersive VR for a new shopping
experience. In Proceedings of the 8th International Fall Workshop on
Vision, Modelling and Visualization 2003. IEEE.

NAEF, M., LAMBORAY, E., STAADT, O., AND GROSS, M. 2003. The blue-c
distributed scene graph. In Proceedings of the IPT/EGVE Workshop
2003, J. Deisinger and A. Kunz, Eds.

NAEF, M., STAADT, O., AND GROSS, M. 2002. Spatialized audio rendering
for immersive virtual environments. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology 2002, H. Sun
and Q. Peng, Eds. ACM Press, 65–72.

PARK, K. S., CHO, Y. J., KRISHNAPRASAD, N. K., SCHARVER, C., LEUWIS,
M. J., LEIGH, J., AND JOHNSON, A. E. 2000. CAVERNsoft G2: A
toolkit for high performance tele-immservie collaboration. In
Proceedings of the ACM Symposium on Virtual Reality Software and
Technology (VRST) 2000. 8–15.

REINERS, D., VOSS, G., AND BEHR, J. 2002. OpenSG - Basic concepts. 1.
OpenSG Symposium.

REITMAYR, G. AND SCHMALSTIEG, D. 2001. An open software architecture
for virtual reality interaction. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (VRST) 2001. ACM,
Banff, Alberta, Canada.

REN, L., PFISTER, H., AND ZWICKER, M. 2002. Object space EWA surface
splatting: A hardware accelerated approach to high quality point
rendering. In Proceedings of Eurographics 2002. COMPUTER
GRAPHICS Forum, Conference Issue. 461–470.

ROHLF, J. AND HELMAN, J. 1994. IRIS Performer: A high performance
multiprocessing toolkit for real-time 3d graphics. In Proceedings of
SIGGRAPH 94. ACM SIGGRAPH Annual Conference Series. 381–
395.

RUSINKIEWICZ, S. AND LEVOY, M. 2000. QSplat: a multiresolution point
rendering system for large meshes. In SIGGRAPH 2000 Conference
Proceedings. ACM Siggraph Annual Conference Series. 343–352.

SINGHAL, S. AND ZYDA, M. 1999. Networked Virtual Environments:
Design and Implementation. ACM Press - SIGGRAPH Series.
Addison-Wesley.

TRAMBEREND, H. 1999. Avocado: A distributed virtual reality framework.
In Proceedings of the IEEE Virtual Reality Conference 1999. 14–21.

VANDE MOERE, A. 2002. Infoticles: Information modeling in immersive
environments. In Proceedings of the 6th International Conference on
Information Visualisation. London, England, 457–461.

WUERMLIN, S., LAMBORAY, E., AND GROSS, M. 2004. 3D video fragments:
Dynamic point samples for real-time free-viewpoint video.
Computers & Graphics, Special Issue on Coding, Compression and
Streaming Techniques for 3D and Multimedia Data 28, 1 (Jan.), 3–
14.

ZWICKER, M., PFISTER, H., VANBAAR, J., AND GROSS, M. 2001. Surface
splatting. In SIGGRAPH 2001 Conference Proceedings. ACM
SIGGRAPH Annual Conference Series. 371–378.

Figure 11: Infoticles: Information visualization application built upon the blue-c API.

	blue-c API: A Multimedia and 3D Video Enhanced Toolkit for Collaborative VR and Telepresence
	1 Introduction
	2 Related Work
	3 blue-c API System Architecture
	3.1 Core
	3.2 Process Management
	3.3 Services
	3.4 Messaging
	3.5 Device I/O
	3.6 Navigation and Interaction Plug-ins
	3.7 Scene Graph
	3.8 Configuration System

	4 Multimedia Support
	4.1 2D Video
	4.2 3D Audio
	4.3 Animation

	5 3D Video Fragments Rendering
	5.1 3D Video Service
	5.2 Splat Setup
	5.3 Splat Rendering

	6 Example Applications
	7 Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

