
Christoph Niederberger, Dejan Radovic, Markus Gross

Computer Graphics Laboratory, ETH Zürich
{niederberger,grossm}@inf.ethz.ch, d.radovic@alumni.ethz.ch

Abstract
We present a fast and robust path planning algorithm for

generic static terrains with polygonal obstacles. Our algo-
rithm finds shorter, and therefore more intuitive paths than a
traditional A* approach with a similar underlying graph. The
presented algorithm is derived from A* and is modified to cir-
cumvent undecidable situations and unintuitive results. Addi-
tionally, we present two post-processing steps to enhance the
quality and visual appearance of the resulting paths. The first
method minimizes the number of waypoints in a path while
the second method takes the slope of the terrain into account
in order to generate visually more pleasing paths. We show
that our algorithm is fast and, therefore, well suited for real-
time applications, such as games or virtual environments.

1. Introduction
Open terrain navigation in static environments can be consid-
ered as a path planning problem where the task is to find a
sequence of waypoints from a start to a goal location. Addi-
tionally, the line segments connecting the waypoints have to
be collision-free with respect to obstacles. This task has been
well researched and many approaches have been published.

For real-time applications such as games, the key to effi-
cient path planning is how the environment is spatially
decomposed. Therefore, the need for a level designer who
defines a graph of landmarks still exists. This task is crucially
to find a lean and correct graph representing the topology of
the landscape, since the smaller the graph the faster will be
the search on the graph. On the other hand, a smaller graph
introduces an approximation error by reducing large areas to
single points.

A generic path planning algorithm needs to meet several
requirements:

• The resulting paths should have the lowest possible cost
to prevent any indirection.

• It should be fast to not thwart the simulation process, it
should be correct, i.e. no collisions occur, and it should
be robust, i.e. the same request generates the same path.

• We would like an automatic approach to assure that no
human interaction is necessary.

• Last but not least, the algorithm should be generic with
respect to different maps, i.e. it should not be fully opti-
mized for a specific map type.

We present a novel approach to fast path planning in
generic terrains that meets the above mentioned requirements.
The presented algorithm is a deviation of A* and processes
static maps that contain polygonal obstacles. Our solution
finds shorter paths which connect arbitrary start and goal
locations than traditional approaches.

2. Related Work
Path planning problems arise in many different applica-

tions, and many publications have been written especially on
robot motion planning (see [5][10] for surveys). Static envi-
ronments and point-sized agents are the most simple case
which we will consider here. They often occur in games and
other virtual reality environments where physical correctness
is not crucial. Because the game industry as the major benefi-
ciary is not interested in publishing their internals of a game
release, most solutions are given as generic descriptions in
books [2][3][1][4].

For general environments, the most efficient and complete
approach is the roadmap (or silhouette) method [5], or its
variant, the probabilistic roadmap (PRM) [8][9]. Roadmaps
reduce the agent’s free configuration space to a skele-
ton which can be used to search a path from a given
start to a goal location in . The PRM is very useful in
high-dimensional C-spaces. It searches randomly for configu-
rations in and connects them to a roadmap.

Generally, graph search based approaches use the vertices
of a graph to represent feasible points in , e.g. land-
marks. Variations include methods based on Voronoi decom-
position [11], and cell decomposition methods. For static,
two-dimensional environments with convex polygonal obsta-
cles and a point sized agent, these approaches afford efficient
solutions, as surveyed by Schwartz et al. [13]. Exhaustive
graph search algorithms, such as A*, constitute the only
known optimal algorithms [7]. But the optimality is bound by
the approximation error of the decomposition, since the verti-
ces of the graph always reduce an area or line to a single
graph node.

Cfree
Rfree

Cfree

Cfree

Cfree

Generic Path Planning for Real-Time Applications

When dealing with real-time applications, the path plan-
ning process has to be as fast as possible. Therefore, many
simplifications are made. This often leads to more approxima-
tion errors. For exampe, path planning for the real-time strat-
egy game Star Trek®: Armada is presented in [6]. It applies a
quad-tree based decomposition of the playing field to reduce
the number of cells. However, their rubber-band algorithm
used to make the paths looking natural does not even achieve
local optimality.

Multi-agent path planning, path planning for dynamic envi-
ronments using D* [15] – a dynamic variation of A* – and
dynamic replanning have been researched well, too, but are
out of the scope of this publication.

3. The Problem of Path Planning
In order to let an object or character move inside a scene from
one location to another, a path has to be planned that guaran-
tees a collision-free translation from the start to the goal posi-
tion. Hence, the whole task of path planning is usually broken
down into four subproblems:

• First, one has to find a suitable discretization of the
ground on which one can build a graph. This can be done
offline in a preprocessing step. The resulting graph
should be as lean as possible to allow a fast search. If the
graph is too large, the search will be significantly slowed
down. One the other hand, the discretization should be as
fine as possible so that the areas corresponding to graph
nodes are not too large. This would lead to an approxi-
mation error which ends up in suboptimal paths.

• For a specific path request, the task of point location
determines the corresponding graph nodes for each the

start and goal position. This depends heavily on the cho-
sen discretization.

• Then, the graph has to be searched for a solution which
connects the found nodes. For static environments as
expected, the A* algorithm is commonly used.

• Afterwards, the resulting sequence of graph nodes needs
to be transferred back to the original environment.

Therefore, the main problem seems to find an optimal
trade-off between graph nodes representing spatially small
areas (less approximation) and a small number of nodes
(faster search). Additionally, we will show that unintuitive
and suboptimal results can occur since the graph is fixed and
cannot be adapted to a specific request.

We present a novel algorithm which partially overcomes
the mentioned trade-off and finds near-optimal paths even for
coarse discretizations.

4. A* Algorithm

The standard search algorithm for the shortest path problem in
a graph is A*. It is a directed breadth-first search and com-
bines the advantages of uniform-cost and greedy searches
using a fitness function

(1)

where g(n) denotes the accumulated cost from the start
node to node n and h(n) is a heuristic estimation of the
remaining cost to get from node n to the goal node.

During the search, the A* algorithm maintains two lists of
nodes: The open list contains the nodes that have to be con-
sidered next and the closed list which contains the nodes
already visited. The algorithm itself consists of expanding the
one node from the open list whose fitness function is minimal.
Expanding a node means putting it into the closed list and
inserting the neighbors into the open list and evaluating the
fitness function. The algorithm stops, when the goal node gets
expanded.

The choice of a good heuristic is necessary in order to
achieve both quality and efficiency of the search. As long as
the heuristic underestimates the real cost, the shortest path is
guaranteed to be found. Nevertheless, underestimating can
easily lead to an expansion of too many nodes. But when the
heuristic is allowed to overestimate the remaining cost, faster
results can be achieved because less nodes get expanded. If
overestimating the distance to the goal, the A* algorithm
tends to expand nodes that lie on the direct path to the goal
before trying other nodes. But this can also lead to signifi-
cantly slower searches if the final path contains directions that
lead away from the goal.

Figure 1: Four different approaches to the discretiza-
tion problem.
i) Rectangular Grid
ii) Quadtree
iii) Convex Polygons
iv) Points of Visibility

A

B
B

A

B

A

B

A

i) ii)

iii) iv)

f n() g n() h n()+= n N f:N ℜ+→,∈

5. Overview of the Algorithm
Our approach is a cell decomposition approach which uses a
modified A* approach to find paths in a two-dimensional
environment for a point sized agent.

We propose a solution which uses an automatic and coarse
tesselation of the ground into trapezoids in order to obtain a
generic discretization. On this tesselation, we build a graph
whose nodes do not have a fixed position a priori. Rather,
they are allowed to move freely on the portal between two
neighboring cells. We do not specify the exact location of a
node until necessary. Since we build the graph on the fly
using the actual request and state we generate shorter paths
than the traditional static approach.

For a specific path request, we locate the nearest portals
and fix the corresponding graph nodes. Then, we use a modi-
fied A* algorithm to find a path on this graph. This algorithm
uses two different strategies depending on the direction of the
search in order to find optimal paths. When a node is
expanded, its position gets fixed in order to calculate the heu-
ristic function.

Additionally, one usually applies some post-processing to
obtain a visually appealing form. We will present two meth-
ods that improve the quality of a given path.

6. Detailed Description of the Method
The following section discusses various aspects of our solu-
tion. First, we present the chosen discretization and improve
the given algorithm to better fit our needs. Second, we discuss
various approaches to build a graph on such a discretization
and show that the traditional approaches fail to find optimal
and intuitive solutions. Then, we present our modifications to
A* and the resulting advantages.

6.1. Discretization
As explained above, the first task is to discretize the scene
into obstacle-free regions. Different approaches to this prob-
lem are proposed in [2]. The first and trivial idea is to use a
regular grid of some arbitrary resolution as shown in Figure
1i). This approach obviously leads to a very dense graph.
Additionally, it can exhibit loss of connectivity, since some
cells are only partially empty. A second approach is a quad-
tree, depicted in Figure 1ii). The quad-tree displays a better
approximation of the scene and a leaner graph, but still has a
major drawback: At the borders of the obstacles there are
many very small cells. Since many paths follow the borders of
an obstacle the expected speed-up is partially lost. The prob-
lem with partially occupied cells remains, too. The third
approach is to tessellate the ground into convex polygons,
shown in Figure 1iii). Convex polygons have the useful prop-
erty that any straight path inside the polygon can not collide
with its border. Additionally, since the obstacles are polygo-
nal, we can obtain a partition of the walkable ground without

the loss of connectivity. Finally, a very lean graph can be
achieved when using the points-of-visibility approach in Fig-
ure 1iv). For each obstacle corner, all other visible corners are
connected to build a graph with a small number of nodes.
However, the determination of the nearest graph node for an
arbitrary location is rather difficult since a visibility-check is
necessary for every potential node.

We have decided to use a tesselation into convex polygons
due to its simplicity. To the end, we use the algorithm of
Seidel [14]. This algorithm tessellates the ground into trape-
zoids with horizontal borders. These allow for very fast line
intersection calculation which makes this approach very inter-
esting. Additionally, the algorithm can also deal with poly-
gons containing holes. This is very important since in our
scenario the large polygon that defines the border of the map

Figure 2: Discretization of the green area into obsta-
cle-free regions.
i) The tesselation using Seidel’s algorithm is
not optimal with respect to the pathfinding
problem.
ii) Merging neighboring cells into larger ones
that still remain convex.
iii) Allowing for slightly concave polygons fur-
ther reduces the number of polygons.

Figure 3: Building the Graph:
i) The tesselation using Seidel’s algorithm.
ii) The graph using the trapezoid centers as
nodes.
iii) Using portal centers as nodes. The result-
ing node sequence connecting A and B is
shown in green.
iv) The resulting path.

i) ii) iii)

B

A
A

B

i) ii)

iii)

A

B

iv)

A

B

contains other smaller polygons representing the obstacles.
Additionally, the tesselation process automatically yields a
query-tree that allows to efficiently handle the task of point
location. Given an arbitrary point, its corresponding trapezoid
can be found in O(logN) with N being the number of cells.

But the resulting tesselation of Seidel’s algorithm is still
suboptimal as depicted in Figure 2. We need to merge neigh-
boring trapezoids into arbitrary convex polygons wherever
possible in order to reduce the number of nodes in the graph.
This algorithm is due to Hertel and Mehlhorn [12][16]. This
process is not negligible. Tests on sample maps have shown
that on average 50 percent of the trapezoids are eliminated.
When allowing for slightly concave polygons by introducing
a tolerance parameter even more trapezoids can be elimi-
nated. The consequence is that paths can potentially intersect
the border of the polygon. If this is inadmissible, one can sim-
ply expand the contours of the obstacles in a preprocessing
step as described in [17].

6.2. Building the Graph
Building a graph on this tesselation leads to several possible
approaches. One could use the polygon centers as graph
nodes as shown in Figure 3ii). This strategy fails since we
then have to find the corresponding portalsa of each pair of
adjacent polygons. Instead, we could use the portal centers
directly as nodes, see Figure 3iii). While the resulting graph
contains more nodes than the first approach, we get two

advantages: First, the step to find portals is omitted. Second,
the nodes represent more accurately the geometric locations
relevant to the final path which allows for a better cost esti-
mation between the nodes.

The presented solution works fine but has some major limi-
tations. Consider the situation depicted in Figure 5i) where we
search a path from A to B. A* will find the path leading
around the obstacle instead of the expected straight path
because the graph displays a shorter route around the obsta-
cle. We see that choosing the portal centers as node locations
is a rather arbitrary choice. Since paths dodging an obstacle
follow its contour, we could try to anticipate this by placing

the nodes on the portal end-points. This solves the situation in
Figure 5i), however, it fails in other situations as shown in
Figure 5ii) where another obstacle is inserted. Additionally,
the resulting graph has twice as many nodes as the previous
one.

All problems encountered so far stem from the fact that
long segments are reduced to just one or two points in the
map and make it impossible to get a correct heuristic for A*.
We could introduce a maximal portal width and split up broad
polygons in order to reduce the deviation. However, this
would lead to an even denser graph because of the additional
interconnections between horizontally neighboring polygons.
Also, note that no matter how small the portals will be, there
are always counter-examples that produce unintuitive results.

When we abandon the idea of graph nodes representing
precise locations, the idea to use the whole portals themselves
as nodes ends up in a very lean graph again as shown in Fig-
ure 4.In order to construct the graph, we introduce a distance
measure between portals – the minimal distance
between two segments and which is in most cases the
vertical distance between two portals. This distance measure
ensures that the total length of the final path is never overesti-
mated and therefore the optimal path has to be contained in
the set of possible solutions of the A* search.

When reconsidering the above examples, we see that
although the first situation is solved correctly, no assertive
answer can be given in the second situation, since both paths
around the small obstacles have identical costs. As a conse-
quence, the problem can not be decided and in fact, the out-
come will depend on the implementation of the algorithm.
Therefore, we have to find a modification that makes this
approach robust.

aA portal is defined as the connecting line segment between two adja-
cent polygons and acts as a doorway.

Figure 4: Using whole portals as nodes leads to unde-
cidable situations.

B

A

B

A

i) ii)

Figure 5: A graph built with portal centers can lead to
unintuitive results:
i) The green sequence will be chosen instead
of the blue one which finally leads to a longer
path.
ii) When placing the nodes on the obstacle
borders, the approach finds the correct solu-
tion for example i), but fails to find the correct
solution when adding a second obstacle. In
this case the green path will be chosen.
Adding more nodes (white) can solve this
(dashed red), but it will fail when connecting
X and Y (dashed brown).

dmin s1 s2,()
s1 s2

B

A

X

Y

B

A

i) ii)

One possibility could be to tweak the A* heuristic function
in which estimates the remaining cost to the goal node. Since
we are free to chose the function it allows to prefer portals
that lie on a straight line between the start and goal location.
Adding a term that enforces the A* search to expand nodes
that lie near to the connecting line also considerably improves
the efficiency of it. This technique is vital to open terrain nav-
igation since in most cases the paths are straight or deviate
only little from the straight connection between start and goal.
However, the search is significantly slowed down when the
path is forced to lead away from the goal location. Also, the
computational expense to calculate such a heuristic function
further slows down the search. A further limitation is that the
search direction is always attracted by the straight line con-
necting the start and goal location. When the path leads away
from this line it will tend to return rather than moving ahead
from its current position to the goal since the heuristic is only
globally defined. Instead we would like to have a local search
that depends also on the current position.

When looking for a solution that unifies the advantages of
the above approaches while eliminating the incorrect solu-
tions we have to find one with a small number of nodes and
accuracy with respect to distance measures. The fundamental
problem of the whole approach so far is that the graph is built
offline in a preprocessing stage. It stays fixed for its lifetime
with the exception of the start and goal node that are intro-
duced for a search. Therefore, there is no way to bring in the
information of a specific pathfinding request into the structure
of the graph.

6.3. Modifying the A* Algorithm
As we have seen, the major drawback is that no specific infor-
mation of a request can be included into the graph since it is
built offline. Our solution to this problem is that we do not
specify the exact location of a node until neccessary. The
location is set according to the previous course of the path
using two different strategies.

When moving away from the goal location, we do not
know exactly in which direction the final path will lead.
Therefore, we use a lazy strategy and select the closest possi-
ble location on the next portal. This results in a minimal devi-
ation from the final path. Here, we still introduce an
approximation error since the final path will most likely not
traverse this exact location. This situation is depicted in Fig-
ure 6i) where the red as well as the blue path can lead to the
goal. When moving towards the goal location, we use a
greedy strategy since we know where to go. This means that
we set the node as close as possible to the straight line con-
necting the actual location with the goal. An example where
this strategy is used can be seen in Figure 6ii) and iii).

Using these two strategies, we can take advantage of sev-
eral facts. First, the graph is still small and has a minimal
number of nodes with respect to the tesselation. We do not
have to introduce additional nodes that slow down the entire

process. Second, we have less approximation errors since we
have no spatial approximation when using the greedy strat-
egy. Only the lazy strategy introduces an overestimation of
the path length which is bound by the factor . This worst
case occurs when we decide to move vertically instead of
diagonally within a square. Third, we do not have to tweak
the heuristic as presented in the last section since every situa-
tion can be decided entirely. Considering Figure 6ii), the red
and green path both lead to the dashed line. Assuming that
both of them have the same cost up to this point, A* could not
decide which one to favor since both are indistinguishable.
Our approach allows for an online distinction because both
paths reach different locations on the portal, hence, their pre-
dictions for the remaining cost differ and make both paths dis-
tinguishable.

Last but not least and as a result of the above mentioned
advantages, we can achieve shorter paths than the traditional
approach. Consider for example the final path shown in Fig-
ure 6 and compare it to the solution shown in Figure 3. Actu-
ally, the path found in Figure 6 is a little shorter than the other.

Of course, our approach has also some drawbacks. It seems
to be slower than the conventional approach because we have
to additionally evaluate the distance between two successive
nodes. Also, we have to calculate the intersection between the
straight line to the goal and the next portal. But since our por-
tals are always horizontally, this can be done very fast and is
therefore negligible.

Figure 6: Using two different strategies:
i) The lazy strategy when moving away from
the goal places the nodes as near as possi-
ble on the next portal.
ii) and iii) The greedy strategy is applied
when moving towards the goal and places
the node on the straight line to the goal.
iv) The final path. Note the difference be-
tween this solution and the one found in Fig-
ure 3. This one is actually shorter.

A

B

A

B

B

A
A

B

i)

iii)

ii)

iv)

2

7. Postprocessing

After having found a sequence of nodes in the graph using the
above presented algorithm, these nodes do not form an opti-
mal path since we still have more nodes than necessary – one
for each traversed portal. Now, we have to abandon the graph
and return to the original map and apply a postprocessing of
the resulting node sequence. Additionally, we adapt the path
to a 3D environment by incorporating the slope of the terrain
when moving on the path.

7.1. Path Optimization
The goal of this postprocessing stage is to find a sequence

of waypoints that constitutes a path with a minimal number of
waypoints. In order to achieve that, we propose a cone-of-
sight algorithm which is based on visibility of points and por-
tals.

Again, our algorithm uses the advantage of the horizontal
portals by Seidel’s algorithm. Without loss of generality, we
assume to move vertically upwards and will present our algo-
rithm with the example given in Figure 7i). We start at point
A and have a sequence of portals to pass. We have two differ-
ent fourth portals to show how the algorithm works in differ-
ent cases.

Our starting point and the first portal form together a cone
of sight as depicted in Figure 7ii). The algorithm keeps track
of three points L, R, and the cone’s starting point, in this case
A. L, respectively R, denote the borders of the cone. When
looking at the next portal in Figure 7iii), its left end lies inside
the cone. Therefore, the left border is narrowed by placing L
to this point. Since the right end of this portal is outside our

cone, it will not restrict our current search. Looking at the
third portal in Figure 7iv) further restricts our cone, this time
from the right side. This time, R is moved inwards and lies
now on the right end of the third portal. These steps are con-
tinued until we reach a portal that completely lies outside the
cone.

Considering portal 4a in Figure 7iv), we see that it is out-
side the cone on the left. We therefore have to place a way-
point on the location of L and restart the algorithm at this
point. The new situation is shown in Figure 7v). This back-
tracking step explains why we have to keep track of L and R.
Considering alternative 4b, we see that the portal lies on the
right side of the cone. Therefore, we have to set R as the first
waypoint and continue from the third portal as depicted in
Figure 7vi).

This algorithm guarantees that the shortest path for a given
portal sequence is found. Thus, the straightness criterion for
paths introduced in the third section is met. For example, the
Rubber Banding Algorithm presented in [6] does not achieve
this. Our algorithm benefits from the fact that portals are
always horizontal which allows again for fast intersection cal-
culations.

7.2. Movement in 3D
The system is now able to efficiently compute qualitative
paths but still constitutes a purely 2D navigation facility. This
section presents an approach how to extend the system in
order to take height information into account. This post-pro-
cessing step is not necessary but results in aesthetically pleas-
ing paths.

Instead of having agents that strictly follow the path in a
straight line from one waypoint to another, we allow them to
diverge to some degree. We propose an approach, where the
path is adapted to the slope of the terrain. In order to avoid
steep slopes, we turn the agent away from its ideal course
using the current position p of the agent, the next waypoint

, and an arbitrary function : , where
 is the maximal deviation angle. This results in

, (2)

where

. (3)

 in Equation 1 denotes the deflection from the angle
pointing to the next waypoint . This formula is only
applied when , thus, when the agent is ascending. The
first term ensures, that the deviation decreases as
the waypoint is approached. In order to assure that the goal
point is really reached, the function should become 0
when the distance decreases. The second term
accounts for the steepness – the greater the length of the gra-
dient, the larger the deviation form the straight path will be.
The last term weighs the direction of the gradient
against the orientation of the movement. The deviation is

Figure 7: The cone-of-sight algorithm is used to find
the optimal sequence of waypoints.

A

A A

1wp

A

1wp

A

RL

A

1

2

iv)

ii)i)

iii)

v)

R

L

3

4a

L R

vi)
RL

4b

R

L

wi f ℜ 0 max∠,[]→
max∠

δ p() f wi p–() p()∇ ϕ()cos=

ϕ wi p– p()∇,()∠=

δ p()
wi

ϕ 0>
f wi p–()

wi f
wi p– p()∇

ϕ()cos

maximal when the next waypoint lies in the direction of the
maximal steepness. If the slope is parallel to the moving
direction () the deviation is zero.

Of course, such an adapted path could pass an obstacle
region, because it deviates from the original path. But since
every waypoint is reached exactly and waypoints usually lie
at the border of an obstacle, this problem is negligible. Addi-
tionally, the user has the possibility to specify the maximal
deviation angle to keep the agent near the original path. Fur-
thermore, one could enlarge the obstacle regions in order to
introduce a tolerance bound around each obstacle [17]. Figure
10 shows the adapted path in red in comparison with the
planned path in white.

8. Results

In order to compare our approach with different approaches
we set up a test suite that automatically generates paths. The
measurements were taken by calculating paths with random
start and goal locations on two different maps. The character-
istics of these maps are outlined in Table 1. We have com-
pared our approach with three implementations which have
been presented in this paper:

• Center: This approach uses a static graph built on the
portal centers of the tesselation.

• Width 1/3: The maximal portal width of the above
approach has been set to a third of the map width and the
portals are connected with the maximal fanout.

• Width 1/10: The maximal portal width has been set to a
tenth of the map width with an according fanout.

All these implementations use the same underlying A*
mechanism with the same performance optimizations as our

approach. These approaches also use the path optimization
procedure presented in Section 7.1.

In more than 90% of the cases our approach finds paths of
equal or shorter length as shown in Figure 9. The paths are
absolutely shorter than the other approaches in over 50% of
the tests. This result is even more distinct on the loose map
with less obstacles (97%, respectively 60%). Using a maximal
portal width only slightly improves the quality of the result as
can be seen. On the loose map this technique is more effective
since the portal width is more likely to be large.

Comparing the path generation time of the different
approaches, we see in Figure 8 that our approach is competi-

Table 1: The characteristics of the maps used for the
results. The last three columns show the
number of nodes of the graphs built on the
maps. The last two columns are derived from
the original map by setting the maximal portal
width to 330, respectively 100, units.

Loose Map Dense Map

Size 1000x1000 1000x1000
Obstacles 100 200

Center Nodes 281 395
Width 1/3

Nodes 323 408

Width 1/10
Nodes 567 568

ϕ 90°=

Figure 8: Comparing the run time of traditional ap-
proaches with our approach. The order of the
rows is the same as in Figure 9.
Green denotes cases where our approach
was faster.

Figure 9: Comparing the path length of traditional ap-
proaches with our approach.
The top three rows (gray) were generated on
the dense map, while the bottom three rows
(white) used the loose map described in Ta-
ble 1. On each map we compared our ap-
proach with three different implementations
that use static graphs.
Red denotes cases where traditional ap-
proaches found a shorter path, blue for equal
length, and green when our approach found
a shorter path.

46.3%

49.4%

10.4%

20.9%

12.6%

2.9%

53.7%

50.6%

89.6%

79.1%

87.4%

97.1%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Center

Width 1/3

Width 1/10

Center

Width 1/3

Width 1/10

Slower Faster

4.
7%

5.
1%

6.
0%

1.
6%

2.
1%

40.8%

42.8%

36.4%

30.2%

29.9%

33.5%

54.6%

52.1%

57.6%

68.3%

68.0%

64.4%

2.
1%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Center

Width 1/3

Width 1/10

Center

Width 1/3

Width 1/10

Shorter Equal Longer

tive. On the dense map (top rows), the algorithms with
approximately the same number of nodes perform similar
while the difference grows with less obstacles. The approach
with the maximal portal width set to a tenth of the map width
always performs slower since its graph has more nodes as
shown in Table 1. For our approach, absolute time values are
0.19 ms on average on the loose map and 0.28 ms on the
dense map on a 1 GHz Pentium III computer with 512 MB
RAM.

9. Conclusion

We have developed a fast and robust path planning algorithm
for generic static terrains with polygonal obstacles. The pre-
sented algorithm is based on the A* algorithm and results in
paths that are on average shorter than traditional approaches

and the computation takes approximately the same time than
other approaches. It does work on a graph with moveable
nodes and uses two different strategies, the lazy strategy when
moving away from the goal location, and the greedy strategy,
when moving towards the goal location. This allows for a bet-
ter cost estimation and, therefore, shorter paths. Additionally,
our algorithm circumvents unintuitive results.

Due to a postprocessing step, the generated paths are made
up of a minimal number of waypoints by removing unnecces-
sary ones. Additionally, we presented a method to visually
enhance the impression of natural movement by taking the
slope of the terrain into account during a post-processing step.
An example of a resulting path (white) and the actual move-
ment (red) is depicted in Figure 10.

Our algorithm is well suited for real-time applications such
as games or other virtual environments with artificial entities.
We have successfully implemented the algorithm in a real-
time simulation environment where multiple autonomous

agents live in an artificial world and use the algorithm to find
paths around lakes and other obstacles.

References

 [1] E. by Dante Treglia. Game Programming Gems 3.
Charles River Media, Hingham, MA, 2002.

 [2] E. by Mark DeLoura. Game Programming Gems.
Charles River Media, Hingham, MA, 2000.

 [3] E. by Mark DeLoura. Game Programming Gems 2.
Charles River Media, Hingham, MA, 2001.

 [4] E. by Steve Rabin. AI Game Programming Wisdom.
Charles River Media, Hingham, MA, 2002.

 [5] J. Canny. The Complexity of Robot Motion Planning.
MIT Press, 1988.

 [6] I. L. Davis. “Warp speed: Path planning for star trek:
Armada.” In AAAI Spring Symposium Technical Report
(2000 AAAI Spring Symposium), 2000.

 [7] T. Hu, A. Kahng, and G. Robins. “Optimal robust path
planning in general environments.” IEEE Transactions
on Robotics and Automation, 9:775–784, 1993.

 [8] L. E. Kavraki, J.-C. Latombe, R. Motwani, and
P. Raghavan. “Randomized query processing in robot
path planning.” In ACM Symposium on Theory of Com-
puting, pages 353–362, 1995.

 [9] L. E. Kavraki, P. Svestka, J.-C. Latombe, and
M. Overmars. “Probabilistic roadmaps for path planning
in high dimensional configuration spaces.” IEEE Trans-
actions on Robotics and Automation, 12(4):566–580,
1996.

 [10] J. C. Latombe. Robot Motion Planning. MIT Press, 1969.
 [11] C. O’Dunlaing and C. Yap. “A retraction method for

planning the motion of a disk.” In J. Algorithms, pages
187–192, 1985.

 [12] J. O’Rourke. Computational geometry in C. Cambridge
University Press, 1994.

 [13] J. T. Schwartz, M. Sharir, and J. E. Hopcroft. Planning,
Geometry and Complexity of Robot Motion. Ablex Pub-
lishing Corp., 1987.

 [14] R. Seidel. “A simple and fast incremental randomized
algorithm for computing trapezoidal decompositions and
for triangulating polygons.” Technical report, "Institute
for Computer Science", Department of Mathematics,
Freie Universität Berlin, 1990.

 [15] A. Stentz. “The focussed d* algorithm for real-time
replanning.” In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1652–1659,
1995.

 [16] P. Tozour and I. S. Austin. “Building a near-optimal nav-
igation mesh.” AI Game Programming Wisdom, pages
171–185, 2002.

 [17] T. Young. “Expanded geometry for points-of-visibility
pathfinding.” Game Programming Gems 2, pages 317–
323, 2001.

Figure 10:The resulting path (white) and the movement
adapted to the slope of the terrain (red).

