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Abstract
We present a framework for analyzing shape uncertainty and variability in point-sampled geometry. Our repre-
sentation is mainly targeted towards discrete surface data stemming from 3D acquisition devices, where a finite
number of possibly noisy samples provides only incomplete information about the underlying surface. We capture
this uncertainty by introducing a statistical representation that quantifies for each point in space the likelihood
that a surface fitting the data passes through that point. Thislikelihood mapis constructed by aggregating local
linear extrapolators computed from weighted least squares fits. The quality of fit of these extrapolators is combined
into a correspondingconfidence mapthat measures the quality of local tangent estimates. We present an analysis
of the effect of noise on these maps, show how to efficiently compute them, and extend the basic definition to a
scale-space formulation. Various applications of our framework are discussed, including an adaptive re-sampling
method, an algorithm for reconstructing surfaces in the presence of noise, and a technique for robustly merging a
set of scans into a single point-based representation.

Categories and Subject Descriptors(according to ACM CCS): I.3.5. [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Digital 3D geometry has become ubiquitous in science and
will soon be on par with traditional multi-media data types
such as sound, images, and video. Mechanical engineering,
architecture, entertainment, and bio-medicine are just a few
application fields that make extensive use of digital 3D shape
information. In these areas, 3D acquisition devices have be-
come a prime source for the creation of 3D geometric data.
3D scanners typically produce an unstructured cloud of sam-
ples points, where each point is a discrete sample of certain
shape attributes such as 3D position, surface normal, color,
or material properties. This raw data needs to be processed
in various forms, e.g., to extract high level information about
the scanned object, modify its shape or appearance, or create
renditions that are meaningful to the user. Most of these ge-
ometry processing algorithms are based on continuous sur-
face representations such as triangle meshes or collections
of spline-patches, which are typically computed from the
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given point cloud data using some surface reconstruction
algorithm. Having obtained such a distinct surface model,
all subsequent processing then directly operates on this rep-
resentation without any reference to the origin of the data.
This is suitable for applications where convincing renditions
of the 3D shapes are the primary goal, such as movies or
games. However, single reconstructed surfaces are by no
means unique or inherent in the acquired data, since any dis-
crete sampling provides only incomplete information about
the underlying object. This shape uncertainty is further in-
creased by measurement noise, which cannot be avoided in
any physical acquisition process.

Our goal is to capture this variability and uncertainty in
point-sampled surfaces. To this end we propose a new ap-
proach to surface modeling with real-world data. Instead of
reconstructing a single surface, we look at the distribution
of all surfaces that are plausible for a given sample set. We
present a statistical representation that takes the measure-
ment and sampling process into account, allowing a more
thorough analysis of point cloud surface data. Apart from
computer graphics and geometric modeling, this approach
can be also beneficial in applied sciences such as engineer-
ing or bio-medicine. Whenever certain information needs to
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be extracted from the acquired data, e.g., the volume of a
mechanical part, or the existence of a tumor in a CT-scan,
users rely on some confidence or accuracy estimate. Thus
current approaches based on a single extracted surface are
not suitable for such scenarios.

To capture shape uncertainty in a discrete sample set, we
locally estimate the likelihood of a surface passing through
a certain point in space. These estimates are computed by
propagating weighted shape extrapolators derived from least
squares fits of local point neighborhoods. Additional to this
likelihood map, we also compute aconfidence mapthat
quantifies the confidence of the individual shape extrapola-
tors. Since confidence is linked to sampling density, we can
use this map to guide up- and down-sampling operations on
the point cloud data set.

We classify shape uncertainty into two different cate-
gories. First, the discrete sampling provides spatial informa-
tion only at a finite number of points. This introduces un-
certainty, since the course of the surface in between sample
points is unknown and needs to be inferred from the sample
set. Second, physical measurements are always corrupted by
noise. Thus the measured position of a sample point cannot
be treated as ground truth, but instead should be understood
as the result of some stochastic process. Noise typically de-
pends only on the physical properties of the scanner, the ac-
quired object and the measurement environment, while the
uncertainty due to discretization occurs even for noise-free
data and is closely related to the sampling density. We will
demonstrate how both forms of uncertainty can be integrated
naturally into the likelihood and confidence maps.

Given the definition of these maps, we will show how this
representation can be used to analyze discrete surface data
to answer questions related to sampling and discretization.
Our method allows us to quantitatively compare surfaces
with respect to their quality of fit and extract the most likely
surface according to certain boundary constraints. We also
show how multiple sample sets of the same object can be
combined into a single weighted point cloud exhibiting less
uncertainty than each individual scan.

Our framework is general in the sense that we do not
assume any additional information on the distribution of
shapes. Rather we impose this distribution by accumulating
local shape extrapolators. It should be noted that additional
context knowledge can greatly reduce the uncertainty and
variability in acquired data. For example, if a scanned me-
chanical part is known to be of a certain type, the search
space can typically be described with a few parameters. Our
method does not exploit such specific information explicitly.
It should be understood as a tool for analyzing shape vari-
ability when no prior on the distribution of shapes is given.

2. Related Work

Point-based surface representations have recently be-
come popular in computer graphics. Earlier work intro-
duced point primitives for rendering [LW85] and has in-
spired a significant amount of work in that direction,
e.g., [RL00, ZPvG01, KV01, BWK02].

Curve and surface reconstruction has been an ac-
tive research field in geometric modeling. Given a point
cloud as input these methods typically extract a triangle
mesh, e.g., [HDD∗94, ABK98], or an implicit representa-
tion, e.g., [CBC∗01, ZOF01]. More recently, various meth-
ods have been presented to directly approximate surfaces
from point cloud data [Lev03, ABCO∗01, AA03]. Point-
sampled surfaces have also been used for geometric process-
ing [PG01], surface re-sampling [WH94, PGK02], shape
and appearance modeling [ZPKG02, AD03, PKKG03], and
feature extraction [PKG03]. Our work is based on these prior
efforts and we use various tools and concepts from the above
papers to define our statistical shape modeling framework.
We will comment on these techniques in subsequent sec-
tions.

Kalaiah and Varshney [KV03] introduced a new rep-
resentation that uses statistical methods for compression
and stochastic rendering of point cloud data sets. They
use hierarchical PCA to compactly encode point attributes,
such as position, normal, and color. Grigoryan and Rhein-
gans [GR02] presented a point rendering method for visu-
alizing stochastic variations in medical data using uncer-
tainty data provided with the point samples. Schneider an-
alyzed shape uncertainty from a more abstract point of view
in [Sch01]. He identifies various sources for shape uncer-
tainty and stresses the importance of additional context in-
formation to reduce the uncertainty.

Our work is probably most closely related totensor vot-
ing, a formalism introduced by Medioni and co-workers that
is based on tensor calculus (see [MLT00] for an overview).
This approach is similar to ours in that it tries to describe
shape information by combining local estimates using Gaus-
sian influence functions. The scope of their work is quite
different though, since they mainly concentrate on robustly
classifying and reconstructing features in discrete data sets.

3. Likelihood and Confidence

In this section we introduce our statistical framework for
modeling shape variability and uncertainty. Our goal is to
explore the space of all continuous surfaces that are compati-
ble with a given point set. We first consider the case of noise-
free data sets, where by compatible we mean interpolating.
The analysis in the presence of noise will then be given in
Section4.

Assume thatMP is the set of all continuous(d− 1)-
dimensional surfaces interpolating a given point cloudP =
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Figure 1: A given point cloud (left image) could be a sample
from any of an infinite number of surfaces. In the middle,
four such surfaces are shown, where the gray value indicates
the prior, i.e., likelihood that the point cloud is sampled from
this surface. The accumulated likelihood for all surfaces as
computed with our method is shown on the right.

{p1, . . . ,pN|pi ∈ IRd}, i.e., pi ∈ S for all pi ∈ P and all
S∈MP. To analyze the distribution of surfaces inMP, we de-
fine a functionFP : IRd → IR+ that quantifies for each point
x ∈ IRd the likelihood that a surfaceS interpolatingP passes
throughx. Conceptually we can define a likelihood mapFP
as

FP(x) =
∫

S∈MP

χS(x)p(S)dS, (1)

whereχS(x) is the characteristic function ofS, i.e.,

χS(x) =

{
1 x ∈ S

0 x /∈ S

and p(S) is a weight function that specifies a prior on the
distribution of surfacesS∈ MP (see Figure1). For certain
applications it might be possible to explicitly define such a
prior and describe the setMP with a finite number of param-
eters. In general, however, Equation1 is intractable, since
MP is infinite-dimensional and the prior is not known. We
thus follow a constructive approach for defining the likeli-
hood mapFP. This means that by definingFP, we implicitly
specifyMP andp, i.e., impose a prior on the distribution of
surfaces interpolatingP.

3.1. Likelihood Map

To determineFP(x) for a certainx, we accumulate local fit-
ting estimatesFi(x) from eachpi . Fi(x) measures the like-
lihood of a linear extrapolation frompi to x, given the spa-
tial distribution of the sample points inP. This likelihood
is derived from a weighted sum of squared distances from
the points inP. Let qi(x) = (x− pi)/‖x− pi‖ the normal-
ized direction vector frompi to x, φi a monotonically de-
creasing weight function,ci a normalization constant, and

pi j = pi −p j . Fi(x) can then be computed as

Fi(x) =
1
ci

N

∑
j=1

(pT
i j qi(x))2φi(‖pi j ‖)

=
1
ci

N

∑
j=1

qi(x)Tpi j p
T
i j qi(x)φi(‖pi j ‖)

=
1
ci

qi(x)T

(
N

∑
j=1

pi j p
T
i j φi(‖pi j ‖)

)
qi(x)

=
1
ci

qi(x)TCiqi(x), (2)

where

Ci =
N

∑
j=1

pi j p
T
i j φi(‖pi j ‖). (3)

The normalization constantci can be computed efficiently as

ci =
∫

Sd
qTCiqdq =

π
2

d

∑
j=1

λl
i =

π
2

tr(Ci), (4)

where Sd is the d-dimensional sphere of directions,q is
a unit direction vector,λl

i is the l -th eigenvalue ofCi ,
and tr(Ci) denotes the trace ofCi . SinceCi is symmetric
and positive semi-definite, all eigenvalues are non-negative
and the corresponding eigenvectorsvl

i span an orthonormal
frame. The quadratic form defined by Equation2 defines an
ellispoid with principal axesλl

i v
l
i that describes the distribu-

tion of points in the neighborhood ofpi . The likelihoodFi is
then simply the weighted least squares error of the(d−1)-
dimensional sub-space that is orthogonal to the line defined
by qi(x) (see Figure2).

EachFi(x) measures the likelihood that a surfaces passes
throughx from the point of view ofpi . Combining these
local estimates then yields an expression for the likelihood
mapFP:

FP(x) =
N

∑
i=1

Fi(x)φi(‖x−pi‖). (5)

Fitting estimates closer tox will be assigned a higher weight
than those that are far away from the point of interest. Effec-
tively, we make the assumption that the influence of a point
pi on the course of the surface diminishes with increasing
distance topi . To capture this behavior we use a radial Gaus-
sian influence functionφi with standard deviationσi both in
Equation2 and Equation5. Figure3 shows an example of a
2D likelhihood map.

Note that a direct computation of theFi needs orderO(N)
operations. Thus a single evaluation of Equation5 requires
orderO(N2) computation. However, the matrixCi is con-
stant as it only depends onP, not onx. Thus we can pre-
compute all theCi ’s and use the quadratic form of Equa-
tion 2 to evaluateFi in constant time. Since the Gaussian
weight function drops rapidly with distance, the computa-
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Figure 2: Construction of the likelihood map. Left: Fit-
ting estimates are computed from weighted least squares
fits, right: Combining individual fitting estimates yields the
global likelihood map.

pi

Figure 3: Likelihood map in 2D, where red means high like-
lihood and blue indicates low likelihood for a surface pass-
ing through a specific point in space. The images on the
right show the linear fitting estimate of the point centered in
the black box. Top right, fitting estimate Fi(x), bottom right,
weighted fitting estimate Fi(x)φi(‖x−pi‖).

tional cost can be further reduced by only considering a local
neighborhood around the point of interest.

3.2. Confidence Map

Equation5 defines the likelihood map by combining fitting
estimates from all points in the point cloud. To evaluate the
confidence of the fitting estimate at pointpi we look at the
distribution of all linear fits passing throughpi . From equa-
tion 2 we can derive a confidence estimate forFi by looking
at the distribution of the eigenvalues ofCi . In particular, the
ratio λ̄i = λ1

i /∑l λl
i , whereλ1

i is the smallest eigenvalue of
Ci , quantifies the quality of fit of a linear approximation at
pi . A perfect fit means̄λi = 0 and thus a high confidence in
the estimate atpi . If λ̄i reaches its maximum value of 1/d, all
directions are equally likely, indicating a low confidence at
pi . We combine these individual confidence estimates into a
global confidence mapCP using the same weighting scheme
as in Equation5:

CP(x) =
N

∑
i=1

λ̄iφi(‖x−pi‖). (6)

Note that the confidence map is directly related to the sur-
face variation measure of [PGK02] and the sampling cri-
terion proposed by Adamson and Alexa [AA03]. Figure 4
shows the confidence maps for a point cloud in 2D. Observe
how the quality of the normal estimates is directly related to
the confidence values.

Figure 4: Normal estimates of a point set (left) and corre-
sponding confidence map (right). Red color indicates low
confidence, i.e., low preference for a specific normal direc-
tion.

Figure 5: Likelihood (middle) and confidence maps (right)
for a sparsely sampled 3D data set (left).

Note that the likelihood and confidence maps only depend
on relative distances between sample points and are thus in-
variant under similarity transforms. Since they are also de-
fined for arbitrary dimension, 3D data sets can be processed
in the same way as the above 2D examples. Figure5 shows
slices through the 3D likelihood and uncertainty maps for a
point cloud in 3D.

4. Noise

Measurement noise is the second source of uncertainty that
we encounter in discrete data. To define the likelihood and
confidence maps in the presence of noise, we consider the
point cloudP as the result of a stochastic process. We as-
sume that each sample pointpi is corrupted by zero-mean,
additive noiseξi ∈ IRd, wheregi(ξi) denotes the probabil-
ity density function ofξi andΩi the corresponding covari-

ance matrix. Letpξ
i = pi + ξi , ξi j = ξi − ξ j , pξ

i j = pi j + ξi j ,
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andPξ = {pξ
1, . . . ,p

ξ
N}. For independently distributedξi we

compute the expected value of a functionXP that depends on
the position of the points inP as

E[XP] =
∫
R

XPξ g(ξ)dξ,

whereR = IRd × ·· · × IRd, ξ = (ξ1, . . . ,ξN), and g(ξ) =
∏i gi(ξi). The likelihood map for noisy data is then given

as Fξ
P(x) = E[FP(x)] and the confidence map asCξ

P(x) =
E[CP(x)]. To evaluate these expected values we make the
assumption that the noise is small, i.e., in the range of
the local sample spacing, so that the Gaussian distance
weights of Equation2 can be approximated by constants

φξ
i j = φi

(√
E[‖pξ

i j ‖2]
)

. Using the fact that the samples are

independent, we find that

E[‖pξ
i j ‖

2] = E[(pξ
i j )

Tpξ
i j ] = E[(pi j +ξi j )

T(pi j +ξi j )]

= E[pT
i j pi j ]+E[ξT

i j ξi j ]

= pT
i j pi j +E[ξT

i ξi ]+E[ξT
j ξ j ]

= pT
i j pi j + tr(Ωi)+ tr(Ω j ), (7)

and hence

φξ
i j = φi

(√
pT

i j pi j + tr(Ωi)+ tr(Ω j )
)

.

The mean matrixCξ
i for the fitting estimates of Equation2

can thus be written as

Cξ
i = E[

N

∑
j=1

(pi j +ξi j )(pi j +ξi j )
Tφξ

i j ]

=
N

∑
j=1

pi j p
T
i j φ

ξ
i j +

N

∑
j=1

E[ξi j ξT
i j ]φ

ξ
i j

= C̄i +
N

∑
j=1

E[ξiξT
i ]φξ

i j

N

∑
j=1

E[ξ j ξT
j ]φ

ξ
i j

= C̄i +Ωi

N

∑
j=1

φξ
i j +

N

∑
j=1

Ω j φ
ξ
i j , (8)

whereC̄i is computed as in Equation2 usingφξ
i j instead of

φi(‖pi j ‖) as distance weights. As before, the normalization

constant is given ascξ
i = π

2 tr(Cξ
i ). We can then write

Fξ
i (x) =

1

cξ
i

(pξ
i −x)Cξ

i (p
ξ
i −x)

‖(pξ
i −x)‖2

. (9)

noise

distribution

Figure 6: The effect of noise on the likelihood map. Left:
Input point cloud, middle: Likelihood map without noise,
right: Likelihood map with identically distributed Gaussian
noise.

Using this expression we compute the expected likelihood
map as

Fξ
P(x) =

∫
R

N

∑
i=1

1

cξ
i

qξ
i

T
Cξ

i qξ
i g(ξ)dξ

=
N

∑
i=1

∫
IR

1

cξ
i

(pi +ξi −x)TCξ
i (pi +ξi −x)

‖(pi +ξi −x)‖2 gi(ξi)dξi

=
N

∑
i=1

∫
IR

(pi − (x−ξi))TCξ
i (pi − (x−ξi))

cξ
i ‖(pi − (x−ξi))‖2

gi(ξi)dξi

=
N

∑
i=1

∫
IR

Fξ
i (x−ξi)gi(ξi)dξi

=
N

∑
i=1

Fξ
i (x)⊗gi(x), (10)

where⊗ denotes the convolution operator. A similar deriva-
tion holds for the confidence map. To incorporate the noise
model described above into our framework, we thus only
need to adjust the matrixCi for each fitting estimate accord-
ing to Equation8, and apply a convolution operation to the
final maps as described in Equation10. Figure6 shows the
effect of noise on the likelihood map.

5. Filter Kernels and Scale-Space

In the most simple case, allφi have the same standard devi-
ationσi so that a range query with fixed radius can be used
to compute the local neighborhoods. It has been observed
previously, however, that globally invariant weight functions
are unsuitable for data sets with spatially varying sampling
density [PGK02]. We thus use an adaptive Gaussian weight
function

φi(x) = e−‖x−pi‖2/σ2
i , (11)

where the kernel radiusσi is related to the local sampling
density asσi = σ ·ηi . The variableηi denotes the local sam-
ple spacing estimated from ak-neighborhood as described
in [PKKG03], andσ is a global scale parameter. Similar to
linear scale-space formulations, where a convolution with a
gaussian of varying kernel width leads to a multi-scale rep-
resentation of a given functionf , σ can be understood as a
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Figure 7: Likelihood and confidence at different scales. The
circles in the left images show the iso-value 0.1 of the Gaus-
sian weight functions.

scale-parameter forFP. The effect of different choices for
this scale parameter can be observed in Figure7. This exam-
ple shows that likelihood and confidence strongly depend on
scale. While the narrowing part of the curve can be robustly
resolved on a small scale, increasing the scale leads to in-
creased uncertainty in that area. On the other hand, the larger
kernels better handle the noisy sections of the point cloud.
Thus the scale-space representation can be useful for esti-
mating the optimal neighborhood size for point-based sur-
face modeling (see, e.g., [MN03]). A similar approach has
also been used for multi-scale feature extraction in [PKG03].

6. Results and Applications

This sections shows various applications for the shape un-
certainty framework defined above. For ease of illustration,
all examples are given on 2D data sets. As mentioned before,
the extension to 3D is straightforward (see also Figure5).

Visualizations of the likelihood and uncertainty maps can
be of immediate use in interactive scanning applications,
where the user controls a scanning process by interactively
adjusting the position of the scanned object. Apart from in-
dicating holes as in [RHHL02], this method also directs the
user to regions of high uncertainty, which indicate insuffi-
cient sampling. We can also compare two given surfaces in
terms of their quality of fit with respect to a given point cloud
by evaluating the integralL(S) = 1

|S|
∫

SFP(x)dx. This value
can be understood as the likelihood that a point cloudP has
been sampled from a surfaceS.

6.1. Surface Re-Sampling

One of the most fundamental geometric processing meth-
ods is surface re-sampling. The confidence map defined in
Equation4 can be used to guide re-sampling operations both

Figure 8: Adaptive surface sampling. A given continu-
ous surface has been successively up-sampled by inserting
points in regions of low confidence. The bottom row shows
the confidence map of the corresponding point clouds shown
in the top row.

for up- and down-sampling. It is particularly suited for it-
erative point removal or insertion algorithms, where it can
be used to determine the importance of a point for the ap-
proximation of a particular surface. Points should be re-
moved in regions of high confidence, while points should
be inserted where the confidence is low. Similar to pre-
vious methods [PGK02, ABCO∗01, Lin01], the error func-
tion, i.e., the confidence map, can be updated efficiently after
such incremental operations. One advantage of our approach
is that the resulting sampling distribution is not only curva-
ture adaptive, but also concentrates more samples in regions
where two distinct sheets of the surface come together. This
means that subsequent point-based surface processing based
on k-nearest neighbors can be robustly performed on the re-
sampled data sets. Figure8 shows an example of adaptive
surface re-sampling.

6.2. Combining Surface Scans

Complex geometry is typically acquired using multiple over-
lapping scans, each covering a part of the model surface.
Various algorithms have been proposed to merge a set of
scans into a consistent representation, e.g., [CL96]. Typi-
cally, these methods apply some blending operator to com-
bine sample points in regions of overlap. We propose a dif-
ferent method that creates a new point cloud by simply merg-
ing a set of given point clouds. However, the samples in the
combined data set are enhanced by fidelity weights that are
directly related to the confidence estimates obtained from
each individual point cloud. This method is illustrated in
Figure9. As shown in the bottom row on the left, the recon-
struction without fidelity weights exhibits severe artifacts.
These are due to false normal estimates caused by the noise
in the data. Increasing the radius of the reconstruction ker-
nel can avoid these artifacts, but leads to substantial blurring
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Figure 9: Combining point clouds. In the top row on the left
two input data sets are shown that are corrupted by noise in
different regions of the surface. The combined point cloud is
shown in the third column and the weighted combined point
cloud on the right (gray level indicates fidelity weight). The
second and third rows show the corresponding likelihood
and confidence maps, respectively. The bottom row shows
three reconstructions using weighted least squares approxi-
mation as proposed in [AA03]. Left and middle: Reconstruc-
tion without fidelity weights using different reconstruction
kernel widths. Right: Reconstruction with fidelity weights,
using the same reconstruction kernel as in the left image.

of surface features (middle). In contrast, the reconstruction
using the fidelity weights gives a stable reconstruction even
for small kernel sizes that preserves salient features (right).

6.3. Surface Reconstruction

The likelihood map can also be used for surface reconstruc-
tion. We have implemented a scheme based on geodesic ac-
tive contours [CKS97] that evolves an implictly defined sur-
face under geodesic flow defined on the likelihood map. This
method tries to approximate the "most likely" surface, while
at the same time ensuring certain smoothness properties of
the resulting surfaces. Figure10 shows the result of this al-
gorithm on a noisy 2D data set. More details on geodesic
active contours can be found in [CKS97].

Figure 10: Curve reconstruction on noisy data using
geodesic active contours. Left: Input point cloud, middle:
Corresponding likelihood map, right: Evolving curve, start-
ing from the circle shown in the center.

7. Conclusion and Future Work

We have introduced a statistical framework for analyzing
discrete surface data represented by clouds of point sam-
ples. We show that uncertainty due to both discretization and
noise can be incorporated efficiently into a single represen-
tation. This representation allows us to visualize uncertainty
and variability in acquired data sets, perform re-sampling
and surface reconstruction operations, and merge multiple
sample sets into a single point cloud.

It is important to note that the construction of the likeli-
hood and confidence maps using weighted least squares fits
definesthe prior on the distribution of surfaces compatible
with a given point cloud, taking only the spatial information
provided by the point samples into account. This generality,
while advantageous when analyzing data sets from different
acquisition sources, also limits the applicability for specific
applications scenarios. A significantly more accurate anal-
ysis of shape variability should be possible when consider-
ing context specific prior information about the underlying
shape space. In the future we plan to extend our scheme to
integrate context information into the definition of the likeli-
hood and confidence maps. Another interesting direction for
future research is the extension of our framework to analyze
the variability within a family of shapes. We are also inves-
tigating a statistical classification of surface topology from
point cloud data.
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