
Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Progressive Compression of Point-Sampled Models

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray and S. Würmlin

Computer Graphics Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

Abstract

We present a framework for progressive compression of point-sampled models. It is based on a multiresolution
decomposition of the point set and thus easily allows for progressive decoding. Our method is generic in the sense
that it can handle arbitrary point attributes using attribute-specific coding operations. Furthermore, no resampling
of the model is needed and thus we do not introduce additional smoothing artifacts. We provide coding operators
for the point position, normal and color. Particularly, by transforming the point positions into a local reference
frame, we exploit the fact that all point samples are living on a surface. Our framework enables for compressing
both geometry and appearance of the model in a unified manner. We show the performance of our framework on
a diversity of point-based models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational geome-
try and object modeling—Curve, surface, solid, and object representations; E.4 [Data]: Coding and information
theory—Data compaction and compression

1. Introduction

In recent years, 3D models extended the digital media spec-
trum in many application fields, such as e-commerce, enter-
tainment, and education. While audio, image and video are
still the dominating media type, 3D models become more
and more important. 3D models can be either generated from
scratch in a modeling tool or digitized from a physical ob-
ject using a 3D scanner. In the latter case, acquisition devices
such as range scanners often directly produce point-sampled
representations from the object. Depending on the employed
technique, each point sample is assigned multiple attributes
defining its geometry and appearance. These include posi-
tion, color, normal and radius. Generating a consistent tri-
angle mesh for complex objects can be very time consum-
ing and difficult. It is therefore beneficial to directly repre-
sent 3D models by the irregular collection of point samples
which can be easily extended towards a multiresolution rep-
resentation. One of the key advantages of point-sampled ge-
ometry over triangle meshes is that no explicit connectivity
information needs to be stored. Instead, continuous surface
reconstruction is done during rendering. Moreover, both ap-
pearance and geometry attributes of the point samples can
be handled homogeneously. This is in contrast to triangle

meshes where geometry is stored differently than appear-
ance. The latter typically has to be stored in textures.

Recent research in point-sampled geometry coped with
surface analysis, filtering, resampling, feature extraction,
and high-quality rendering. See [ADG∗03] for an overview.
By using these techniques it is easy to come up with
an efficient and non-expensive 3D content creation system
[ZPKG02] for highly complex models from real-world ob-
jects.

However, with increasing complexity of 3D models, ad-
vanced compression of point-sampled models is needed. In
this paper we propose an efficient and general multiresolu-
tion framework for compression of point-sampled models.
Our scheme progressively compresses arbitrary attributes of
point samples in a common way. We exploit similarities
of each attribute by finding a specific order of the samples
which minimizes entropy. To that end, we employ a match-
ing algorithm which finds neighborhoods with high correla-
tion based on distance measures for all attributes we want
to compress. The data is then transformed into a multireso-
lution representation and decorrelated by coding the differ-
ences between subsequent resolutions. To adapt the trans-
form to the specific characteristics of each attribute, we use
a predictive encoding scheme. We define in particular both a

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

distance measure and prediction operators for compression
of point positions. For the prediction we use least-squares
planes as a local approximation of the surface. We complete
our compression scheme by also providing coding operators
for colors and normals of the points. The multiresolution na-
ture of our method easily allows for progressive decompres-
sion.

2. Related Work

Many previous geometry compression efforts have focused
on triangle mesh compression. Methods which separately
encode connectivity and vertex coordinates require 10 to
20 bits per vertex [TG98, TGHL98, Ros99]. Devillers et al.
[DG00] achieve about 9 bits per vertex by reconstructing
the connectivity from the vertex coordinates during decod-
ing. Khodakovsky et al. reduce the total bit rate for geom-
etry information by mapping densely sampled meshes to a
semi-regular mesh [KSS00, KG04]. This approach does not
need explicit connectivity encoding and requires around 3
to 5 bits per vertex for fine visual quality. Comparable re-
sults are achieved by Gu et al. while remeshing arbitrary
surfaces onto completely regular structures, called “geom-
etry images”, which are basically 2D arrays [GGH02]. They
are compressed using conventional image coders. The lat-
ter approach enables the encoding of additional appearance
attributes using the same implicit surface parameterization,
whereas other approaches require explicit encoding schemes
using e.g. texture coordinates. Geometry images require a
certain mesh topology and a global parameterization which
is very hard to achieve. Many other advanced methods de-
mand at least for a local parameterization and local differen-
tial properties. Progressive encoding of mesh data structures
can also be implemented by the recursive use of edge col-
lapse operations [Hop96].

More recently, the growing interest in point-based graph-
ics led to the investigation of compression algorithms for
point-based representations. In QSplat [RL00], which is a
multiresolution rendering system based on a hierarchical
bounding sphere data structure and splat rendering, each
node of the data structure is quantized to 48 bits, includ-
ing color and surface normal data. A similar performance is
achieved by the intra-frame 3D video encoder of Wuermlin
et al. [WLSG03]. Botsch et al. use an octree data structure
for storing point-sampled geometry and show that the geom-
etry of typical data sets can be encoded with less than 5 bits
per point sample [BWK02]. Similar performance is achieved
by Fleishman et al. who propose a progressive point set
coder based on the projection of points onto local polyno-
mial surface approximations [FCOAS03]. But their resam-
pling method based on the moving least-squares (MLS) pro-
jection operator tends to smooth out sharp features. Further-
more, the decompression is very time consuming because
the MLS projection also has to be applied during decoding.

3. Algorithm Overview

Our compression scheme comes as a general framework for
coding a set of arbitrary point attributes. It is based on a mul-
tiresolution decomposition of the whole point set. Our pre-
dictive differential coding scheme has the ability of decorre-
lating the information contained in the model by exploiting
local coherencies. The multiresolution approach splits the
information into several frequency bands. This property eas-
ily allows for progressive decoding by successively adding
more detail to the model.

�����
tiresolution

decomposition
differential

coding

���	�
otree

coding

 � � � � ��� � �

coding

Figure 1: Compression pipeline.

An overview of the whole compression pipeline is given
in Figure 1. In the first step, the multiresolution hierarchy is
built up by recursively computing coarser approximations of
the point set. This task requires local neighborhood relations
between point samples that, unlike in triangle meshes, are
not explicitly available in point based models. To that end,
we employ a search algorithm that delivers us neighboring
points. As a benefit, we can control the search in a way that
gives us good correlations between the neighbors in all at-
tributes and not only in the geometry. Both the neighborhood
search and the multiresolution decomposition are described
in section 4.

Next, we compute the hierarchy of detail coefficients that
describes how to successively reconstruct the original model
from the lowest-resolution point set. The respective compu-
tations are driven by a prediction which is customized to the
specific characteristics of each point attribute separately. Af-
ter completing one hierarchy layer we immediately perform
the quantization of the coefficients and propagate the quan-
tization error into the computation of the next layer. This
method prevents a recursive accumulation of the quantiza-
tion error over all multiresolution layers and thus minimizes
the total error of our coding method. A detailed discussion
follows in section 5.

We eventually end up with a set of quantized detail coef-
ficients. They are not yet fully decorrelated but still contain
some coherencies which can be eliminated very efficiently
by a zerotree coder. Finally, the data is further compressed
by arithmetic coding. Both coders allow for progressive de-
coding. In addition to the conventional zerotree coder, we
present a modified algorithm with a progressive behavior
that better collaborates with our multiresolution framework.
All those methods are further explained in section 6.

The first two stages of the pipeline have to be customized
for the specific characteristics of the compressed point at-
tributes. Stage one needs a distance measure for the neigh-
borhood search, stage two requires a prediction operator

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

and a coordinate transform. We provide specialized mea-
sures and operators for coding the point positions. We fur-
ther show the extendibility of our framework towards other
attributes by proposing coding methods for point colors and
normals.

4. Multiresolution Decomposition

In the first stage, we compute a multiresolution hierarchy of
the point cloud by recursively generating a sequence of sub-
sampled versions (λ−1, . . . ,λ−d) of the original point set λ0.
We use here a notation related to [Swe95] where λ−k de-
notes the point set in the k-th level of the multiresolution
hierarchy. A specific point in a subsampled model is identi-
fied by λ−k

i . We build the hierarchy bottom up, i.e. from high
to low resolution, by decomposing in each step the point set
into disjunctive point pairs and contracting each pair to an
average point by averaging its associated attributes. In this
way, we obtain a forest of binary trees of depth d, of which
each layer describes a certain resolution. As the point pairs
describe neighborhood relations between two points in the
attribute space, each subtree in the hierarchy with depth k
describes a neighborhood of 2k points, as illustrated in Fig-
ure 2. All those neighborhood relations are implicitly stored
in the point ordering of the full resolution model and hence
are still available after decompression.

Figure 2: 8-neighborhood after 3 passes of hierarchical
point contraction.

Note that such a hierarchy can only be built if each layer
in the forest but the root layer contains an even number of
points. Thus, the original model has to consist of a multiple
of 2d points. If this is not the case, the maximum 2d − 1
remaining points are stored separately and compressed by
entropy coding only. For a moderate number of recursions,
like d = 10, this number is relatively small compared to the
overall size of typical models that often consist of several
100k points.

The compression performance largely depends on the pair
decomposition because it considers each average point as an
approximation to each of its sons. Thus, we preferably want
to contract “good” pairs of points with similar attribute val-
ues. Finding the best set of pairs basically is an optimization
problem in the space spanned by all point attributes. This
can be described as a minimum weight perfect matching
problem [LP86] in an undirected, weighted graph G = (V,E)
with vertices V and weighted edges E. Its task is to find a set

of edges M ⊂ E of cardinality |M| = |V |/2 such that no two
edges share a vertex in common and the sum of edge weights
in M is minimal. In a complete graph with an even num-
ber of vertices, such a matching always exists. To speed up
the matching process, we do not construct a complete graph
but only an adjacency graph connecting each point with its
k = 12 nearest neighbors. In the very unlikely event when
no matching is found we can still increase k and let the algo-
rithm run again, but this never happened in our experiments.
A classical solution of the matching problem is provided by
Edmonds’ blossom shrinking algorithm [Edm65]. In our im-
plementation, we use the faster method described in [CR99].

The weight wi, j for each edge {i, j} can be expressed as a
sum of distance functions δA, describing for each attribute A
the difference of its values at the points λ−k

i and λ−k
j adja-

cent to that edge:

wi, j = ∑
A

δA(i, j).

In practice, we incorporate here the point positions x−k and
normals n−k. The distance between normals corresponds to
the cosine of their enclosing angle:

δn(i, j) =
1−n−k

i ·n−k
j

2
.

If we consider as a position weight only the Euclidean dis-
tance, we may end up after two recursive subsampling passes
in 4-neighborhoods consisting of linearly arranged points.
This will lead to instabilities in the subsequent detail coeffi-
cient computation. So we additionally include the previous
direction of the contraction of the points λ−k+1

2i and λ−k+1
2i+1

towards λ−k
i and similarly for the contraction to λ−k

j :

δx(i, j) =
∣

∣

∣
x−k

i −x−k
j

∣

∣

∣

+

∣

∣

∣

∣

∣

x−k+1
2i −x−k+1

2i+1

|x−k+1
2i −x−k+1

2i+1 |
·

x−k
i −x−k

j

|x−k
i −x−k

j |

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

x−k+1
2 j −x−k+1

2 j+1

|x−k+1
2 j −x−k+1

2 j+1 |
·

x−k
i −x−k

j

|x−k
i −x−k

j |

∣

∣

∣

∣

∣

.

Figure 3 shows the resulting 64-neighborhoods after six re-
cursive executions of the matching algorithm.

5. Predictive Differential Coding

Next, we successively compute a binary forest of detail co-
efficients (γ−d , . . . ,γ−1) of which each layer γ−i contains
the information that is necessary to reconstruct λ−i+1 from
λ−i. The calculations are done with the help of two attribute-
specific operators: a coordinate transform C and a prediction
operator P. With regard to later decompression, C has to be
invertible but not P. We finally end up in a set of coefficients
(λ−d ,γ−d , . . . ,γ−1) which is sufficient for reconstruction of
the original model. Because each detail layer γ−i has the
same size as its corresponding average layer λ−i, the whole

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

Figure 3: 64-neighborhoods after 16 matching passes.

coefficient set is still of the same size as the original model.
But the new data is much more decorrelated and therefore
more suitable for compression.

Because high-resolution detail coefficients recursively de-
pend on their lower-resolution counterparts, quantization er-
rors that will be introduced due to compression would ac-
cumulate in each recursion. To prevent this, we compute the
detail coefficients top down from γ−d to γ1, quantize them
after each recursion and propagate the quantization error to
the next higher resolution: After determining and quantizing
the coefficients γ−k we first update the next average layer
λ−k+1 out of λ−k and the quantized γ−k and then recursively
proceed computing the detail coefficients γ−k+1 of the next
higher resolution layer. The decoder later successively re-
constructs higher-resolution models λ−k+1 from the average
points λ−k and the detail γ−k. There, all the data processing
can be done in place by recursively substituting λ−k and γ−k

by λ−k+1, similarly to the lifting scheme [Swe95].

The actual computation of the detail coefficients is per-
formed as illustrated in Figure 4. For each contraction pair
(λ−k+1

2i ,λ−k+1
2i+1) and its corresponding average point λ−k

i ,

we try to predict λ−k+1
2i from λ−k

i using a prediction opera-

tor P and store the prediction error in γ−k
i . With this informa-

tion, both higher resolution points can be reconstructed due
to symmetry. In many cases, the prediction does not perform
well if it is carried out in the global space of the model. So
we apply beforehand a local coordinate transform C which
depends on the points of λ−k and better characterizes the at-
tribute space locally. Figure 5 illustrates the operator frame-
work both for encoding and decoding. Note that the decoder
performs the same prediction P as the encoder, whereas the
coordinate transform C during decoding is inverse in order
to obtain again the global model coordinates from the coef-
ficients encoded in the local reference frames.

The whole transformation is recursively applied up to a
depth d. As the coherencies between neighboring points get
worse for lower resolutions, a depth between d = 6 and d = 8
usually gives the best compression results. Because the coor-
dinate transform C depends on neighborhood relations in the

point set λ−k, the multiresolution forest is built some recur-
sions higher for getting neighborhood relations in λ−d . We
actually use there a depth of d + 2 because our coordinate
transforms rely on 4-neighborhood relations.

P

λ-k

i

γ-k

i

λ-k+1

2i+1

λ-k+1

2i

Figure 4: Prediction and detail coefficient.

C

C

P

-λ-k+1 γ-k

λ-k

(a) Encoding.

C
-1

C

P

+ λ-k+1γ-k

λ-k

(b) Decoding.

Figure 5: Operator framework.

In the following, we provide operators C and P for the
compression of the point positions, colors and normals.

5.1. Positions

For compression of the point positions, we want to exploit
the fact that all points are arranged on a surface and not for
instance in a volume. So we locally approximate the geom-
etry by a least-squares plane and store the prediction error
relative to that plane.

For an average point λ−k
i , the operator C con-

structs the least-squares plane from the point positions
(x−k

i−(i mod 4)
, . . . ,x−k

i−(i mod 4)+3) which are part of a neigh-
borhood relation. The plane minimizes the squared distances
to these four points and is therefore an approximation to
the local geometry of the model. It is computed by a prin-
cipal component analysis (PCA) over those points which
delivers an orthonormal coordinate system (n,u,v) describ-
ing the principal directions of the covariance ellipsoid of the
point positions [PGK02]. This system is aligned to the least-
squares plane of which n represents its normal vector. As
depicted in Figure 6, we translate the origin of that system
to x−k

i and represent all points by cylindrical coordinates
(r,θ,z).

The operator P then predicts the coordinates (r,θ,z) of

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

θ

r

z

n

u

v

Figure 6: The reference frame for the position detail coeffi-
cients.

x−k+1
2i . Assuming that the least-squares plane is a close ap-

proximation of the geometry, we can predict the elevation z
of the point over the surface as z = 0. Under the condition of
an approximately regular sampling of the model, we can also
make a prediction for r: As the average point density drops
by a factor of

√
2 with each lower resolution step, r can be

predicted from the density of the four average points divided
by 2

√
2. The density of the average points itself is estimated

by their average distance. Finally, we also predict θ = 0. The
prediction error for θ then lies in the interval [0,2π]. It can
be further constrained to [0,π] by swapping the points λ−k+1

2i

and λ−k+1
2i+1 along with their associated subtrees in the mul-

tiresolution hierarchy in the case of an error greater than π.

0

(a) Detail of r.

0

(b) Detail of θ.

0

(c) Detail of z.

Figure 7: Histograms of the position detail coefficients.

Figure 7 shows histograms of the detail coefficients from
the Chameleon model over all resolution levels. The peaks at
zero prove the suitability of our predictions. It also shows an
accumulation of the angular component around zero which
is due to the alignment of our reference frame to the covari-
ance ellipsoid.

5.2. Colors

All colors are first transformed from RGB into the global
YUV space by the operator C. This representation is more
closely related to the human perception as it splits the color
information into a luminance part Y and a chromaticity U
and V. Because humans are more sensitive for the luminance
than the chromaticity, we spend more bits for Y than for U
respectively V during quantization.

Assuming that neighboring points of the model have sim-
ilar colors, the prediction operator P is zero. Hence, we store

in the detail coefficients for each contraction pair the differ-
ence between the colors of one higher-resolution point and
the average point. Histograms of those coefficients are de-
picted in Figure 8.

0

(a) Detail of Y.

0

(b) Detail of U.

0

(c) Detail of V.

Figure 8: Histograms of the color detail coefficients.

5.3. Normals

For each contraction pair we store the angle between the av-
erage normal and one of the higher-resolution normals in
spherical coordinates. Hence, the prediction P is zero for
both θ and φ. The coordinate transform C needs a local ref-
erence frame to align the spherical coordinate system. We
use the average normal as the polar reference direction. To
obtain an azimuthal reference vector, we project the vector
with the biggest eigenvalue delivered by the PCA from the
positions coder onto the plane perpendicular to the average
normal. Figure 9 shows histograms of the detail coefficients.

0

(a) Detail of θ.

0

(b) Detail of φ.

Figure 9: Histograms of the normal detail coefficients.

6. Encoding the Detail Coefficients

The detail coefficients are eventually compressed by a ze-
rotree coder [Sha93] which is specialized on the coding
of multiresolution coefficients and is able to encode them
very efficiently. It exploits similarities between coefficients
in subtrees of the multiresolution hierarchy. The output of
the zerotree coder is a stream of symbols which is further
compressed by arithmetic coding. We currently use the al-
gorithm provided in [MNW98]

Both zerotree and arithmetic coder behave progressively.
A partial arithmetic decoding of the compressed data stream

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

delivers a prefix of the zerotree stream after arithmetic de-
coding. The zerotree decoder then produces a set of inexact
coefficients which gets refined as more data is delivered to
the decoder.

The conventional zerotree algorithm however succes-
sively refines the coefficients of all resolutions simulta-
neously during progressive decoding. This behavior does
not blend well with our quantization error propagation be-
cause our coder assumes an ascertained accuracy of lower-
resolution coefficients. Introducing a greater error after com-
pression leads to instabilities in the least-squares planes and
thus produces an inferior quality of decompressed point po-
sitions. Therefore we use the conventional zerotree coder
only for fixed rate compression.

If real progressive decompression is desired, we suggest
a modification of the zerotree encoder which consists in re-
ordering its output stream in such a way that, during later de-
compression, the detail coefficients get refined successively
from low to high resolution. The conventional zerotree coder
does the encoding in several passes. In each pass, an addi-
tional bit for each significant coefficient is coded, succes-
sively gaining more accuracy. Within each pass, the data is
processed from the low resolution coefficients up to the high
resolution. Our modification consists in swapping those two
orderings. Thus, we first arrange the data from low to high
resolution coefficients and then do the ordering according
to the bit significance. During progressive decoding of that
stream, the high resolution coefficients all start with a value
of zero and they will not be refined until all lower resolu-
tion coefficients are fully decoded. This manifests itself in
increasing the resolution of the decoded model. In the fol-
lowing section, we provide experimental results for both ap-
proaches.

7. Results

We evaluate our coders with various point models of dif-
ferent sizes. The compression performance is quantified for
each attribute by the average number of bits per point (bpp)
in relation to the loss of quality, measured by the peak signal
to noise ratio (PSNR).

In the field of mesh compression, the geometric error is
usually calculated from the distance between the compressed
and uncompressed mesh surfaces. A similar approach for
point set surfaces is the comparison of the corresponding
MLS surfaces [PGK02] which is also used by Fleishman et
al. [FCOAS03]. However, this metric is unable to measure
the sampling of the model, which is a crucial criterion for
high-quality point based rendering. In contrary to triangle
meshes, a bad sampling would lead to cracks in the surface
due to the lack of connectivity information. Furthermore, the
MLS surface tends to smooth the quantization errors such
that the measured error is usually lower than disturbance in
the visual quality.

For these reasons we use the MLS metric for comparison
with [FCOAS03] only. Whereas, in the main part of the fol-
lowing evaluation, we concentrate on measuring the quan-
tization error directly between discrete pairs of correspond-
ing samples from the original and compressed model. The
PSNR for the position attribute is evaluated using the Eu-
clidean distance between the points. The peak signal is given
by the length of the diagonal of the bounding box. The error
between the normals is calculated from the enclosed angle
with a peak angle of 180 degrees. For the colors, we com-
pute the PSNR on the scalar values of each channel Y, U and
V separately.

We first compare our fixed rate compression with our
progressive scheme, using various coarse quantizations for
the different point attributes. Figure 10 shows rate-distortion
curves from the position coder. The progressive coding per-
forms between 2 and 10 percent worse than the fixed rate
coding. This is due to the fact that the compression gain
of the arithmetic coding is worse for the progressively re-
ordered zerotree stream than for the conventional stream.
The behavior of the other pipeline stages is identical in both
cases. Compared to state of the art mesh compression, the
PSNRs given here are lower since they also measure the
quality of the sampling. As shown by the images of Fig-
ure 13, the compression artifacts differ from those of mesh
compression due to the lack of connectivity information. For
low bit rates, the sampling gets more and more irregular.
We compensate for these irregularities by recomputing the
splat radii during decompression which can be done very ef-
ficiently using the neighborhood relations that are inherently
stored in the point ordering.

We further give some preliminary results for our color and
normal coders. The color compression is evaluated in Table
1. As can be seen in Figure 14, it shows some blurry arti-
facts which are typical for high compression of images. Ta-
ble 2 shows rate-distortion values of our normal coder; sam-
ple images are given in Figure 15. In contrast to mesh com-
pression, we are able to code the appearance of the model in
the same way than the geometry, using the same data struc-
tures. Hence there is no need to store additional texture im-
ages and to associate and compress texture coordinates with
each vertex.

Its multiresolution character makes our compression ap-
proach very suitable for streaming and progressive decom-
pression. Figure 11 shows rate-distortion curves for progres-
sive decoding of different models. The amount of data is de-
scribed in total bits per point. One fifth of the bits is used for
color compression. The rest is spread evenly over the posi-
tion and normal coding. As more and more data is decoded,
the resolution of the model successively increases. Visual re-
sults of this process are provided in Figure 16.

Figure 12 shows a comparison of our progressive po-
sition coder with the one presented by Fleishman et al.
[FCOAS03]. We use the error metric from their paper which

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

53

53.5

54

54.5

55

55.5

56

4 5 6 7 8 9 10

b its p e r p o in t

P
S

N
R

 /
 d

B

fix e d

p ro g re s s iv e

(a) Chameleon (102k points).

52

52.5

53

53.5

54

54.5

55

55.5

56

56.5

57

3 4 5 6 7 8

b its p e r p o in t

P
S

N
R

 /
 d

B

fix e d

p ro g re s s iv e

(b) Venus (134k points).

55

56

57

58

59

60

61

62

63

4 5 6 7 8 9

b its p e r p o in t

P
S

N
R

 /
 d

B

fix e d

p ro g re s s iv e

(c) Dragon (436k points).

Figure 10: Compression performance of position coder.

46

47

48

49

50

51

52

53

54

55

56

0 5 10 15 20 25 30

to ta l b its p e r p o in t

P
S

N
R

 /
 d

B
 p

o
s
it
io

n
s

15

17

19

21

23

25

27

29

31

P
S

N
R

 /
 d

B
 c

o
lo

rs
 &

 n
o
rm

a
ls

p o s itio n s

c o lo rs Y

n o rm a ls

(a) Chameleon (102k points).

54

56

58

60

62

64

66

68

0 5 10 15 20 25

to ta l b its p e r p o in t

P
S

N
R

 /
 d

B
 p

o
s
it
io

n
s

15

17

19

21

23

25

27

29

31

33

P
S

N
R

 /
 d

B
 c

o
lo

rs
 &

 n
o
rm

a
ls

p o s itio n s

c o lo rs Y

n o rm a ls

(b) Octopus (466kpoints).

Figure 11: Rate-distortion curves for progressive decompression.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

b its p e r p o in t

m
e
a
n
 M

L
S

 s
u
rf

a
c
e
 e

rr
o
r

/
1
0

-4 D ra g o n , o u r c o d e r

D ra g o n , F le is h m a n

V e n u s , o u r c o d e r

V e n u s , F le is h m a n

Figure 12: Comparison of our progres-
sive position coder with the method by
Fleishman et al.

PSNR / dB bits per point
Y U V fixed progr.

Chameleon 29.5 39.5 38.8 2.5 2.7
(102k points) 24.4 38.1 37.3 0.9 1.0

Octopus 26.9 33.7 31.0 2.0 2.1
(466k points) 21.9 32.2 28.7 0.8 0.9

Face 35.5 47.4 42.3 1.7 1.8
(41k points) 31.9 45.1 39.7 0.8 0.8

Table 1: Compression performance of color coder.

measures the mean distance between the MLS surfaces of
the original and compressed models. While Fleishman’s
coder introduces less error for high bit rates we are able to
achieve superior results for lower rates of about 4 bits per
point.

PSNR / dB bits per point
fixed progr.

Chameleon 25.8 10.5 13.1
(102k points) 24.8 5.8 6.9

Venus 40.0 13.5 17.0
(134k points) 36.7 7.9 9.4

Dragon 31.1 10.5 12.7
(436k points) 27.8 5.6 6.4

Table 2: Compression performance of normal coder.

8. Conclusion and Future Work

In this paper we provide a framework for compression of
point-sampled models. In contrary to mesh compression we
are able to code not only the geometry but arbitrary appear-
ance attributes associated with the point samples in a unified
way. The lack of connectivity information further helps to
save storage space.

Our method is based on multiresolution predictive coding
which has the capability of exploiting similarities between

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

neighboring points. By employing a graph matching algo-
rithm we are able to find neighborhood relations that give
us a maximum correlation in all attributes. The multiresolu-
tion approach naturally leads to a compression scheme that
allows for progressive decoding.

In particular we present a coder for the model geometry.
By transforming the point positions into a local reference
frame, we exploit the fact that all the points are living on a
surface. We have shown by a set of various examples that this
approach works quite efficiently. We complete our frame-
work by also suggesting methods for compression of colors
and normals.

Nonetheless, there are still some issues of future work:
First we aim to further improve the compression perfor-
mance, especially of the color and normal coders. A main
task here is a thorough examination of the effects that dif-
ferent coding approaches have on the visual quality of the
model. The visual quality of the decompressed model can
be further improved by supporting elliptical splats in object
space which achieve a better coverage of an irregular sam-
pled surface than circular disks. Another issue is speeding up
the matching process that currently has a relatively high time
complexity of about O(n2 logn) for a search over n points.
This could be greatly accelerated by using an approximative
matching method.

References

[ADG∗03] ALEXA M., DACHSBACHER C., GROSS M.,
PAULY M., VAN BAAR J., ZWICKER M.:
Point-based computer graphics. Eurographics
Tutorial T1 (2003). 1

[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L.:
Efficient high quality rendering of point sam-
pled geometry. In Proc. Eurographics work-
shop on Rendering (2002), pp. 53–64. 2

[CR99] COOK W., ROHE A.: Computing minimum-
weight perfect matchings. INFORMS J. Com-
put. 11, 2 (1999), 138–148. 3

[DG00] DEVILLERS O., GANDOIN P.-M.: Geomet-
ric compression for interactive transmission. In
Proc. VIS ’00 (2000), pp. 319–326. 2

[Edm65] EDMONDS J.: Paths, trees and flowers. Canad.
J. Math. 17, 3 (1965), 449–467. 3

[FCOAS03] FLEISHMAN S., COHEN-OR D., ALEXA M.,
SILVA C. T.: Progressive point set surfaces.
ACM TOG 22, 4 (Oct. 2003), 997–1011. 2, 6

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geome-
try images. In Proc. SIGGRAPH ’02 (2002),
pp. 355–361. 2

[Hop96] HOPPE H.: Progressive meshes. In Proc. SIG-
GRAPH ’96 (1996), pp. 99–108. 2

[KG04] KHODAKOVSKY A., GUSKOV I.: Compres-
sion of normal meshes. In Geometric Model-
ing for Scientific Visualization. Springer Ver-
lag, 2004, pp. 189–206. 2

[KSS00] KHODAKOVSKY A., SCHRÖDER P.,
SWELDENS W.: Progressive geometry
compression. In Proc. SIGGRAPH ’00 (2000),
pp. 271–278. 2

[LP86] LOVASZ L., PLUMMER M. D.: Matching The-
ory. Elsevier Science Ltd, 1986. 3

[MNW98] MOFFAT A., NEAL R. M., WITTEN I. H.:
Arithmetic coding revisited. ACM Trans. Inf.
Sys. 16, 3 (Mar. 1998), 202–211. (Proc. Data
Compression Conf.). 5

[PGK02] PAULY M., GROSS M., KOBBELT L.: Effi-
cient simplification of point-sampled surfaces.
In Proc. VIS ’02 (2002), pp. 163–170. 4, 6

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: a mul-
tiresolution point rendering system for large
meshes. In Proc. SIGGRAPH ’00 (2000),
pp. 343–352. 2

[Ros99] ROSSIGNAC J.: Edgebreaker: Connectivity
compression for triangle meshes. IEEE Trans.
Vis. and Comput. Graphics 5, 1 (Jan. 1999),
47–61. 2

[Sha93] SHAPIRO J. M.: Embedded image coding us-
ing zerotrees of wavelet coefficients. IEEE
Trans. Image Proc. 31, 12 (Dec. 1993), 3445–
3462. 5

[Swe95] SWELDENS W.: The lifting scheme: A new
philosophy in biorthogonal wavelet construc-
tions. In Wavelet Applications in Signal
and Image Processing III (1995), vol. 2569,
pp. 68–79. (Proc. SPIE). 3, 4

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh
compression. In Proc. Graphics Interface
(1998), pp. 26–34. 2

[TGHL98] TAUBIN G., GUÉZIEC A., HORN W.,
LAZARUS F.: Progressive forest split com-
pression. In Proc. SIGGRAPH ’98 (1998),
pp. 123–132. 2

[WLSG03] WÜRMLIN S., LAMBORAY E., STAADT O.,
GROSS M.: 3d video recorder: A system for
recording and playing free-viewpoint video.
Computer Graphics Forum 22, 2 (2003), 181–
193. 2

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS

M.: Pointshop 3d: An interactive system for
point-based surface editing. ACM TOG 21,
3 (July 2002), 322–329. (Proc. SIGGRAPH
’02). 1

c© The Eurographics Association 2004.

M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray & S. Würmlin / Progressive Compression of Point-Sampled Models

Figure 13: Comparison of position compression (uncompressed, 8.8 bpp, 4.4 bpp).

Figure 14: Comparison of color compression (uncompressed, 2.5 bpp, 1.0 bpp).

Figure 15: Comparison of normal compression (uncompressed, 12.7 bpp, 6.4 bpp).

Figure 16: Progressive decompression with total bit rates of 7, 14 and 23 bits per point.

c© The Eurographics Association 2004.

