
Computers & Graphics 28 (2004) 3–14

ARTICLE IN PRESS
*Correspond

E-mail add

lamboray@inf.

(M. Gross).

0097-8493/$ - se

doi:10.1016/j.ca
3D video fragments:
dynamic point samples for real-time free-viewpoint video

Stephan W .urmlin*, Edouard Lamboray, Markus Gross

Computer Graphics Laboratory, Computer Science Department, ETH Zurich, Zurich 8092, Switzerland
Abstract

We present 3D video fragments, a dynamic point sample framework for real-time free-viewpoint video. By

generalizing 2D video pixels towards 3D irregular point samples we combine the simplicity of conventional 2D video

processing with the power of more complex polygonal representations for free-viewpoint video. We propose a

differential update scheme exploiting the spatio-temporal coherence of the video streams of multiple cameras. Updates

are issued by operators such as inserts and deletes accounting for changes in the input video images. The operators from

multiple cameras are processed, merged into a 3D video stream and transmitted to a remote site. We also introduce a

novel concept for camera control which dynamically selects the set of relevant cameras for reconstruction. Moreover, it

adapts to the processing load and rendering platform. Our framework is generic in the sense that it works with any real-

time 3D reconstruction method which extracts depth from images. The video renderer displays free-viewpoint videos

using an efficient point-based splatting scheme and makes use of state-of-the-art vertex and pixel processing hardware

for real-time visual processing.
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1. Introduction

Over the years, telepresence has become increasingly

important in many applications including computer

supported collaborative work (CSCW) and entertain-

ment. While there are commercial solutions available for

2D teleconferencing in combination with CSCW, it is

only in recent years that 3D video processing has been

considered as a means to enhance the degree of

immersion and visual realism of telepresence technol-

ogy. The most comprehensive program dealing with 3D

telepresence is the National Tele-Immersion Initiative

(http://www.advanced.org/teleimmersion.html). Such

3D video processing poses a major technical challenge
ing author.

resses: wuermlin@inf.ethz.ch (S. W .urmlin),

ethz.ch (E. Lamboray), grossm@inf.ethz.ch

e front matter r 2003 Elsevier Ltd. All rights reserve

g.2003.10.015
and is thus gaining interest in the computer graphics and

computer vision communities. Here, a lot of research

has been dedicated in particular to the extraction and

reconstruction of real objects. The representation of 3D

video streams, however, a fundamental prerequisite for

efficient processing, has less intensively been investi-

gated. In fact, most representations for 3D video

streams are tailored for off-line postprocessing and,

hence, share various limitations that makes them less

practicable for advanced real-time 3D video processing.

Our work is devoted to the efficient representation,

control and encoding of 3D video streams, facilitating

sophisticated 3D rendering and visual effects. By

introducing the concept of 3D video fragments, we

generalize 2D video pixels towards irregular spatio-

temporal point samples. Conceptually, each video

fragment is a point sample with a set of attributes, like

position, normal and color, which can be dynamically

updated. A point-based object representation on the
d.
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remote site stores all active fragments and can be

accessed for efficient rendering. Our differential update

stream inserts, deletes or updates fragments on-the-fly in

real-time. It exploits the spatio-temporal coherence of

individual 2D video streams by inter-frame prediction of

input changes in image space. Our prediction does not

require expensive calculations like texture motion fields

or 3D scene flows. While being conceptually lean and

simple the presented approach effectively cuts down the

number of expensive 3D shape computations. As

opposed to mesh based representations, 3D video

fragments provide a one-to-one mapping between points

and associated color and normal attributes avoiding

interpolation and alignment artifacts. In particular the

lack of local connectivity makes 3D video fragments

much more efficient for updating, coarse-to-fine sam-

pling, progressive streaming, and compression.

Another benefit of retaining an underlying point

based representation is graphics rendering. Since update

operators of the 3D video stream dynamically change

the representation, we have to carry out all necessary

computations for rendering on-the-fly. Our 3D video

renderer supports a wide range of visual effects, like

explosions and warps, altering position and color

attributes of individual fragments. To preserve data

consistency we defer such operations to the final

rendering stage and employ programmable hardware.

By using a feedback loop which confines the number of

active cameras we dynamically control the acquisition

process and scale smoothly from view-dependence to

view-independence. Moreover, virtual viewpoint and

resolution-driven sampling allows smooth transitions

between a subset of the reference cameras and adapts to

bandwidth or processing bottlenecks. The method

features efficient rendering from arbitrary spatio-tem-

poral positions and supports multiple viewers.

Our 3D video pipeline is designed and optimized for

real-time applications. During run-time, it performs

fully automatically and does not need human interven-

tion.

1.1. Related work

Given the design philosophy of our 3D video

fragments pipeline the work that is most related to ours

includes real-time 3D acquisition, the MPEG-4 stan-

dard, and point sample rendering.

Concepts for 3D video acquisition. There is a variety of

methods for reconstruction of 3D video sequences. We

distinguish between methods requiring off-line postpro-

cessing and real-time methods. Examples of postproces-

sing algorithms include the work of Moezzi et al. [1],

who propose a batch-oriented computation of 3D video

sequences. Voxel representations are frequently derived

by volume carving methods [2]. While these methods can

provide for point sampled representations they are not
performing in real-time. An appealing approach for

utilizing spatio-temporal coherence for 3D video is the

work of Vedula et al. [3] which computes a 3D scene

flow for spatio-temporal view interpolation. It produces

impressing results but the lack of real-time performance

makes it impractical for our purposes. Carceroni and

Kutulakos [4] present a dynamic surfel sampling

representation and algorithm for estimation of 3D

motion and dynamic appearance. However, they use a

volumetric reconstruction for a small working volume

and do not demonstrate real-time performance either.

W .urmlin et al. [5] present a 3D video recorder which

stores a spatio-temporal representation in which users

can freely navigate.

As opposed to post-processing approaches real-time

methods are much more demanding with regard to

computational efficiency. Matusik et al. [6] present an

image-based 3D acquisition system which calculates the

visual hull [7] of an object. It is build on epipolar

geometry and outputs a view-dependent LDI represen-

tation. Their system neither exploits spatio-temporal

coherence, nor is it scalable in the number of cameras.

Similarly, polyhedral visual hulls [8] are based on

epipolar geometry and provide view-independent ren-

dering through a mesh and texture representation. It

shares the same limitations and furthermore introduces

interpolation artifacts due to improper alignment of

geometry and texture, a common drawback of mesh-

based methods. Kanade et al. [9] and Narayanan et al.

[10] employ a triangular texture-mapped mesh repre-

sentation. A similar approach was presented by Mulli-

gan and Daniilidis [11] utilizing trinocular stereo depth

maps from overlapping triples of cameras. It also

features the aforementioned limitations of mesh based

techniques. Pollard and Hayes [12] utilize depth map

representations for novel view synthesis by morphing

live video streams. This representation can suffer from

inconsistencies between different views. In Gross et al.

[13], a high-level overview of a similar real-time 3D

video system is given.

Special-purpose hardware solutions for real-time

depth estimation from video images, such as 3DV

Systems’ ZCamTM (http://www.3dvsystems.com), and

Tyzx’s DeapSea chips (http://www.tyzx.com) have

recently become available. They can be seen as

complementary to our work since they solve the problem

of real-time 3D reconstruction and can be incorporated

into our framework.

3D video standards. Even though the MPEG-4

committee is actively deliberating future 3D video

standards, no standard for dynamic, free view-point

3D video objects has yet been defined [14]. The MPEG-4

multiple auxiliary components can encode depth maps

and disparity information. But these are not complete

3D representations and possible shortcomings and

artifacts due to DCT encoding and unrelated texture
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Fig. 1. Conceptual components of the 3D video fragments

pipeline.

S. W .urmlin et al. / Computers & Graphics 28 (2004) 3–14 5
motion fields and depth or disparity motion fields still

need to be investigated. Our concept for real-time 3D

video fits well into the system architecture proposed by

the MPEG committee including acquisition, representa-

tion and display stages with back-channel transmission

of viewpoint selection. Additionally, we support all

types of interactivity, i.e., interaction at the encoder side

and interaction with or without all data available at the

decoder side.

Point sample rendering. In recent years points have

experienced a renaissance as a graphics primitive. While

there are various methods for fast and high quality

rendering of point sampled geometry at our disposal, to

date, none of them can efficiently cope with dynamically

changing objects or scenes. For instance, the surfel

system [15] samples an object with three orthogonal

LDI’s, building a so-called LDC-tree. It is well suited for

progressive rendering but has to be rebuilt once the

object changes. Surface splatting [16] extends the surfel

system with a high-quality interactive software renderer

which is based on a screen space formulation of the

elliptical weighted average (EWA) filter adapted for

irregular point samples. While Ren et al. [17] present a

hardware-accelerated extension based on multi-pass

rendering they all share the aforementioned limitations

imposed by pre-processing and setup. Wand and

Strasser [18] propose a multi-resolution point sample

rendering algorithm for keyframe animations which can

deal with highly complex scences but also relies on

extensive preprocessing. Qsplat [19] is a progressive

point sample system for representation and display of

very large geometry. They represent static objects by a

multi-resolution hierarchy of point samples based on

bounding spheres. As with the surfel system they rely on

extensive pre-processing for splat size and shape

estimation making it impracticable for our needs. As

we will discuss, our dynamic 3D video engine performs

all computations for high quality point sample rendering

on-the-fly in real-time.

1.2. Conceptual overview

Fig. 1 depicts a conceptual overview of the 3D video

fragments pipeline. We acquire images from multiple

calibrated video cameras. The images are processed to

segment foreground from background. By means of

dynamic camera control (Section 3) we determine a set

of active cameras from which we generate 3D point

samples as well as a set of supporting cameras delivering

additional data to improve the 3D reconstruction. Using

inter-frame prediction in image space we generate a

stream of differential operators (Section 2) which

dynamically update point sample attributes including

position or color. We thus avoid to recompute the full

3D representation in each frame. The dynamic point

samples are rendered by an efficient point splatting
scheme (Section 4) and are composited with a virtual

scene. In a final stage we apply deferred operations like

visual effects by running them directly on the graphics

hardware.
2. Differential 3D fragment operators

Our concept of 3D video fragments exploits the

spatio-temporal interframe coherence of multiple input

streams by using a differential update scheme for

dynamic point samples. The basic primitives of this

scheme are the 3D video fragments, point samples with

different attributes like, e.g., a position, a surface normal

vector, and a color. The update scheme is expressed in

terms of 3D fragment operators, each of which is derived

from a 2D pixel operator as illustrated in Fig. 2.

We distinguish between three different types of

operators:

* Insert adds new 3D video fragments into the

representation after they have become visible in one

of the input cameras. Insert operators are streamed

coarse-to-fine as discussed in Section 3.
* Delete removes fragments from the representation

once they vanish from the view of the input camera.
* Update corrects appearance and geometry attributes

of fragments that are already part of the representa-

tion, but whose attributes have changed with respect

to prior frames.

The time sequence of these operators creates a

differential fragment operator stream that updates a

3D video data structure on a remote site. An Insert

operator results from the reprojection of a pixel with

color attributes from image space back into three-

dimensional object space. Any real-time 3D reconstruc-

tion method which extracts depth and normals from

images can be employed for this purpose. Note that the

point primitives feature a one-to-one mapping between

depth and color/texture samples. The depth value is
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Fig. 3. 2D pixel operators: (a) silhouette at time t � 1; (b)

silhouette at time t; ðcÞ pixel classification. Green indicates new

pixels, red expired pixels, blue color changed pixels, white color

unchanged pixels, and black background.

Fig. 2. Relationship between 2D pixel operators and 3D

fragment operators.
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stored in a depth cache. This structure accelerates the

Delete operator which performs a lookup in the depth

cache and can thus be carried out very efficiently.

Update operators are generated by all pixels which

have been inserted into previous frames and which are

still foreground pixels. They can be divided into three

categories: The detection of color changes is performed

during interframe prediction and leads to an Update-

Col operator. UpdatePos operators take care of

geometry changes and are analyzed on spatially coherent

clusters of pixels in image space. We also use the depth

cache for this purpose. We define independent blocks of

points according to a predefined grid. For the 640� 480

resolution, a block comprises 16� 16 pixels. In each

frame new depth values are calculated for the four-grid

corners only, the explicit check of all pixels being

computationally too expensive. If the differences to the

previous depths exceed a threshold, we recompute 3D

information for the entire block of points. Thus, our

scheme proposes an efficient solution to the problem of

uncorrelated texture and depth motion fields. Note that

position and color updates can be combined to an

UpdatePosCol operator. All other candidate pixels for

updates remain unchanged and no further processing is

necessary. The 3D operators and associated data can be

summarized as follows:

Insert : ð%p; cÞ-ð ’P; c; nÞ;

Delete : ð%pÞ-ð ’PÞ;

UpdateCol : ð%p; cÞ-ð ’P; cÞ;

UpdatePos : ð%pÞ-ð ’Pold ; ’Pnew; nnewÞ;

UpdatePosCol : ð%p; cÞ-ð ’Pold ; ’Pnew; nnew; cÞ; ð1Þ

where %p are the coordinates of a pixel, c its color, ’P the

respective 3D coordinates of the point sample, and n its

surface normal. The encoding of the 3D operators will

be explained in Section 5.3.

We propose an image space inter-frame prediction

mechanism which derives the 3D fragment operators

from the original video images. We define two functions

for pixel classification: A foreground-background seg-

mentation defines a Boolean function fgð%p; tÞ returning
True if the pixel %p is in the foreground at frame t: A
second function cdð%p; t; t0Þ returns True if the color

difference of a pixel %p exceeds a certain threshold in

between the time instants t and t0: These two functions

allow us to assign to each pixel one of the following five

classes using simple Boolean operations:

fgð%p; tÞ4fgð%p; t � 1Þ4:cdð%p; t; t � 1Þ : colour unchanged;

fgð%p; tÞ4fgð%p; t � 1Þ4cdð%p; t; t � 1Þ : colour changed;

fgð%p; tÞ4:fgð%p; t � 1Þ : new;

:fgð%p; tÞ4fgð%p; t � 1Þ : expired;

:fgð%p; tÞ4:fgð%p; t � 1Þ : background;

ð2Þ

where 4 denotes the Boolean And and : the Boolean

Not operator. Fig. 3 illustrates the image acquisition

processing and depicts the five possible pixel states.

Finally, a new pixel invokes an Insert operator, an

expired pixel a Delete operator and a color change an

UpdateCol operator. As previously described, un-

changed and color changed pixels can nonetheless lead

to an UpdatePos operator.
3. Dynamic system adaptation

Many real-time 3D video systems are employed for

point-to-point communication. In such cases, the 3D

video representation can be optimized for a single view

point. Multipoint connections, however, require truly

view-independent 3D video. In addition, 3D video

systems can suffer from performance bottlenecks at all

pipeline stages. Some performance issues can be locally

solved, for instance by lowering the input resolution, or

by utilizing hierarchical rendering. However, only the

combined consideration of application, network and 3D

video processing state leads to an effective handling of

critical bandwidth and 3D processing bottlenecks. In the

point-to-point setting the current virtual viewpoint

allows one to optimize the 3D video computations by

confining the set of relevant cameras. As a matter of

fact, reducing the number of involved cameras or the
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resolution of the reconstructed 3D video object im-

plicitly decreases the required networking bandwidth.

Furthermore, the acquisition frame rate can be adapted

dynamically.

The aforementioned issues suggest a concept for

dynamic system adaptation for the 3D video system,

which will be described in this section.

3.1. Active camera control

We devise a concept for dynamic control of active

cameras which allows for smooth transitions between

subsets of reference cameras and efficiently reduces the

number of involved cameras for 3D reconstruction.

Furthermore, increasing the number of so-called texture

active cameras enables a smooth transition from a view-

dependent to a view-independent representation for 3D

video.

A texture active camera is a reference camera applying

the intra-frame prediction scheme as explained in

Section 2. Each pixel classified as foreground in such a

camera frame contributes color or texture samples to the

set of 3D points in the 3D representation. Additionally,

each camera might provide auxiliary information for the

employed 3D reconstruction algorithm. We call the state

of these cameras reconstruction active. Note that a

camera can be both texture and reconstruction active.

The state of a camera which does not provide data at all

is called silent. Fig. 4 illustrates the dynamic control of

active cameras.

In order to select the k-closest cameras for the desired

viewpoint as texture active cameras, we compare the

angles between all camera look-at vectors and the

desired viewing vector. Choosing the k-closest views

minimizes artifacts arising from occlusions in the

reference views. Experimentally, we found that for our

target objects, i.e. humans, k ¼ 3 performs well. The

selection of reconstruction active cameras has to be

computed for all texture active cameras and is depen-
Fig. 4. Illustration of the dynamic camera control. Green

cameras are texture active, red cameras are reconstruction

active, and yellow cameras are both texture and reconstruction

active. Uncolored cameras are silent: (a) for one active camera;

(b) for three active cameras.
dent on the employed 3D reconstruction method. Since

our prototype system uses a shape-from-silhouette

algorithm, each reconstruction active camera provides

silhouette contours. The set of candidate cameras is

chosen by two simple rules. First, the angles between a

texture active camera and its associated reconstruction

active cameras have to be smaller than some threshold,

100� in our setting. The candidate set is thus confined to

cameras lying in approximately the same hemisphere.

Second, the angle must not be smaller than 20�:
Although this is hardly the case in our setup, cameras

which are too close to each other only provide in-

significant differences in their silhouette information.

Optionally, we reduce the candidate set to a maximum

size. We compute the angle between all candidate

camera pairs and subsequently discard one camera of

the closest pair. In our case, this scheme leads to an

optimally smooth coverage of silhouettes for every

texture active camera. The set of texture active cameras

needs to be computed on-the-fly accounting for view-

point changes. The map of corresponding texture and

reconstruction active cameras can be pre-computed at

system start-up time.

Although we did not investigate 3D reconstruction

techniques other than shape-from-silhouette, our active

camera approach is versatile and can be employed with

other algorithms. A multi-view stereo algorithm for

example requires from each reconstruction active

camera the texture of the whole frame in combination

with some features. In this case, the k-nearest cameras

would be selected such to enable correspondence

calculations.

Overall, the dynamic camera control allows to actively

trade-off 3D reconstruction performance versus 3D

video quality. In our shape-from-silhouette setting, the

quality of the 3D reconstruction is improved by a

growing number of reconstruction active cameras, but

so increases the processing time. Currently, we use five

reconstruction active cameras and thus five silhouettes

for 3D reconstruction per texture active camera. Overall,

this leads to an average of 10 reconstruction active

cameras per frame.

3.2. Texture activity levels

A second strategy for dynamic system adaptation

involves the number of reconstructed fragments. We

define a texture activity level Ai for each camera i to

determine the number of pixels fed into the 3D video

pipeline. Initial levels for k texture active cameras are

derived from the weight formulas for Unstructured

Lumigraph Rendering [20,21].

ri ¼
cos yi � cos ykþ1

1� cos yi

; wi ¼
ri

Pk
i¼1 rj

: ð3Þ
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Fig. 5. Texture activity levels: (a) linear image pixel sampling

pattern; (b) activity levels for three texture-active cameras as

seen from the virtual viewpoint. Fig. 6. 3D fragment images. Fragments can be referenced from

an image space representation for point processing, but

rendered efficiently from a flat OpenGL vertex array.
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Here, ri represent the relative weights of the closest k

views. ri is calculated from the cosine of the angles

between the desired view and each texture active camera.

wi are the normalized weights which sum up to one. The

texture activity level allows for smooth transitions

between cameras and enforces epipole consistency. The

resolution of the virtual view is taken into account with

a factor r: In addition, texture activity levels are scaled

with a system load penalty penaltyload reflecting the

reconstruction process. The penalty takes into account

the load of the current frame and the activity levels of

prior frames. If the load becomes too high, the texture

activity level is reduced such that less pixels need to

be processed. The following equation summarizes the

texture activity level computation:

Ai ¼ smax wir� penaltyload with r ¼
restarget

rescamera
: ð4Þ

Note that this equation is recomputed in each frame

for each texture active camera. The maximum number

of sampling levels smax discretizes Ai to a linear sampling

pattern in the camera image, allowing for coarse-to-fine

sampling. All negative values of Ai are clamped to zero.

Fig. 5a illustrates the linear pixel sampling pattern which

is basically a multi-grid sampling, i.e. the index of each

pixel in Fig. 5a defines the sampling level a pixel belongs

to. Fig. 5b shows activity levels for a set of cameras for

a given virtual viewpoint. Currently, we use NTSC-

cameras which leads to 38,400 pixels per sampling level.
4. Dynamic point processing and rendering

The final stage of our 3D video pipeline constitutes

the processing and rendering of the 3D video fragments.

All necessary computations for rendering must be

performed on-the-fly and in real-time. In particular,

the size and shape of the splat kernels for high-quality

rendering must be estimated dynamically for each point

sample. For that purpose we propose a new data

structure for 3D video rendering. We organize the point

samples for processing on a per-camera basis similar to a

depth image. However, instead of storing a depth value

per pixel we store references to the respective point
attributes. We name this representation 3D fragment

image. The point attributes themselves are organized

in an OpenGL vertex array which can be directly

transferred to graphics memory. With this representa-

tion we combine efficient insert, update and delete

operations with efficient processing for rendering. Fig. 6

illustrates the data structure.

In addition, the 3D video renderer supports compo-

siting with a virtual scene by Z-buffering. Finally, we

also support deferred operations, such as 3D visual

effects, which are applicable to the real-time 3D video

stream without destroying the consistency of the data

structure.

4.1. Local density estimation

For static objects, local point sample densities can

either be estimated in a pre-processing step [19] or

during the acquisition procedure [16,17]. In our

approach however, the acquisition process leads to

irregular 3D point sampling patterns. Hence, we cannot

estimate the local point sample density during acquisi-

tion. Moreover, in a dynamic real-time system, it is not

economical to maintain an advanced spatial search

structure supporting point density estimations like

nearest-neighbor searches [22]. Instead, we propose to

estimate the local point sample density for each point

based on incremental nearest-neighbor search in the 3D

fragment image. The resulting neighbors are only

approximations of the real neighbors, but they prove

to be sufficiently close for local sampling density

estimation. Our algorithm, which considers only two

neighbors, uses the following heuristics. First, it

calculates the nearest-neighbor N1 of a given point in

the 3D fragment image. Then we search for a second

neighbor N60; forming an angle of at least 60� with N1:
Our neighbor search needs approximately four more

search iterations for finding N60:

4.2. Point sample rendering

As in Ren et al. [17], we render the point samples as

polygonal splats with a semi-transparent alpha texture
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using a two-pass algorithm. In the first pass, opaque

polygons are rendered for each point sample and thus

visibility splatting is performed [15]. The second pass

renders the splat polygons with an alpha texture. The

splats are multiplied with the color of the point sample

and accumulated in each pixel. A depth test with the Z-

buffer from the first pass resolves visibility problems

during rasterization. This ensures correct blending

between the splats.

The neighbors N1 and N60 can be used for computing

polygon vertices of our splat in object space. The splat

lies in the plane which is spanned by the coordinates of

the point p and its normal n: We now distinguish

between circular and elliptical splat shapes. In the first

case, all side lengths of the polygon are twice the

distance to the second neighbor N60; which corresponds

also to the diameter of the enclosing circle. For elliptical

shapes, we determine the minor axis by projecting the

first neighbor N1 onto the tangential plane. The length

of the minor axis is determined by the distance to N1:
The major axis is computed as the cross product of the

minor axis and the normal. Its length is the distance to

N60: Fig. 7 illustrates the polygon setup for elliptical

splats.

The alpha texture of the polygon is a discrete unit

Gaussian function, stretched and scaled according to the

polygon vertices deploying texture mapping hardware.

The vertex positions of the polygon can be entirely

calculated in the programmable vertex processor of

contemporary graphics engines.

4.3. Deferred operations

We implemented a framework for deferred operations

on all attributes of the 3D video fragments. Since vertex

programs only modify the color and position attribute

of the point samples during rendering, we do not destroy

the consistency of the representation and of the

differential update mechanism. Note that fragments

can only be processed independently, and, because of the

consistency constraints, fragments cannot be created or

deleted in the vertex programs. Furthermore, temporal

effects across multiple frames cannot be implemented by

storing intermediate results, because the 3D operator

stream modifies the representation asynchronously.
Fig. 7. Polygon setup for elliptical splat rendering. r1 and r60
denote the distances from the point sample P to N1 and N60;
respectively. c1 to c4 denote the calculated polygon vertices.
Nevertheless, we designed a large number of visual

effects from procedural warping to explosions and

beaming. Periodic functions can be employed to devise

effects such as ripple, pulsate, or sine waves. In the latter,

we displace the fragment along its normal based on the

sine to its distance to the origin in object space. For

explosions, a fragment’s position is modified along its

normal according to its velocity. As illustrated in the

accompanying video the explosion operation can take

gravity into account. Note that all deferred operations

are performed on-the-fly during rendering without any

pre-processing.
5. Prototype system

We built a prototype real-time 3D video fragments

system together with a coding scheme which will be

explained in the following subsections.

5.1. Physical setup

We use the blue-c [13] as test environment which is an

immersive telepresence installation allowing simulta-

neous acquisition and projection. Sixteen Point Grey

Research Dragonfly digital cameras are installed, all

equipped with 640� 480 CCD imaging sensors. Fifteen

cameras surround the acquisition stage on a circular

shape and one camera captures the scene from the top.

We use CS-mount lenses with focal lengths between 2.8

and 6 mm: Note that we have a large working volume of

approximately 3� 3� 2:2 m3 which needs to be covered

by all cameras. The 16 cameras are calibrated by a fully

automatic procedure based on self-calibration [23]. For

estimating the radial lens distortion, we employ the

Caltech camera calibration toolbox and we use the Open

Computer Vision Library for correction. For simulta-

neous projection in the blue-c, switchable glasses are

between the cameras and the object producing slightly

less saturated textures from most cameras. We cope with

this problem by adjusting the colors of individual

cameras in a correction procedure. Although our

cameras are capable of capturing synchronized images

at 15 frames per second, the test environment limits us to

five or nine frames per second. For most of the tests we

triggered the cameras with five frames per second. The

physical setup of the acquisition environment is depicted

in Fig. 8.

Our processing system can be decomposed into three

major parts. A set of camera nodes runs the acquisition

clients, which do all image space processing steps in

parallel, and finally transmit their data to a recon-

struction node. The reconstruction node, in our case

a dual processor machine with two AMD AthlonMP

2400+ CPUs, runs the multithreaded 3D point proces-

sing which transforms the 2D pixel operations into 3D
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Fig. 8. The blue-c: An immersive telepresence installation

allowing simultaneous acquisition and projection.

Fig. 9. Differential 3D video fragments streaming pipeline.
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fragment operations. The rendering node receives the

3D fragment operations from the reconstruction node

and maintains the data structure representing the 3D

video object. This data structure is finally rendered to

the screen. We currently use an 1:8 Ghz Pentium4

machine equipped with an NVIDIA GeForce4 Ti200

graphics accelerator. The rendering node transmits

feedback information, i.e., the current viewpoint, to

the reconstruction node. The reconstruction node

controls the acquisition process at the camera nodes

accordingly. All nodes are currently interconnected in

a Fast-Ethernet local area network at 100 Mbit=s: In a

typical application, the rendering node could also be

connected via a wide area network.

5.2. 3D processing

For 3D video fragment processing we use a 3D

reconstruction built upon the image-based visual hulls

method [6]. However, instead of calculating depth and

normal in a desired view, our 3D video fragments

approach calculates 3D information for the camera

views. For each pixel, we calculate a depth value which

is then projected to a point in 3D space with associated

normal. Our current implementation would be able to

deal with up to 85k Insert or UpdatePos operations or

more than 800k UpdateCol and Delete operations

per second. A caching scheme [6] ensures that the

computation time for the costly Insert and UpdatePos

operations decreases logarithmically with the number of

processed operations. The raw performance is sufficient

for processing objects with less than 30k points. In a

typical 3D video sequence, processed at 5 frames

per second and containing in between 15k and 25k

points, the position of 6% of the 3D video fragments is

updated in each frame, whereas more than 10% might

get a new color.
The operation scheduling at the reconstruction node

is organized as follows: The contour data can simply be

handed over to the visual hull reconstruction module.

Delete and Update operations are immediately applied

to the corresponding points. Insert operations however,

require a prescribed set of contours, which is derived

from the active camera control. Furthermore, an

efficient 3D video fragment processing requires that all

Delete operations from one camera node are executed

before the Insert operations of the same. The camera

nodes support this operation flow by first transmitting

contour data, then Delete and Update operations and,

finally, Insert operations. Note that the Insert

operations are generated in the order prescribed by the

sampling strategy of the input image. On the reconstruc-

tion node, the operation scheduler will only forward

Insert operations to the visual hull unit if no other type

of data is at hand.

Furthermore, every camera node, even the contour

inactive cameras, transmit at least an empty set of

contours for every frame. This strategy allows the

reconstruction node to check if all cameras are still

synchronized. The acknowledgement message of con-

tour data contains the new state information for the

corresponding camera node. The reconstruction node

detects a frame switch while receiving contour data of a

new frame. At that point in time, the reconstruction

node triggers state computations, i.e. recomputes the

sets of reconstruction and texture active cameras for the

following frames.

The 3D video fragment operations are transmitted in

the same order in which they are generated. But the

relative ordering of operations from the same camera

node is guaranteed. This property is sufficient for a

consistent 3D data representation. Fig. 9 depicts an

example of a differential 3D video stream.

The design of our 3D video system leads to a system

inherent latency of three frames, which results from the

three pipeline stages: acquisition, processing and render-

ing. In the worst case, the round trip latency, which has

to be taken into account for viewpoint changes, sums up

to 5 frames: Since our 3D video pipeline is triggered by
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Fig. 10. Byte layout of all possible attributes of a 3D fragment

operator.
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the synchronized cameras, the absolute latency is

directly depending on the camera acquisition rate. The

processing bottleneck in our pipeline are currently the

camera nodes which can only handle up to nine frames

per second at full NTSC-resolution.

5.3. Streaming and compression

The 3D video fragments pipeline requires a distrib-

uted consistent data representation. Each camera node

shares with the reconstruction node a coherent repre-

sentation of its differentially updated input image. The

incremental updates of the rendering data structure also

require a consistent data representation between the

reconstruction and rendering nodes. Hence, all network

links must support lossless and in-order data transmis-

sion. A TCP byte stream fulfills these requirements,

however, TCP is not very well suited for real–time

systems. The latency and jitter introduced by the built–

in retransmission scheme and flow control and conges-

tion management cannot be directly influenced by the

application. We implemented an appropriate retrans-

mission scheme for reliable data transmission based on

the connectionless and unreliable UDP protocol and on

explicit positive and negative acknowledgements. Since

the application layer is now responsible of retransmis-

sions, it is straightforward to detect transmission

problems and adapt the application accordingly. An

application with multiple renderers can be implemented

by multicasting the 3D video fragments stream, using a

similar technique as the Reliable Multicast Protocol

RMP in the source-ordered reliability level [24]. The

implementation of our communication layer is based on

the TAO/ACE framework (http://www.cs.wustl.edu/

Bschmidt/TAO.html).

A 3D video fragment is defined by a position, a

surface normal vector and a color. For splat footprint

estimation issues (Section 4.1), the renderer further

needs knowledge about the camera identifier and the

image coordinates of the original 2D pixel. The

geometry reconstruction is computed in float precision,

but the resulting 3D position can accurately be

quantized using 27 bits. This position encoding scheme

leads in our acquisition stage to a spatial resolution of

approximately 6� 4� 6 mm3: The remaining 5 bits of a

4 byte word can be used to encode the camera identifier.

We encode the surface normal vector by quantizing the

two angles describing the spherical coordinates of a unit

length vector. We implemented a real-time surface

normal encoder, which does not require any trigono-

metric computations on-the-fly, and which uses variable

precision of up to 16 bits as suggested by [25,26]. Colors

are encoded in RGB 5:6:5 format. At the reconstruction

node, color information and 2D pixel coordinates

are simply copied into the corresponding 3D video

fragment.
Since all 3D fragment operators are transmitted over

the same communication channel from the reconstruc-

tion node to the renderer, we need to encode the

operation type explicitly. For simplicity, we use one

prefix byte to each operation, and encode the operation

type within. For Update and Delete operations, it is

necessary to reference the corresponding 3D video

fragment. We exploit the feature that the combination

of quantized position and camera identifier references

every single primitive. The renderer maintains the 3D

video fragments in a hash table. Thus, each primitive

can efficiently be accessed by its reference key. Fig. 10

shows the byte layout for all possible attributes of a 3D

fragment operator.

Fig. 11 shows the bandwidth required by a typical

sequence of differential 3D video, generated from five

contour active and three texture active cameras at five

frames per second. The average bandwidth in this 30 s

sample sequence is 1:2 Megabit=s: The bandwidth is

strongly correlated to the movements of the recon-

structed person and to the changes of active cameras,

which are related to the changes of the virtual viewpoint.

The peaks in the sequence are mainly due to switches

between active cameras. On average, Insert and

Delete operators contribute to 25% and 12% of the

bandwidth, respectively, the remaining bandwidth is

consumed by Update operators. The compression

performance of our system is difficult to analyze, since,

up to our knowledge, no previous work was done on

streaming and compressing dynamically changing geo-

metric data. Relating our work to 2D video compres-

sion, the bandwidth required by a 3D video fragment

stream is in the same order of magnitude than the

bandwidth required by two MPEG-2 streams. At five

frames per second, MPEG-2 recommendations ask for

three intra-coded frames per second, which leads to a

bitrate of approximately 1 Megabit=s:
Furthermore, entropy coding can be applied to the 3D

video fragments stream. Our experiments show that an

additional compression ratio of 2:1 can be expected.
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6. Results

We have tested our 3D fragments pipeline in an

immersive telepresence system with different persons.

Fig. 12 shows some snapshots of 3D video sequences

and Fig. 13 shows some images with corresponding

depth maps. Especially in Fig. 13b the depths from the

involved texture active cameras are visible. In the blue-c

environment, the cameras have to be shuttered at

approximately 5 ms for simultaneous acquisition and
Fig. 12. Examples for 3D video fragment objects: (a) point rendered vi

rendered view from another sequence; (d) deferred operation: sine wa

Fig. 11. Bitrate of a differential 3D video stream. The

contributions from the different 3D operators are highligh-

tened.

Fig. 13. 3D video fragment objects: (a+c) point rendered
projection. Furthermore, active illumination is required

during the acquisition phase. As shown in Fig. 8, LED

arrays are mounted on the upper and lower edge of the

projection screens. Within these constraints, it was not

possible to achieve a homogeneous illumination of the

user. Unfortunately, achieving a reasonable overall

texture quality and a robust segmentation in this

environment requires a high camera gain which leads

to oversaturated regions in the camera images.

Due to performance reasons we use a relatively small

number of silhouettes for 3D reconstruction which only

leads to a rough shape approximation of the person.

Temporary visible geometry artifacts can be explained

by the inherent nature of the visual hull reconstruction

method which is not capable of properly reconstructing

concave regions. We use a simple linear color calibration

method which, however, proved to be insufficient for

removing all texture artifacts due to improper color

alignment between cameras.

Fig. 12d illustrates the sine wave operation on the 3D

video object from Fig. 12c. Fig. 14 shows an explosion

of a 3D video object. The accompanying video shows

example 3D video sequences with arbitrary virtual

viewpoints and more effects. For our 3D video objects

of less than 30k point samples we never experienced

performance problems on the point rendering engine,

even with enabled deferred operations.
ew; (b) another view from the same 3D video sequence; (c) point

ve.

views; (b+d) depth maps from the respective views.



ARTICLE IN PRESS

Fig. 14. Deferred operations: (a) point rendered view; (b) view

from (a) exploded with gravity taking into account.
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7. Conclusions and future work

The 3D video fragments framework proposes a real-

time 3D video pipeline which generalizes the 2D video

pixels towards 3D irregular point samples. A differential

update scheme exploits the inter-frame coherence of

consecutive frames and a dynamic camera control

scheme continuously reconfigures the 3D video process

for optimal performance, according to the feedback

from application and pipeline stages. The 3D video

sequences are rendered using efficient point based

splatting schemes and state-of-the-art vertex and pixel

processing hardware.

In our current implementation, blending between

several cameras might still lead to discontinuities.

Furthermore, the requirement of a coherent distributed

data representation is a severe constraint for the

networking layer and an error-resilient representation

for our 3D video pipeline needs to be investigated. In the

future, we also plan to utilize the concepts of 3D video

fragments for 3D video recording and try to integrate

high-quality re-shading which requires smoothing of the

poorly reconstructed normals. Moreover, we want to

investigate new concepts for real-time 3D motion

estimation.
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