
DYNAMIC POINT SAMPLES FOR FREE-VIEWPOINT VIDEO

Stephan Würmlin Edouard Lamboray Michael Waschbüsch Markus Gross
Computer Graphics Laboratory, ETH Zurich

{wuermlin, lamboray, waschbuesch, grossm}@inf.ethz.ch

ABSTRACT
Free-viewpoint video (FVV) uses multiple video streams to re-
render a time-varying scene from arbitrary viewpoints. FVV
enables free navigation with respect to time and space in streams
of visual data and allows for virtual replays and for freeze-and-
rotate effects, for instance. Moreover, FVV technology can
improve communication between remote participants in high-end
telepresence applications. In combination with spatial-immersive
projection environments, 3D video conferencing allows for life-
size, three-dimensional representations of the users instead of
small, flat video images. In this paper we propose the application
of dynamic point samples as primitives for FVV by generalizing
2D video pixels towards 3D irregular point samples. The different
attributes of the point samples define appearance and geometry of
surfaces in a unified manner. Furthermore, by storing the refer-
ence to a pixel in an input video camera efficient coding and com-
pression schemes can be employed for FVV. We show two
different systems for free-viewpoint video using this primitive,
namely a real-time FVV system employed in a high-end telecol-
laboration system and a FVV recording system using two differ-
ent representations and coding schemes. We evaluate
performance and quality of the presented systems and algorithms
using the blue-c system with its portals. Both presented 3D video
systems are integrated into the telepresence software system of
the blue-c, ready to use and demonstrable.

1 INTRODUCTION
Video conferencing has come quite a long way from the first com-
mercial systems presented in the early sixties showing blurry
images in large television-like boxes with small screens. By now,
video conferencing advanced to easy-to-use desktop video con-
ferencing systems with decent image quality. It can facilitate and
enhance the collaboration in working groups with team members
at remote locations. However, video conferencing today is like
watching remote participants on television. Audio communication
is augmented with video enabling visual cues and non-verbal ges-

tures. But a real sense of presence is often not perceived. More-
over, it is impossible to make direct eye contact because the
camera and the display cannot be at the same place.

Yet, conventional two-dimensional video is a mature technol-
ogy in both professional environments and home entertainment. A
multitude of analog and digital video formats is available today,
tailored to the demands and requirements of different user groups.
Efficient coding schemes have been developed for various target
bit rates, ranging from less than 100 kilobits per second for video
conferencing applications to several megabit per second for
broadcast quality TV. All of these technologies, however, share
the same shortcoming as they are only capable of capturing tem-
poral changes of scenes and objects. Spatial variations, i.e. alter-
ing the viewpoint of the user, are not possible at playback. Spatio-
temporal effects, e.g. freeze-and-rotate, have been demonstrated
in numerous recent feature films, like The Matrix. However, these
effects can only be realized by employing a large number of still
cameras, and involving a considerable amount of manual editing.
Typically, input data is processed off-line in various ways to cre-
ate a plenitude of stunning effects. A three-dimensional video sys-
tem can capture and process this data without manual
intervention, in a shorter time and more cost-efficiently. 3D video
acquires dynamics and motion of a scene during recording, while
providing the user with the possibility to change the viewpoint
during playback. Moreover, in a life-size spatially-immersive pro-
jection environment, 3D video technology allows to overcome the
limitations of small and flat video images. 3D video conferencing
features significantly augment the feeling of presence of the
remote participants in a collaborative setting. This novel technol-
ogy bears potential for previously unthinkable user experiences
and interactions and thus motivates research towards representa-
tions and systems that enable capturing and processing of
dynamic scenes and subsequent rendering from arbitrary view-
points.

Figure 1: Examples of dynamic point samples for free-viewpoint video. a) real-time free-viewpoint video in the blue-c, b) 3D video re-
corder with object-space compression, c) 3D video recorder with image-space free-viewpoint video. These results were recorded in various
acquisition prototype setups.

a) b) c)

2 BACKGROUND AND RELATED WORK
A key feature of 3D video is interactivity in the sense that a user
should have the possibility to chose an arbitrary viewpoint within
a visual real-world scene. However, no formal definition of 3D
video is available to date but one can define it as geometrically
calibrated and temporally synchronized video data. The broad
field of 3D video can be categorized according to spatial camera
configurations and application domains. Figure 2 shows the dif-
ferent types of camera configurations for 3D video.

While an arbitrary view configuration (Figure 2 a) would per-
mit all application domains, physical and algorithmic constraints
typically lead to a reduced complexity of spatial camera configu-
rations. They are typically tailored to specific application domains
for 3D video and can be summarized as follows:

3D-television [5, 13] marks a first line of recent research,
aiming at view-independent video for dynamic scenes but in a
very limited viewing range only. That is, users might experience
changes in parallax but no fly-around effects are possible. It can
provide stereoscopic display, one view for each eye, to produce a
3D impression for the viewer. 3D-TV is typically acquired using
either stereo video captured with two cameras (Figure 2 b), or by
a number of densely arranged cameras in parallel view (Figure
2 c). Dense means that the baseline between two cameras does not
exceed 50 cm. Such configurations can also be used for spatio-
temporal video effects with limited spatial scalability [22].

The concept of free-viewpoint video [2, 20], on the other
hand, allows for truly free navigation in the spatial range of cap-
tured data, i.e. in the range covered by acquisition cameras. The
scene is captured by a number of sparsely arranged cameras in a
convergent setup (Figure 2 d). Sparse stands for cameras with a
baseline that is in the range of 1 or 2 meters at an angle of
30 degrees. Additional information about the scene geometry, e.g.
disparity data, enables interactive and free navigation through the
scene.

Omni-directional video [17] is an extension of the conven-
tional planar 2D video image plane towards other non-planar
planes like in the static but well-known QuicktimeVR [3] applica-
tion. User interactions are limited to zoom and rotation around a
pre-defined viewpoint. Video is captured at a certain viewpoint
into every direction (Figure 2 e).

3 DYNAMIC POINT SAMPLES
In recent years, points have experienced a renaissance as a graph-
ics primitive. While there are various methods for fast and high-
quality rendering of point sampled geometry at our disposal, e.g.
[24, 16, 1], to date none of them can efficiently cope with dynam-
ically changing objects or scenes. But, the input of almost all 3D
video systems is generated by range sensing techniques, e.g. laser

range scanners, vision-based methods, etc. These acquisition
methods and devices inherently generate as raw data non-uniform
point samples. The point samples constitute the discrete building
blocks of 3D object geometry and appearance—like pixels are the
digital elements for images. However, no connectivity informa-
tion is available and thus, if triangle meshes or higher-order sur-
faces representations need to be generated and rendered,
connectivity has to be reconstructed for the definition of the sur-
face, which is, however, a difficult and time consuming task.

Moreover, a general approach that is able to handle dynamic
objects must allow for topology changes—an operation that is
costly and hard to perform in real-time on a 3D mesh. But in free-
viewpoint video, topology changes in the geometric representa-
tion occur frequently due to its time-varying nature. With
dynamic point samples, topology changes are implicitly per-
formed while the primitives’ attributes are updated. Furthermore,
with point samples we can avoid the use of complicated and
restricting models, e.g. avatars or articulated human-body models.
Model-based approaches [2] need an adaptation of the initial
model to the observed object and do not allow to represent objects
which cannot be described by the model in the first place.

A point-sampled representation for free-viewpoint video fea-
tures many advantages as compared to other descriptions. Firstly,
it may be understood as a unified representation—quite contrary
to approaches based on mesh and texture information that require
handling of heterogeneous types of data, i.e. geometry and
images. Dynamic point samples can be seen as a natural generali-
zation of 2D video pixels towards 3D irregular point samples.
Since the representation incorporates geometrical scene knowl-
edge in terms of point sample attributes we have to deal with less
acquisition cameras for even broader viewing ranges as compared
to purely image-based approaches in the spirit of Light Fields [11]
or Lumigraphs [6].

We propose the application of dynamic point samples as
primitives for FVV. The term point sample denotes a sample of a
surface in three-dimensional space. It includes information about
the underlying surface geometry, such as its position, its normal,
its orientation, and the surface appearance, i.e. its reflectance
properties. Employed in free-viewpoint systems each point sam-
ple stores the reference to a pixel in an input video camera. This
enables the use of efficient coding and compression schemes for
free-viewpoint video by exploiting the correspondence between
pixels and point samples. Figure 3 depicts the relationship
between pixels in input images and 3D dynamic point samples.

Thus, a dynamic point sample can be seen as an extension to a
traditional, static point sample or surfel [14, 23]. Dynamic point
samples are typically non-uniformly distributed in space, do not
have a spatial extent, and do not store connectivity information. A
dynamic point sample for FVV additionally stores the correspon-
dence or reference to the camera and to the pixel in this camera

Figure 2: Spatial camera configurations for 3D video. a) arbitrary
view, b) stereo view, c) parallel view, d) convergent view,
e) divergent view.

b) c) d) e)

a)

Figure 3: Relationship between 2D pixels and 3D dynamic point
samples.

2D pixels

dynamic
point samples

P (pos, col, nrml,...)

image it was generated from. Thus, a dynamic point sample is
necessary generated from an input device, e.g. a digital video
camera. Hence, as opposed to mesh based representations,
dynamic point samples provide a one-to-one mapping between
points and associated color and normal attributes avoiding inter-
polation and alignment artifacts.

4 REAL-TIME FREE-VIEWPOINT VIDEO

We propose a system for real-time free-viewpoint video based on
dynamic point samples. A differential update stream inserts,
deletes or updates point samples on-the-fly in real-time. It
exploits the spatio-temporal coherence of individual 2D video
streams by inter-frame prediction of input changes in image
space. Our prediction does not require expensive calculations like
texture motion fields or 3D scene flows [18]. While being concep-
tually lean and simple the presented approach effectively cuts
down the number of expensive 3D shape computations. By using
a feedback loop which confines the number of active cameras, we
dynamically control the acquisition process and scale smoothly
from view-dependence to view-independence. Moreover, virtual
viewpoint- and resolution-driven sampling allows smooth transi-
tions between a subset of the reference cameras and adapts to
bandwidth or processing bottlenecks. The method features effi-
cient rendering from arbitrary spatio-temporal positions and sup-
ports multiple viewers. Our real-time free-viewpoint video
pipeline is designed and optimized for real-time applications and,
hence, at multiple stages we trade-off between performance and
quality. Figure 4 depicts a conceptual overview of the real-time
processing pipeline.

4.1 Differential coding

The correspondence between the point samples and the pixel in
the input video camera allows to detect changes in the input
image and to propagate them to the point samples. Consequently,
a dynamic point sample can be generated, updated and deleted
based on the changes in the camera image. Inspired by Reeve’s
work on dynamic particle modeling [15] we describe the dynamic
behavior of point samples with three basic operators:

• NEW generates new point samples after they have become visi-
ble in one of the input cameras.

• KILL removes point samples from the representation once they
vanish from the view of the input camera.

• UPDATE corrects appearance and geometry attributes of point
samples that are already generated, but whose attributes have
changed with respect to prior frames of the input camera.

The time sequence of these operators creates a differential
operator stream that updates a 3D video data structure on a remote
side. An INSERT operator results from the reprojection of a pixel
with color attributes from image space into three-dimensional
object space. Any real-time 3D reconstruction method which
extracts depth and normals from images can be employed for this
purpose, e.g. the image-based visual hull algorithm [12]. DELETE
operators perform a lookup of the reference point sample and
eliminate it. UPDATE operators are generated by all pixels which
have been inserted in previous frames and which are still fore-
ground pixels. They can be divided into three categories: The
detection of color changes is performed during inter-frame pre-
diction and leads to an UPDATECOL operator. UPDATEPOS opera-
tors take care of geometry changes and are analyzed on spatially
coherent clusters of pixels in image space. If the differences to the
previous depths exceed a threshold, we recompute 3D informa-
tion for entire blocks of points. Thus, our scheme proposes an
efficient solution to the problem of uncorrelated texture and depth
motion fields. Note that position and color updates can be com-
bined to an UPDATEPOSCOL operator. All other candidate pixels
for updates remain unchanged and no further processing is neces-
sary.

We employ a simple image space inter-frame prediction
mechanism which derives the operators from the original video
images by only using two functions for pixel classification,
namely foreground/background segmentation and color differenc-
ing.

4.2 Implementation

Based on the differential coding scheme a system is implemented
for real-time free-viewpoint video acquisition, processing and
rendering. A detailed structural overview of the system architec-
ture of the real-time system is depicted in Figure 5.

The central component is the PPP—for Progressive Point Pro-
cessor—which computes 3D point samples and performs encod-
ing of the 3D video stream. A distributed system architecture is
implemented with multi-threading capabilities to employ multiple
processors. Figure 5 also shows data flows in a real-time free-
viewpoint video system with differential coding using the opera-
tor framework. Gray boxes indicate node boundaries. The left
side of the dotted line is called acquisition side which typically
runs on an acquisition cluster, and the part to the right is the ren-
dering side, which renders the free-viewpoint video object and

Figure 4: Conceptual components of the real-time free-viewpoint
video processing pipeline.

inter-frame
prediction

compositingvirtual scene
screen

differential
streaming

deferred
operations

3D video object
rendering

color

image

2D pixel operators

3D fragment operator stream

object inlay

enriched 3D scene
3D scene

network

dynamic system
control

Figure 5: Detailed structure of the real-time free-viewpoint video
system architecture.

decoding

data
structure

rendering

encoding
PPP

client 2 client nclient 1

color updates [uvc]
deletes [uv]

color updates [xyzc]
deletes [xyz]
pos. updates [xyzdn]
inserts [xyzcn]

inserts [uvcdn]
pos. updates [uvdn]

IE3D

contour
edge list

inserts [uvc]

current
viewpoint

control
feedback

remote
network link

n

n n

embeds it into a virtual scene. Black boxes are explained in more
detail below. After acquiring the images the basic entities that are
dealt with are point sample operations.
• Clients. The clients acquire the images, perform background

subtraction, and extract the contours, which are send directly to
the PPP. They also perform the image differencing, resulting in
three output streams, containing INSERTs, UPDATEs, or
DELETEs, respectively. Positional updates are completely pro-
cessed on the 3D/IE unit. Since the calculation of 3D coordi-
nates is done in a later step, these operations are still in image
coordinates. A detailed structure can be found in [19].

• Insert engine (IE). The inserts are sent to the so–called insert
engine which schedules blocks of INSERTs according to the
current viewpoint. It contains the 3D unit to compute the depth
values of the corresponding points and forwards them to the
PPP. Furthermore, this unit takes care of the positional updates.

• 3D. The 3D unit implements a 3D reconstruction method, cur-
rently a variant of the IBVH algorithm [12]. For each pixel we
calculate a depth value which is then projected to a point sam-
ple in 3D space with associated normal during encoding.

• PPP encoding. The UPDATECOLs and DELETEs are sent
directly to the PPP encoding unit. It converts all points from
image coordinates with eventual depth information to real 3D
points, and attaches referencing information needed for
updates and deletions. Furthermore, it stores all active point
samples in a caching structure called the point-cache. This
cache is needed for faster processing of UPDATE and DELETE
operators. Eventually, all operators are encoded, compressed
and sent to the remote side [9].
The result of the PPP is a stream of operations, i.e. point sam-

ple INSERTs, UPDATECOL and UPDATEPOS and DELETEs in 3D–
space, which is sent to the rendering side over the main transmis-
sion link.
• Rendering. The rendering unit is composed of decoding the

stream of operations, and the rendering itself. Rendering can be
done asynchronously to the acquisition frame rate. Currently, a
variant of EWA surface splatting [24] is used.

4.3 Results
We evaluated different configurations of the differential coding
framework. To this end, we simulated real-time processing of a
3D video sequence of 100 frames using the recording system
(Section 5) performing the differential scheme on all cameras.
Camera control was disabled and, hence, no progressive sampling
is performed. This leads to significantly higher bit rates than in a
real-time session [20] since all pixels are processed in each frame.

We evaluated two parameters of the update operators. The
positional update threshold denotes the maximum absolute depth
difference between clusters in subsequent frames. Since we have
a metric calibration at our disposal we can define this threshold in
meters. Hence, a threshold of 0.04 denotes a maximum absolute
difference in the depth value of cm. The color update thresh-
old denotes the maximum absolute difference between the RGB
color channels of a pixel in subsequent frames. Hence, a threshold
of 16:8:16 denotes that the maximum color intensity difference
for the R- and B-channels is , and for the G-channel.

Positional Updates (UPDATEPOS). Figure 6 shows rendered
images from these sessions with varying positional update thresh-
old after 100 frames of differential coding. The color update
threshold is held constant in the configuration 16:8:16. As can be
seen clearly in the difference images in Figure 7, differential free-
viewpoint video leads to block artifacts if the threshold is set too

different positional updates configurations. We compared the cor-
rect and differentially updated depth images and averaged the
result over all frames of the sequence. We see that the quality of
the differential depth images is very high for all evaluated thresh-
olds. But for thresholds over 0.02 on average more than half of
the fragments get updated in each frame which leads to a high bit
rate in the real-time stream. Nevertheless, even with a threshold
of 0.04 decent image quality can be achieved.

Color Updates (UPDATECOL). Figure 8 shows rendered images
from the simulated real-time sessions with varying color update
threshold after 100 frames of differential coding. The positional
update threshold is held constant at 0.02. Figure 9 shows differ-
ence images for a camera contributing to the rendered result in
Figure 8. We see that the error is smoothly distributed over the
whole image.

As can be seen in Table 2 we can cut down the bit rate signifi-
cantly by setting a high color update threshold. Although the
PSNR values for high thresholds forebode low color quality the
rendered results still look satisfactory. For a threshold of 8:16:8
on average 2’700 fragments get color updated out of a total num-
ber of 12’200 per frame. By increasing the threshold to 48:24:48
we can lower the number of color updates to an average of 1’200

4±

16± 8±

Figure 6: Rendered images in differential FVV evaluating posi-
tional updates. a) threshold 0.04, b) threshold 0.02, c) threshold
0.01, d) threshold 0.005.

Figure 7: Difference images for positional updates evaluation
comparing correct and differentially updated depth images, from a
camera contributing to the view in Figure 6, magnified by a factor
of 5. a) threshold 0.04, b) threshold 0.02, c) threshold 0.01,
d) threshold 0.005.

Table 1: Results from positional updates in differential FVV,
PSNR values and bit rates for different positional update thresh-
olds comparing correct and differentially updated depth images at
15 fps, from a camera contributing to the view in Figure 6.

UPDATEPOS
threshold

PSNR [dB]
total bit rate
[Mbps]

UPDATEPOS
only [Mbps]

0.04 35.4 4.81 2.10

0.02 37.8 6.18 3.46

0.01 40.6 8.06 5.34

0.005 44.1 10.10 7.38

a) b) c) d)

a) b) c) d)

fragments per frame. We refer the reader to [19, 20] for an in-
depth technical discussion of the real-time free-viewpoint video
system.

5 FREE-VIEWPOINT VIDEO RECORDING

A 3D video recorder is a system capable of recording, processing,
and playing three-dimensional video from multiple points of
view. First, 2D video streams are recorded from several synchro-
nized digital video cameras and pre-processed images are stored
to disk. An off-line processing stage converts these images into
time-varying three-dimensional data and stores this 3D video to
disk. Dynamic point samples are a suitable primitive for such a
system. We propose two encoding techniques, one building a hier-
archical point-based data structure and one that encodes the data
in image-space. The latter guides the way to the usage of conven-
tional video coding techniques for FVV. A 3D video player
decodes and renders 3D videos from hard-disk in real-time, pro-
viding interaction features known from common video cassette
recorders, like variable-speed forward and reverse, and slow
motion. 3D video playback can be enhanced with novel 3D video
effects such as freeze-and-rotate and arbitrary scaling.

We refer the reader to [19] for an in-depth technical discus-
sion of the free-viewpoint video recording system and its coding
techniques.

5.1 Object-space Compression

For object-space compression of free-viewpoint video data we
use the PRk-tree [21] as data representation for a dynamic point
cloud. These trees, which represent the reconstructed 3D video
frames, can be stored using a space efficient and progressive rep-
resentation. In order to achieve a progressive encoding, we
traverse a tree in a breadth-first manner. Hence, we first encode
the upper-level nodes, which represent an averaged representation
of the corresponding subtree. As suggested in [4], a succinct stor-
age of the 3D representation can be achieved by considering sepa-
rately the different data types it contains. We distinguish between
the connectivity of the PRk-tree, which needs to be encoded with-
out loss, and the position of the points, color and normal informa-
tion, where the number of allocated bits can be traded against
visual quality and lossy encoding is acceptable.

We follow the algorithm from [7] to encode the connectivity
of the tree. Position information is encoded using a two step pro-
cess consisting of an approximation and a refinement step by
encoding the error using a Laplace quantizer. The color data is
encoded in YUV color space with a quantization scheme using
twice as much bits for the Y component than for the U and V
components, respectively. The normal vectors are encoded using
quantized spherical coordinates. We normalize the vectors before
encoding and then allocate a certain amount of bits for each of the
two angles. Table 3 summarizes the storage requirements for the
different data types per node and compares them to the initial data
size. For lossless encoding of the connectivity of the PRk-tree, we
use a scheme coming close to the information theoretic bound.
The indicated values for the remaining data types are those which
provided us with visually appealing results.

Consecutive frames in a 3D video sequence contain a lot of
redundant information, i.e. regions of the object remaining almost
static, or, changes which can be efficiently encoded using tempo-
ral prediction and motion compensation algorithms. However, the
efficient computation of 3D scene flows is non-trivial. Detailed
discussion of object-space FVV compression can be found in [8].

5.2 Image-space Compression

Alternatively, we can organize and compress the free-viewpoint
video data in image-space. To this end, we use an image-space
representation and data format adopted by MPEG as an extension
of the MPEG-4 AFX standard. In the standard, this representation
is termed depth image-based representations (DIBR) Version 2
used for high-quality rendering of point-sampled objects. Com-
bined with suitable coding methods it is capable of streaming and
displaying sparse multi-view video data from arbitrary view-

Figure 8: Rendered images in differential FVV evaluating color
updates. a) RGB thresholds 16:8:16, b) RGB thresholds 32:16:32,
c) RGB thresholds 48:24:48, d) RGB thresholds 24:8:24.

Figure 9: Difference images for color updates evaluation compar-
ing correct and differentially updated color images, from a camera
contributing to the view in Figure 8, magnified by a factor of 5.
a) RGB thresholds 16:8:16, b) RGB thresholds 32:16:32, c) RGB
thresholds 48:24:48, d) RGB thresholds 24:8:24.

Table 2: Results from color updates in differential FVV, PSNR
values and bit rates for different color update thresholds compar-
ing correct and differentially updated color images, from a camera
contributing to the view in Figure 8.

UPDATECOL
thresholds

PSNR [dB]
total bit rate
[Mbps]

UPDATECOL
only [Mbps]

16:8:16 38.3 6.17 1.95

32:16:32 32.8 5.44 1.21

48:24:48 29.7 5.10 0.87

24:8:24 37.7 6.09 1.86

a) b) c) d)

a) b) c) d)

Table 3: Memory requirements for one PR27 tree.

name data type raw [bits]
compressed
[bits]

position float[3]

color char[3]

normal float[3]

noOfChildren unsigned char

children *PRkNode

total 1088 37

3 32⋅ 3 3 3+ +
3 8⋅ 6 3 3+ +
3 32⋅ 8
8

2 1 lg 27+ +
27 32⋅

points. It is based on the fundamental concept of storing all infor-
mation describing a scenes visual appearance in multi-channel
video images. Each pixel’s channels define different attributes of
discrete point samples of observed surfaces. These include color,
position, and optional data needed for high-quality rendering.
Multi-channel multi-view video compression can be implemented
with standard MPEG video coding tools and ready-available
video coding methods can thus be reused. Consequently, a com-
plete free-viewpoint video system can be built using only MPEG-
standardized tools—to our knowledge the first of its kind. Figure
10 illustrates this image-space free-viewpoint video framework.

The image-space FVV framework is discussed in detail in
[19] and a novel progressive video coding method for this repre-
sentation is proposed in [10]. Figure 11 shows rendered image-
space FVV results using MPEG-4 as coding method at different
bit rates.

6 CONCLUSIONS AND FUTURE WORK
In this paper we investigated representations, coding methods and
frameworks for free-viewpoint video using sparsely arranged
video cameras. We presented a novel primitive which allows to
represent real-world objects by dynamic point samples which
handle geometry and appearance of three-dimensional surfaces in
a unified way. Albeit the presented frameworks and results, free-
viewpoint video is still a challenging and emerging visual media
and there is plenty of room for future work, e.g. improving the
quality of free-viewpoint video, handling dynamic scenes, and
interacting with or editing this spatio-temporal multi-view video
data.

ACKNOWLEDGEMENTS
We thank Stefan Hösli, Peter Kaufmann, Nicky Kern, and Chris-
toph Niederberger for implementing parts of the system. Special
thanks to all members of the blue-c team for many fruitful discus-
sions, Wojciech Matusik for sharing the IBVH source code with
us, Hanspeter Pfister and Aljoscha Smolic for interesting discus-
sions, and Reto Lütolf for many proof-reading sessions. This
work is carried out in the context of the blue-c project, funded by
ETH grant No. 0-23803-00 as an internal poly-project.

REFERENCES
[1] M. Botsch and L. Kobbelt. High-quality point-based rendering on

modern gpus. In Proceedings of Pacific Graphics 2003, pages 335 –
442. IEEE Computer Society Press, 2003.

[2] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Seidel. Free-view-
point video of human actors. In Proceedings of SIGGRAPH 2003,
pages 569–577. ACM Press / ACM SIGGRAPH, 2003.

[3] S. E. Chen. Quicktime VR - an image-based approach to virtual
environment navigation. In Proceedings of SIGGRAPH 95, pages
29–38. ACM Press, Addison Wesley, 1995.

[4] M. Deering. Geometry compression. In Proceedings of SIGGRAPH
95, pages 13–20. ACM SIGGRAPH, Addison Wesley, 1995.

[5] C. Fehn. Depth Image-Based Rendering (DIBR), compression and
transmission for a new approach on 3D-TV. In Proceedings of Ste-
reoscopic Displays and Applications, 2004.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The
lumigraph. In Proceedings of SIGGRAPH 96, pages 43–54. ACM
SIGGRAPH, Addison Wesley, 1996.

[7] G. Jacobson. Space-efficient static trees and graphs. In 30th Annual
Symposium on Foundations of Computer Science, pages 549–554.
IEEE Computer Society Press, 1989.

[8] E. Lamboray. A Communication Infrastructure for Highly-Immer-
sive Collaborative Virtual Environments. PhD thesis, ETH Zurich,
No. 15618, 2004.

[9] E. Lamboray, S. Wuermlin, and M. Gross. Real-time streaming of
point-based 3D video. In Proceedings of the IEEE Virtual Reality
2004 conference, pages 91–98. IEEE Computer Society Press,
March 2004.

[10] E. Lamboray, S. Würmlin, M. Waschbüsch, M. Gross, and
H. Pfister. Unconstrained free-viewpoint video coding. In Proceed-
ings of ICIP 2004, 2004.

[11] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of
SIGGRAPH 96, pages 31–42. ACM SIGGRAPH, Addison Wesley,
1996.

[12] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan.
Image-based visual hulls. In Proceedings of SIGGRAPH 2000,
pages 369–374. ACM Press / ACM SIGGRAPH, 2000.

[13] W. Matusik and H. Pfister. 3D TV: A scalable system for real-time
acquisition, transmission, and autostereoscopic display of dynamic
scenes. In Proceedings of SIGGRAPH 2004. ACM Press / ACM
SIGGRAPH, 2004.

[14] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface
elements as rendering primitives. In Proceedings of SIGGRAPH
2000, pages 335–342. ACM SIGGRAPH, Addison Wesley, 2000.

[15] W. T. Reeves. Particle systems - a technique for modeling a class of
fuzzy objects. In Proceedings of SIGGRAPH 83, pages 91–108.
ACM Transactions on Graphics, 1983.

[16] L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface
splatting: A hardware accelerated approach to high quality point ren-
dering. In Proceedings of Eurographics 2002, COMPUTER
GRAPHICS Forum, Conference Issue, pages 461–470, 2002.

[17] A. Smolic and D. McCutchen. 3DAV exploration of video-based
rendering technology in MPEG. IEEE Transactions on Circuits and
Systems for Video Technology, Special Issue on Immersive Commu-
nications, 14(9):348–356, 2004.

[18] S. Vedula, S. Baker, and T. Kanade. Spatio-temporal view interpo-
lation. In Proceedings of the 13th Eurographics Workshop on Ren-
dering, pages 65–76, 2002.

[19] S. Würmlin. Dynamic Point Samples as Primitives for Free-view-
point Video. PhD thesis, ETH Zurich, No. 15643, 2004.

[20] S. Würmlin, E. Lamboray, and M. H. Gross. 3D video fragments:
Dynamic point samples for real-time free-viewpoint video. In Com-
puters & Graphics 28(1), Special Issue on Coding, Compression and
Streaming Techniques for 3D and Multimedia Data, pages 3–14.
Elsevier Ltd., 2004.

[21] S. Würmlin, E. Lamboray, O. G. Staadt, and M. H. Gross. 3D video
recorder. In Proceedings of Pacific Graphics 2002, pages 325–334.
IEEE Computer Society Press, 2002.

[22] L. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski.
High-quality video view interpolation using a layered representa-
tion. In Proceedings of SIGGRAPH 2004. ACM Press / ACM SIG-
GRAPH, 2004.

[23] M. Zwicker. Continuous Reconstruction, Rendering, and Editing of
Point-Sampled Surfaces. PhD thesis, ETH Zurich, No. 15135, 2003.

[24] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting.
In Proceedings of SIGGRAPH 2001, pages 371–378. ACM Press /
ACM SIGGRAPH, New York, 2001.

Figure 10: The image-space FVV video recording pipeline.

Figure 11: Rendered FVV images with different coding methods.
a) uncompressed data, b) MPEG-4 at total bit rate of 512 kbps per
camera, c) MPEG-4 at total bit rate of 128 kbps per camera.

1011001111010

1010001001000

0101111110100

0010011110000

1101101101010

0101010001001

0011001101001

001...

processing encodingacquisition decoding rendering

a) b) c)

