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Abstract

Current surface-based methods for interactive freeform editing of high resolution 3D models are very powerful,
but at the same time require a certain minimum tessellation or sampling quality in order to guarantee sufficient ro-
bustness. In contrast to this, space deformation techniques do not depend on the underlying surface representation
and hence are affected neither by its complexity nor by its quality aspects. However, while analogously to surface-
based methods high quality deformations can be derived from variational optimization, the major drawback lies
in the computation and evaluation, which is considerably more expensive for volumetric space deformations.
In this paper we present techniques which allow us to use triharmonic radial basis functions for real-time freeform
shape editing. An incremental least-squares method enables us to approximately solve the involved linear systems
in a robust and efficient manner and by precomputing a special set of deformation basis functions we are able
to significantly reduce the per-frame costs. Moreover, evaluating these linear basis functions on the GPU finally
allows us to deform highly complex polygon meshes or point-based models at a rate of 30M vertices or 13M splats
per second, respectively.

1. Introduction

A very popular and important aspect of geometry process-
ing is the interactive deformation of geometric models. In
this paper we do not consider the ab-initio creation of mod-
els from scratch, but rather the modification of existing mod-
els, like those acquired by range scanning or by the tessel-
lation of a CAD model originally represented by NURBS
surfaces. Usually the desired target shape is not (exactly)
known beforehand, and hence has to be found by exploring
different shape deformation options in an interactive manner.
As a consequence, a practically useful shape editing method
has to be sufficiently fast to allow for real-time deformations
even of complex models.

Besides performance, the two other main requirements for
shape editing techniques are exact control and high quality
of the deformation. To satisfy the first requirement the de-
formation method has to be able to incorporate arbitrary dis-
placement constraints pi 7→ p′i , which map a point pi to its
desired target position p′i . Obviously this also allows to ex-
actly prescribe the support of the modification by mapping
all fixed vertices fi outside the support region onto them-
selves: fi 7→ fi.

High quality deformations should meet these constraints
and otherwise be free of unnecessary oscillations, follow-
ing the principle of simplest shape for fair surface genera-
tion [Sap94]. In that context, smooth or fair thin-plate-like
surfaces are derived by a constrained variational optimiza-
tion of some curvature energy functional [MS92, WW92].
Fair deformations are analogously computed as the differ-
ence of two fair surfaces S and S′, i.e., as a fair displacement
function d : S →S′. This deformation function is controlled
by adjusting the boundary constraints of the optimization,
which is why approaches of this kind are called boundary
constraint modeling (BCM).

Most existing BCM approaches are surface-based, i.e.,
they can be thought of as computing a fair deformation field
on the surface S. If the underlying surface representation is
a triangle mesh, computing the deformation field usually re-
quires to solve a linear Laplacian system on S. An apparent
drawback of such methods is that their computational effort
and numerical robustness are strongly related to the com-
plexity and quality of the surface tessellation.

This tight connection unfortunately also prevents the
derivation of a uniform deformation framework for several
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types of surface representations. Here, point-sampled ge-
ometries [ZPvBG01] are a particularly interesting alternative
to triangle meshes, since they provide the same approxima-
tion power, but offer additional flexibility, since individual
splats do not have to be connected in a C0 manner [KB04].

The above problems are avoided by volumetric space de-
formation techniques, that compute a tri-variate deforma-
tion function d : IR3 → IR3, which is used to transform
all points of the original surface S to the modified surface
S′ = {d(p) |p ∈ S}. Since the deformation does not depend
on a particular surface representation, this uniform deforma-
tion framework can be applied to all explicit surface rep-
resentations, e.g., by transforming all vertices of a triangle
mesh or all splat centers of a point-based model.

In this paper we use radial basis functions (RBF) for vol-
umetric boundary constraint modeling, as they provide max-
imum flexibility w.r.t. constraint or control point placement,
as well as high quality deformations of provable fairness
when using the triharmonic radial basis function ϕ(r) = r3.
The problem of this optimal basis function is that the linear
system required for computing the deformation is dense and
therefore difficult to solve. Because of this, most existing
approaches use simpler compactly supported basis functions
and trade superior fairness for computational efficiency.

Due to their high quality we nevertheless advocate for the
use of triharmonic radial basis functions and derive the nec-
essary techniques to overcome their computational restric-
tions and allow for real-time deformations. In Sect. 3 we first
present a modeling metaphor for setting up the deformation
constraints for the linear RBF system (Sect. 4). In order to
be able to efficiently solve the resulting dense linear systems,
we introduce an incremental least-squares solver in Sect. 5.

The high per-frame costs for computing and applying a
deformation can be significantly reduced by precomputing
a set of linear basis functions for the deformation (Sect. 6).
Additionally using the deformation’s Jacobian enables the
individual transformation of each point and its normal vec-
tor. When implemented as a vertex shader on modern GPUs,
this technique provides real-time deformation of up to 30M
vertices or 13M surface splats per second (Sect. 7).

We will show in Sect. 8 that our space deformation
technique can efficiently be applied even when either the
mesh quality, the mesh complexity, non-manifold config-
urations, or the surface representation in general prevent
the use of surface-based deformation methods. However,
we have to emphasize that if the input model allows for
both space- and surface-based approaches, the latter usually
provide more fine-grained control of boundary constraints,
like the segment-wise specification of boundary continuities.
Moreover they enable geodesically anisotropic bending and
more plausible detail preservation under extreme deforma-
tion [BK04a]. However, our method outperforms existing
space- and surface-based modeling approaches in terms of
frame rates due to its efficient GPU implementation.

2. Related Work

In order to efficiently compute a deformation field of min-
imal curvature-energy, surface-based BCM approaches use
variational calculus to derive a PDE that is then solved
for the optimal deformation function. This PDE is dis-
cretized to a large sparse linear (bi-)Laplacian system,
which is solved for (the displacements of) all free vertices
[KCVS98, BK04a, LSCO∗04, SCOL∗04, YZX∗04].

Since during a modeling session this linear system has to
be solved each time the user interactively changes the con-
straints, efficient sparse solvers of linear time complexity
are required [BBK05], or special deformation basis func-
tions have to be precomputed [BK04a]. Notice that in the
presence of degenerate triangles the discrete Laplacian op-
erator is not defined and the linear system becomes singu-
lar. In this case quite some effort has to be spent to still
be able to compute fair deformations for the numerically
ill-conditioned meshes, like eliminating degenerate triangles
[BK01] or even remeshing the complete surface [BK04b].

Extending these mesh-based approaches to point-sampled
geometries is not straightforward, since the missing neigh-
borhood relation considerably complicates the generaliza-
tion of the Laplacian operator to this surface representa-
tion [CRT04]. In their shape modeling approach, Pauly et
al. [PKKG03] therefore chose a simpler distance-based de-
formation propagation, thereby trading provably high defor-
mation quality for simpler and more efficient computations.

Space deformation techniques avoid these problems, be-
cause they implicitly modify objects by deforming their em-
bedding space. As a consequence, these methods are influ-
enced neither by the complexity nor by the quality of a sur-
face tessellation.

The classical freeform deformation (FFD) method [SP86]
and its variants [Coq90, MJ96] represent the space defor-
mation by a tensor-product spline function, which requires
complex user-interactions and might cause aliasing prob-
lems, as described in [BK04a]. In order to satisfy given dis-
placement constraints, the inverse FFD method [HHK92]
solves a linear system for the lattice deformation. This sys-
tem may be over- as well as under-determined and hence is
solved by least-squares or least-norm methods, respectively.
The latter, however, minimizes the amount of control point
movements, which does not necessarily imply a fair defor-
mation of low curvature energy.

Other approaches deform a so-called control handle
(a point, curve, or surface region) and propagate its
transformation into its Euclidean or geodesic vicinity
[SF98, BK03a, PKKG03]. The two-handed modeling inter-
face Twister [LKG∗03] also falls into this category. In con-
trast to boundary constraint modeling approaches, these
methods avoid the per-frame solution of a linear system and
are therefore highly efficient, but in consequence also lose
global optimality properties like curvature energy minimiza-
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tion. In addition, these methods may fail to smoothly in-
terpolate (the displacement of) several independently con-
trolled and arbitrarily shaped handles.

Radial basis functions (RBFs) are commonly used for all
kinds of scattered data interpolation problems, since they
are able to interpolate arbitrary constraints in a smooth
manner, like for instance fitting a scalar-valued signed dis-
tance function to the given sample points and their nor-
mals [SPOK95, CBC∗01, MYC∗01, OBS04, TRS04]. A tri-
variate scalar RBF is defined by a set of centers c j ∈ IR3 and
weights w j ∈ IR as

f (x) = ∑ j w j ϕ
(∥∥c j−x

∥∥)
+ p(x)

= ∑ j w j ϕ j (x)+ p(x) ,
(1)

where ϕ j (·) = ϕ
(∥∥c j−·

∥∥)
is the basis function correspond-

ing to the jth center c j and p(x) is a polynomial of low de-
gree used to guarantee polynomial precision.

The choice of ϕ has a strong influence on the computa-
tional complexity and the resulting surface’s fairness: While
compactly supported radial basis functions lead to sparse lin-
ear systems and hence can be used to interpolate several hun-
dred thousands of data points [MYC∗01, OBS03, OBS04],
they do not provide the same degree of fairness as basis
functions of global support [CBC∗01]. It was shown by
Duchon [Duc77] that for the basis function ϕ(r) = r3 and
quadratic polynomials p(·) ∈ Π2, the function (1) is trihar-
monic (∆3 f = 0) and hence minimizes the energy

‖ f‖2 =
Z

IR3
f 2
xxx (x)+ f 2

xxy (x)+ . . .+ f 2
zzz (x)dx .

These trivariate functions are conceptually equivalent to the
minimum variation surfaces of [MS92] and the triharmonic
surfaces used in [BK04a].

Due to the global support of this RBF the resulting lin-
ear system (see Sect. 4) is dense and the cubic complexity
for solving it limits these methods to a few thousand sample
points. Carr et al. [CBC∗01] use a fast multi-pole evaluation
method to derive an efficient iterative solver with linear time
complexity, such that globally supported basis functions can
be used even for highly complex point sets. Unfortunately,
the implementation of their method is very complicated and
only commercially available.

First shape modeling approaches based on RBFs define
the original surface S as an RBF interpolant of a given set
of point and normal constraints, and modify the surface by
changing these interpolation constraints [TO02, RTSD03].
Both methods use globally supported basis functions and are
therefore limited to a small number of constraints, restricting
them to smooth blobby surfaces without fine surface details
or sharp features.

Since our goal is not a smooth surface, but rather the
smooth deformation of a given surface, the more promising

way is to represent the space deformation function (instead
of the surface itself) by a vector-valued RBF

d(x) = ∑
j

w j ϕ j (x)+p(x) , (2)

where the weights w j ∈ IR3 are computed to smoothly inter-
polate a given set of displacement constraints. To our knowl-
edge, all existing methods of this kind use compactly sup-
ported basis functions in order to achieve faster response
times [BR94, KSSH02], which, in turn, limits their fairness
and additionally restricts the range of possible deformations,
because a fixed support radius for the basis functions has to
be prescribed upfront.

Because of their superior fairness we propose to use glob-
ally supported triharmonic radial basis functions. In the fol-
lowing we therefore present techniques that allow us to use
these functions for real-time shape editing even for complex
surfaces and complex deformations.

3. Modeling Metaphor

The design of the modeling metaphor is crucial for a practi-
cally useful shape editing framework, since it is responsible
for translating the deformation the designer has in mind into
the boundary constraints of the variational optimization, i.e.,
into a set of displacement constraints pi 7→ p′i , which is then
to be smoothly interpolated by a radial basis function. Our
user interface closely follows the intuitive BCM approach
presented in [KCVS98, BK04a], but additionally extends it
by non-rigid handle curves.

The support of the modification can be an arbitrary sur-
face region, i.e., a set of vertices {p1, . . . ,pN}, and is spec-
ified by the user by drawing it onto the surface. Within this
region a control handle is selected as another set of points
{h1, . . . ,hh}, which is then transformed by specifying an
affine mapping m(·) using some kind of manipulator wid-
get, yielding h′i := m(hi). Having the surface partitioned
into support vertices pi, handle vertices hi, and the remain-
ing fixed vertices fi, the displacement constraints are hi 7→ h′i
and fi 7→ fi. These displacements are smoothly interpolated
by a RBF d(·) as described in the next section, and finally
all points within the support region are transformed by it:
p′i = d(pi) ∈ S′.

The triharmonic basis function ϕ(r) = r3 guarantees a
fair deformation function d(·) without unnecessary oscilla-
tions, which is able to interpolate C2 boundary constraints.
In order to achieve a smooth connection of the support re-
gion with the transformed handle and the fixed part of the
surface, surface-based approaches specify (approximate) C2

constraints for triharmonic surfaces by three rings of con-
strained vertices [BK04a] (cf. Fig. 1, left).

Analogously, it is sufficient to specify the constraints of
a space deformation by three rings of vertices, or, geomet-
rically equivalent, by a band of three points thickness along
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Figure 1: The blue support region is deformed by smoothly interpolating the affinely transformed green control handle. The
fair triharmonic surface-based deformations of [BK04a] (left) can be reproduced by the triharmonic space deformation, where
the C2 constraints are defined by the red bands of three points thickness (center). However, the number of centers required for
a sufficiently accurate approximation (see Sect. 5) is usually significantly lower, like 20% in this example (right).

the support’s boundary: Interpolating one boundary contour
in a C2 Hermite manner is conceptually equivalent to inter-
polating three nearby offset contours, since the latter cor-
responds to a finite difference approximation of the first and
second derivatives, which is sufficiently accurate because the
RBF displacement function is smooth (cf. Fig. 1, center).

This simple and intuitive rigid control handle interface
turned out to be sufficiently powerful for most modifica-
tions, especially since more complicated deformations can
be decomposed into a sequence of simpler ones. However,
in some CAD systems the bending behavior of a surface is
intuitively controlled by specifying and modifying curves on
the surface. Such non-rigid control curves can easily be in-
tegrated into our framework: An initial spline curve c(t) is
constructed by interpolating a set of selected points on the
surface S, and is then deformed to c′ (t) by moving its spline
control points. A sufficiently dense sampling of both c and
c′ then yields the required displacement constraints:

hi := c(ti) 7→ c′ (ti) =: h′i .

This control curve metaphor is particularly suited for space
deformations, as in this case the curve does not have to lie
exactly on the surface and the constraint points c(ti) are not
restricted to vertex positions, as they usually are for surface-
based approaches (cf. Fig. 3, left).

4. RBF Interpolation

After setting up the displacement constraints for the handle
points and fixed points as described in the last section, an
RBF deformation function (2) interpolating the constraints
d(fi) = fi and d(hi) = h′i has to be found. Combining these
constraints into one set d(xi) = bi, for 1≤ i≤m, and select-
ing the RBF centers as ci := xi leads to the symmetric linear
system (

Φ P
PT 0

)(
w j
q j

)
=

(
bi
0

)
, (3)

where Φ ∈ IRm×m and P ∈ IRm×10 are defined by Φi j =
ϕ j (ci) and Pi j = p j (ci), and {p1, . . . , p10} is a basis of the
space of trivariate quadratic polynomials Π2. This system is

solved for the vector-valued RBF weights w1, . . . ,wm and
the vector-valued coefficients q1, . . . ,q10 of the quadratic
polynomial, resulting in the deformation function d(·).

The matrix P and hence the complete system is singular
if all constraints ci lie on a quadric [Mic86]. In such situ-
ations we simply omit the polynomial, which turned out to
not have a large influence and still leads to high quality de-
formations (cf. Fig. 1). For the sake of a simpler notation we
omit the polynomial in all following discussions and focus
on the upper left m×m block only, which we denote as

Φ ·W =
(

F
H′

)
(4)

with weights W = (w1, . . . ,wm)T , fixed vertices F =(
f1, . . . , f f

)T , and handle vertices H′ =
(
h′1, . . . ,h

′
h
)T . The

generalization to the full system (3) is straightforward.

Surface-based approaches solve significantly larger lin-
ear systems for all free vertices p1, . . . ,pN , but due to their
sparsity, these systems can be solved with complexity O(N)
[BBK05]. In contrast, the above system is solved for a rel-
atively small number of weights w1, . . . ,wm only, with m
usually being of the order

√
N (assuming uniform sampling

density). Since ϕ(r) = r3 is globally supported, the m×m
system (4) is dense and its solution has cubic complexity
O(m3) = O(N1.5), resulting in a slightly worse overall com-
putational complexity of the RBF approach. We therefore
improve the performance by using the incremental solver
presented in the next section.

5. Incremental Least Squares Solver

Since the space deformation d(·) is — up to the constraint
specification — independent of the surface tessellation, we
can expect the computational costs to be mainly determined
by the geometric complexity of the deformation itself, rather
than by the resolution of the tessellation: A simple deforma-
tion of a highly over-tessellated mesh should still be simple
to compute. This is reflected by the observation that we usu-
ally do not need all basis functions ϕ1, . . . ,ϕm in order to
solve (4) up to a sufficiently small approximation error.
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Figure 2: Comparing L2 error (left) and matrix condition (right) of incremental approximation methods, which differ in their
center selection strategy and approximation technique. The method of [CBC∗01] leads to a non-monotonically decreasing error
(green), that is worse than an L2-optimal least-squares fit using the same RBF centers (cyan). Since the expensive computation
of these centers optimizes for one particular right-hand side only, we use random selection (blue) or farthest point sampling
(red) in order to select the next center. Since the latter strategy optimizes for linearly independent columns, the condition number
of the resulting matrix is clearly superior to the other approaches (right).

In [CBC∗01] the same observation led to an incremental
method for fitting an implicit function to a dense set of sur-
face samples. Starting from a few basis functions, they in-
crementally improve the approximation by adding more and
more centers (respectively basis functions) at the samples
with maximum error. In order to enforce exact interpolation
at the selected centers c1, . . . ,cn, they solve a n× n system
corresponding to the upper left block of (4) in each refine-
ment iteration. Since the samples are assumed to correspond
to a smooth surface, the approximation error at the remain-
ing constraints cn+1, . . . ,cm is expected to also decrease.

However, it is known that for a prescribed number of ba-
sis functions ϕ1, . . . ,ϕn, a better global error distribution can
be achieved by an optimal L2 approximation considering all
constraints c1, . . . ,cm (cf. Fig. 2, left). This requires solving
the over-determined system corresponding to the left m× n
block of (4) in the least-squares sense, which is most ro-
bustly performed using the QR factorization [GL89].

If we want to incrementally build and refine an RBF ap-
proximation by selecting more and more basis functions un-
til a prescribed L2 error is satisfied, two questions arise:
which basis functions to select, and how to efficiently check
for the current approximation error. The overall computation
time of the incremental method obviously should be lower
than the solution of the full m×m system. As a consequence,
instead of solving at iteration n a new m× n least-squares
system from scratch, the computations from previous itera-
tions should be re-used.

Taking a closer look at the QR factorization [GL89] will
reveal in the following that this method can be adjusted
to incrementally solve a given least-squares system column
by column without introducing any noticeable overhead.

Adding one more basis function ϕi is equivalent to append-
ing one more column to the least-squares system, which we
will show corresponds to one further iteration of an incre-
mental QR solver.

For an over-determined m× n system Ax = b, the right-
hand side will in general not lie in the range of A, i.e., b 6∈
rg(A), and hence the system cannot be solved exactly. The
optimal point x∗ ∈ IRn, which minimizes the L2 norm of the
residual r = Ax∗− b, is characterized by y = Ax∗ being the
orthogonal projection of b onto rg(A). In the restricted and
full QR factorization

A = Q1R = (Q1 Q2)
(

R
0

)
the columns of Q1 ∈ IRm×n provide an orthogonal basis of
rg(A) required for this projection, such that y = Q1QT

1 b and
x∗ = R−1QT

1 b.

Since the combined matrix Q := (Q1 Q2) ∈ IRm×m is or-
thogonal, b can be represented as b = Q1QT

1 b+Q2QT
2 b and

the residual error is∥∥b−Ax∗
∥∥ =

∥∥∥b−Q1QT
1 b

∥∥∥ =
∥∥∥Q2QT

2 b
∥∥∥

=
∥∥∥QT

2 b
∥∥∥ =

∥∥∥(QT b)(n+1):m

∥∥∥ ,

where we exploit the orthogonality of Q2 and denote by
(x)(n+1):m the vector (xn+1, . . . ,xm)T .

The numerically most robust way to compute the QR fac-
torization builds up Q iteratively as a product of orthogonal
Householder reflections QT = HT

m · · ·HT
2 HT

1 by processing
A column by column. During this process QT b is automat-
ically computed by multiplying b with the same sequence
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of Householder reflections, such that the error in the cur-
rent iteration can be computed as ‖(QT b)(n+1):m‖ without
any additional overhead and without even computing the ap-
proximate solution x∗.

The implementation of an incremental version of the QR
factorization is straightforward and requires only a slight re-
ordering of operations when starting from a standard QR fac-
torization algorithm. The steps performed at each iteration n
are sketched as follows:

For n = 1 to m do:

1. Select or construct A’s next column an.

2. Multiply an with all previous Householder
reflections: an← Hn−1 · · ·H1an.

3. Compute next Householder reflection
Hn = H (an) and apply it to an←Hnan and
b← Hnb.

4. Break if
∥∥∥b(n+1):m

∥∥∥ < ε.

Solve triangular n×n system Rx = b.

After exiting the loop, the matrix R = QT A has been
stored in the upper triangle entries of A, and b has been over-
written by QT b. As the Householder reflections can be stored
in A’s lower triangle, the only additional storage is a n-vector
holding the diagonal elements.

When solving the system for several right-hand sides bk,
the QR factorization can be re-used, but may have to be re-
fined depending on the L2 error w.r.t. the new right-hand
side. Notice that adding a new column ai monotonically de-
creases the error for any right-hand side bk, since this cor-
responds to enlarging the space rg(A) by one dimension,
which allows for a better choice of y = Ax∗ (cf. Fig. 2, left).

The missing component is a strategy for selecting the ba-
sis function to be added in the next iteration. Since we want
to re-use the QR factorization to solve the system for several
right-hand sides, we do not try to find the next basis function
ϕ j that would minimize the residual error for one particular
right-hand side. We can, however, choose the basis functions
in a way that optimizes the numerical condition of the result-
ing matrices A and R.

In the presence of (almost) linearly dependent columns
the matrix (4) will become singular, therefore we should
prefer columns that are linearly independent. Since one col-
umn corresponds to the sampling of a basis function ϕ j at
all centers c1, . . . ,cm, two columns a j and ak are (numeri-
cally) dependent if their corresponding centers c j and ck are
too close to each other. As a consequence, a farthest point
sampling, which in each iteration selects the basis func-
tion with the center having the maximum distance to the al-
ready selected ones, will yield a uniform sampling and max-
imally linearly independent columns, resulting in a numeri-
cally well-conditioned matrix (cf. Fig. 1, right, and Fig. 2).
Since the number m of centers ci is rather small, this farthest

point re-ordering can be computed efficiently (below 0.2s in
all examples).

As the incremental version of the QR factorization does
not introduce any overhead besides the error checking, a
full incremental factorization using all columns of (4) takes
about the same time as the standard QR factorization. How-
ever, in all our experiments significantly fewer basis func-
tions n� m had to be used to yield results equivalent to the
exact solution. The approximation quality is controlled by
prescribing a sufficiently small average relative L2 error

‖Ax−b‖
m ‖b‖ =

∥∥∥(QT b)(n+1):m

∥∥∥
m ‖b‖ < ε .

Since the overall complexity of the least-squares method is
quadratic in the number of basis functions n, and the later
evaluation at all free vertices pi is linear, the incremental
method allows for a significant acceleration by reducing the
required n.

6. Basis Function Precomputation

The incremental QR factorization allows for an efficient (ap-
proximate) solution of the linear system (4). During a mod-
eling session, this system has to be solved each time the
user updates the constraints, i.e., moves the control handle
or changes the control curve (fitting). The resulting defor-
mation function d(·) is then used to map all original support
vertices pi ∈ S to the new p′i ∈ S′ (evaluation).

Although the factorization can be re-used, the required
per-frame costs are too high to allow for an interactive edit-
ing of complex models. Notice that both the fitting and the
evaluation process can be the bottleneck, depending on the
number of radial basis functions n and the number of sup-
port vertices N. In order to minimize the per-frame costs, we
extend the idea of precomputed basis functions of [BK04a]
to our RBF deformations. We can write the approximate so-
lution of (4) as

W = Φ
+
n

(
F
H′

)
,

where Φ
+
n represents the least-squares pseudo-inverse of the

left m× n block of (4) [GL89]. Notice that F stays con-
stant during a deformation, and that the handle vertices H
are only affinely transformed and hence can be represented
as an affine combination

H = M (a,b,c,d)T =: MC

using a matrix M ∈ IRm×4 of affine coordinates w.r.t. a lo-
cal coordinate frame defined by four control points C =
(a,b,c,d)T ∈ IR4×3. Moving the handle changes C to C′ =
m(C), such that H′ = MC′. Exploiting this, the above sys-
tem for computing the weights W simplifies to

W = Φ
+
n

(
F
0

)
+ Φ

+
n

(
0
M

)
C′.

c© The Eurographics Association and Blackwell Publishing 2005.



M. Botsch & L. Kobbelt / Real-Time Shape Editing using RBFs

The evaluation of the deformation at all free points P =
(p1, . . . ,pN) is a linear operator in W and can be written as
P′ = ΦN W with (ΦN)i j = ϕ j (pi). Since the new points P′

depend linearly on W , they are consequently also linear in
C′ and can be computed as

P′ = ΦN Φ
+
n

(
F
0

)
︸ ︷︷ ︸

=:BF

+ ΦN Φ
+
n

(
0
M

)
︸ ︷︷ ︸

=:B

C′.

The matrices BF ∈ IRN×3 and B ∈ IRN×4 can be precom-
puted and represent a linear basis function for the deforma-
tion. When written in terms of displacement vectors (δC =
C′−C), this formula simplifies to

P′ = P+BδC.

Hence, the per-frame fitting and evaluation of d(·) can
be replaced by a weighted sum of four frame displacements
δa, δb, δc, and δd for each point pi. The precomputation of
B requires four solutions of (4) with the columns of M as
right-hand sides and the evaluation of the resulting RBF at
the points pi. If several rigid control handles are used, then
for each of them a basis function Bi ∈ IRN×4 can be com-
puted analogously. Notice that also for this precomputation
the incremental QR solver is crucial, as it reduces the com-
putation time from minutes to a few seconds (cf. Table 1).

For the above derivation we exploited the fact that all han-
dle points H can be represented as an affine combination
H = MC of a few control points C and that the correspond-
ing affine coordinates M stay constant during the deforma-
tion. Notice that the same does also hold for the control curve
metaphor introduced in Sect. 3: For spline curves, all sam-
ples

c(ti) =
k

∑
j=0

b j Bk
j (ti)

are actually an affine combination of the curve’s control
points b j, with the weights given by the B-spline basis func-
tions Bk

j (ti). As a consequence, we can precompute the same
kind of linear basis functions for control curves, just the
number of rows of C and columns of M and B changes to
k +1 for a curve defined by k +1 control points.

7. GPU Implementation

The precomputed basis functions allow for efficient shape
editing at a rate of about 1.5M vertices per second. Since
the pure vertex transformation p′i = d(pi) is now sufficiently
fast, other factors become the bottleneck, like updating per-
face and per-vertex normal vectors for triangle meshes or
recomputing the tangent axes for point-based models.

However, we can exploit the fact that the Jacobian Jd (·)∈
IR3×3 of the deformation function d(·) can be computed an-
alytically. It is well known that a point and its normal vector

can be transformed by a deformation and its inverse trans-
posed Jacobian, i.e.,

p′i = d(pi) and n′i = Jd (pi)
−T ni .

Equivalently, the tangent axes of a surface splat are de-
formed by the Jacobian itself, resulting in proper rotations
and anisotropic stretching of splats (cf. Fig. 3).

It seems prohibitively expensive to evaluate and invert the
Jacobian at each point pi, but using exactly the same ideas
as presented in the last section, we can precompute basis
functions for Jd as well. For this we replace the evaluation
of d(·), i.e., the matrix ΦN , by the evaluation of its par-
tial derivatives dx, dy, and dz, yielding the three N×4 basis
function matrices Bx, By, and Bz.

Notice that using basis functions for d(·) as well as for
Jd (·) allows us to individually process each point with its
associated normal vector or tangent axes, since there is no
need to re-compute this derivative information from a (trans-
formed) neighborhood of vertices. As a consequence, all per-
vertex deformation computations can now be delegated to
the GPU by deriving a simple vertex shader for transform-
ing points and normals.

The required input for the shader program are the ba-
sis functions, i.e., the respective rows of B, Bx, By, and Bz,
which are passed as texture coordinates, and the displace-
ment of the control frame δC, which is the same for all ver-
tices and is passed in a global shader variable. Using this
setup, all per-vertex attributes like original position, normal
vector, and basis functions do not change during the inter-
active shape editing process. Hence, this static data can be
stored in more efficient GPU or AGP memory, which mini-
mizes data transfer costs and is a common optimization for
high performance rendering. Only a new frame δC has to be
transferred for each frame.

Since each vertex has to be transformed several times for
rendering all of its incident triangles, we employ a simple
greedy triangle re-ordering to better exploit the GPU’s ver-
tex cache [Hop99], followed by a vertex re-ordering to min-
imize GPU memory cache misses. This simple optimization
reduces the average number a vertex has to be processed to
about 1.3–1.5, which can improve the performance by a fac-
tor of 2–3, depending on the initial triangle ordering of the
model.

Due to the high and steadily increasing streaming perfor-
mance of today’s GPUs, delegating the complete geometry
deformation to a vertex shader is more than one order of
magnitude faster than evaluating the basis functions on the
CPU. Notice that for deformations using several indepen-
dently controlled handle regions or handle curves, the user
can only manipulate one handle at a time, such that only the
basis functions corresponding to the currently active handle
have to be uploaded to the GPU, thereby saving GPU mem-
ory and reducing transfer costs even further.
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Figure 3: Non-rigid control curves are an intuitive and powerful metaphor for controlling the surface’s bending behavior (left),
which can be applied to both polygon meshes and point sets. When applying a volumetric deformation to a set of elliptical splats,
the Jacobian of the deformation function can be used to compute transformed normal vectors or tangent axes. This allows for
exact and hole-free editing of point-sampled geometries. The correct anisotropic stretching can clearly be noticed for the down-
scaled splats shown in the closeup images on the right.

8. Results & Discussion

In this section we quantify the performance gains on com-
plex meshes achieved by the incremental least-squares
solver, the precomputed basis functions, and the GPU-
based implementation. All timings we give were taken on
a 3.0GHz Pentium4 machine, equipped with a nVIDIA
GeForce 6800 Ultra GPU, and running Linux.

The deformations depicted in Figs. 4–7 show the flexi-
bility of our deformation framework; more examples can be
found in the accompanying video. The timings for comput-
ing these deformations using the different techniques pro-
posed in this paper are given in Table 1. It can be seen that
a naïve solution of the full system (4) (i.e., using all RBF
centers ci) is up to two orders of magnitude slower than the
incremental QR solver, for which a sufficiently small error
tolerance of 10−7 guaranteed comparable results.

The incremental QR solver also allows for an efficient
precomputation of basis functions for d(·) and its Jacobian
Jd (·). These in turn enable interactive shape editing, as they
reduce the per-frame computation time by another order of
magnitude. Moreover, delegating the complete computation
to the GPU improves performance by a further order of mag-
nitude, providing real-time deformations at 30fps of com-
plex models consisting of 2M triangles.

Since space deformations are independent of the surface
representation, the same framework can also be used to de-
form point-sampled geometries. Transforming the splats’
tangent axes by Jd (·) correctly stretches splats and retains a
hole-free surface representation (cf. Fig. 3). Our GPU-based
deformation integrates seamlessly with current hardware ac-
celerated point-based rendering methods [BK03b, KB04].
However, since for high quality visualization two rendering
passes are required, the effective frame rate reduces to 10M–
13M splats per second.

Figure 4: Opening and closing the mouth of the Dragon.
The holes and degenerate triangles contained in this model
are no problem for our RBF space-deformation method.

Figure 5: A bowing deformation of a scanned Chinese
statue by bending its back and neck.
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Model Vertices Support LU IQR Basis Precomp. CPU GPU

Dragon 437k 36k 31.6 (2352) 10.2 (1310) 17.8 (1680) 0.127 0.018

Bunny 557k 120k 212 (4913) 2.54 (280) 4.9 (340) 0.254 0.018

Male 332k 270k 153 (4136) 1.99 (160) 7.5 (290) 0.271 0.011

Statue 1M 355k 307 (5336) 4.01 (220) 7.6 (230) 0.537 0.032

Bust 984k 880k 215 (4129) 4.68 (130) 16.0 (130) 0.794 0.030

Table 1: Timings (in seconds) for computing and rendering shape deformations on a range of different models, whose com-
plexities and numbers of active (blue) vertices is given in columns 2 and 3. Computing a deformation by exactly solving the full
system (4) using LAPACK’s LU factorization (similar to [TO02, RTSD03]) is significantly slower than computing an approxi-
mate but visually equivalent solution by using the incremental QR solver (IQR). The number of required basis functions is given
in brackets; the LU solver uses all of them. After precomputing deformation basis functions (Basis Precomp), shape editing can
be done at interactive rates on the CPU, and even one further order of magnitude faster on the GPU.

Figure 6: In three subsequent deformations, the Bunny’s
ears were bent and its head was lifted and rotated.

Figure 7: Deformation of the Male model: Fine-scale edit-
ing by applying control curve deformations to mouth and
eyebrow (center). Coarse scale modification using two si-
multaneous handles (right).

Table 2 reveals that our GPU-based space deformation
runs faster than recent surface-based methods of [YZX∗04]
and [BK04a], which have to solve linear systems for the
free (blue) vertices. Notice that the Dragon and Bust model
cannot be handled by the surface-based methods, since the
Dragon contains holes in the support region (see accom-

Model ∆: [YZX∗04] ∆
2: [BK04a] RBF

Bunny 5.05 / 0.37 16.4 / 0.254 4.9 / 0.018

Male 11.51 / 0.91 39.2 / 0.271 7.5 / 0.011

Warrior 16.29 / 1.12 58.6 / 0.537 7.6 / 0.032

Table 2: Comparison of precomputation and per-frame
computation cost (in seconds) for different modeling ap-
proaches. The timings for Poisson editing [YZX∗04] are a
very conservative lower bound, since they correspond to
only the factorization and back-substitution of a Poisson sys-
tem, using a more efficient direct solver [BBK05] compared
to the original paper. The approach of [BK04a] was used
as freeform deformation only and solves bi-Laplacian sys-
tems using the same solver. The RBF approach turned out to
be more efficient in terms of both precomputation and per-
frame costs.

panying video) and the Bust would require the solution of
a 880k×880k sparse linear system. Since the method of
[SCOL∗04] solves an even three times larger and less sparse
least-squares Laplacian system simultaneously for the x, y,
and z components, their approach would fail for most of the
complex examples due to 2GB main memory limitation.

Fig. 8 compares our method to surface-based freeform
deformation and surface-based multiresolution deformation,
both based on [BK04a]. While the result of our freeform
space-deformation is slightly better than that of the surface-
based freeform deformation, the lack of local-frame detail
preservation leads to lower quality compared to true mul-
tiresolution techniques [BK04a, YZX∗04, SCOL∗04]. This
can also be observed for the extreme bending deformation
shown in the accompanying video.
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Figure 8: Comparison of surface-based freeform defor-
mation (left), surface-based multiresolution deformation
(center), and freeform space deformation (right).

The occasionally unintuitive behavior of the space de-
formation can also be noticed on the spikes of the back
of the Dragon’s head (cf. Fig. 4), where the technique of
[SCOL∗04] was shown to yield a more plausible solu-
tion. Another limitation of space deformations is that sur-
face parts which have large geodesic distance but small Eu-
clidean distance (e.g., two finger-tips), might influence each
other when deformed. However, this problem can usually
be resolved by properly restricting the support region and
splitting the deformation into two, like it was done for the
Bunny’s ears (cf. Fig. 6).

Considering the limitations discussed above, the conse-
quent next step for future work is the extension of the pre-
sented method to multiresolution modeling. Assuming a
multiresolution representation where each point pi ∈ S is
given as a normal displacement of a smooth base surface,
i.e., pi = bi + λini, the deformed point p′i ∈ S′ can analo-
gously be computed in a vertex shader as

p′i = d(bi) + λi
Jd (bi)

−T ni∥∥∥Jd (bi)
−T ni

∥∥∥
at almost the same speed. However, it is not obvious how to
derive the normal or tangent vectors of the displaced vertices
on the GPU without requiring transformed local neighbor-
hoods [MBK05].

9. Conclusion

In this paper we presented the necessary techniques to
use globally supported radial basis functions for interactive
shape editing. Our particular choice of triharmonic RBFs re-
sults in deformations of provably optimal fairness, equiva-
lent to surface-based BCM approaches. However, the pre-
sented space deformation framework is more general, as it
allows the deformation of other explicit surface representa-
tions as well.

In order to reduce the otherwise prohibitive computational
costs of a naïve implementation, we introduced an incremen-
tal least-squares solver, which we used in order to efficiently
precompute linear basis functions for the deformation. Eval-

uating these basis functions on the GPU then allows for real-
time shape editing of highly complex models. Each of these
three contributions is straightforward to implement and has
the potential to reduce the computational complexity by one
order of magnitude on its own.

Besides of the presented RBF shape editing, the incre-
mental least-squares solver seems to have many other possi-
ble applications. The method of precomputed basis functions
can also be used for a wide range of surface- and space-based
deformation techniques. Mapping all deformation computa-
tions to the GPU is possible for all space-deformation tech-
niques which allow the computation of an (exact or approxi-
mate) Jacobian [SP86, HHK92, BR94, KSSH02, LKG∗03].
For surface-based deformation approaches it is not clear how
to derive an equivalent Jacobian for the normal transfor-
mation, therefore the presented GPU-based implementation
cannot be transferred directly to surface-based techniques.
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