
Eurographics Symposium on Point-Based Graphics (2005, to appear)
M. Pauly, M. Zwicker, (Editors)

A Unified Lagrangian Approach to Solid-Fluid Animation

Richard Keiser1 Bart Adams2 Dominique Gasser1 Paolo Bazzi1 Philip Dutré2 Markus Gross1

1 ETH Zürich 2 Katholieke Universiteit Leuven

Abstract
We present a framework for physics-based animation of deforming solids and fluids. By merging the equations
of solid mechanics with the Navier-Stokes equations using a particle-based Lagrangian approach, we are able to
employ a unified method to animate both solids and fluids as well as phase transitions. Central to our framework
is a hybrid implicit-explicit surface generation approach which is capable of representing fine surface detail as
well as handling topological changes in interactive time for moderately complex objects. The generated surface is
represented by oriented point samples which adapt to the new position of the particles by minimizing the potential
energy of the surface subject to geometric constraints. We illustrate our algorithm on a variety of examples ranging
from stiff elastic and plasto-elastic materials to fluids with variable viscosity.

1. Introduction

Realistic animation of physical phenomena has gained in-
creasing importance in many fields of computer graphics,
including the game and special effects industries. Typical ex-
amples include the animation of deformable solids and flu-
ids. The phase transition between solids and fluids, i.e., melt-
ing and freezing, also plays an important role in special ef-
fects. A prominent example is the terminator sequence from
the well-known feature film, where the metallic terminator
is shattered, after which the individual pieces melt and fuse,
before retaining the old shape and freezing to a solid.

A variety of methods exist for physically based ani-
mation. Mesh- and grid-based approaches such as mass-
spring systems, Finite Element, Finite Difference or Finite
Volume methods are still the most widespread, but mesh-
free methods have recently become increasingly popular for
the animation of elasto-plastic materials and fluids. Mesh-
free methods or particle systems allow for easy implemen-
tation and have demonstrated to be computationally effi-
cient [MCG03, MKN∗04], which is especially important for
games and interactive applications, but also for prototyping
of animations. Furthermore, mesh-free methods can handle
topological changes, which inherently occur for fluid-like
materials, without the need for remeshing.

Mesh-free methods require the definition or extraction of
an implicit or explicit surface for rendering. In the context of
a unifying framework for solid-fluid animations the surface
must be able to fulfill various requirements. Solid surfaces
are often very detailed, while fluid surfaces are smooth due

to surface tension. For phase transitions from solids to fluids
the detail should disappear, while from fluids to solids the
existing detail has to be preserved. Additionally, the surface
should be temporally smooth, i.e. temporal aliasing such
as popping artifacts should be avoided. Finally, topological
changes such as splashes must be handled by the surface.
We will show how to fulfill these requirements by dynam-
ically maintaining a point-sampled surface wrapped around
the particles.

1.1. Our Contributions
In this paper we propose a unified Lagrangian approach for
both physics and surface animation of solids and fluids as
well as phase transitions. The main challenges are the han-
dling of locally different physical behavior during melting
and freezing and the extraction of a surface which is able to
represent detailed and smooth surfaces as well as handling
topological changes. The main contributions are:

• By combining the equations of solid mechanics with
the Navier-Stokes equations using a Lagrangian ap-
proach, we are able to employ a unified method to ani-
mate both fluids and solids as well as phase transitions.

• We present a hybrid implicit-explicit surface gener-
ation approach which dynamically constructs a point-
sampled surface wrapped around the particles. Potentials
are defined which guide the surface deformation. The gen-
erated surface fulfills aforementioned requirements. Most
importantly, we are able to represent the fine surface de-
tail required for solids, as well as the smooth surfaces of
fluids.

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

• Topological changes are incorporated in a lightweight
and efficient manner. Furthermore, we avoid the blend-
ing artifacts typically arising when handling topological
changes using implicit functions.

1.2. Outline
We give an overview of related work in the next section.
Sec. 3 explains the physics-based simulation framework.
Next, we show how the surface is generated and animated
in Sec. 4. A variety of results are given in Sec. 5. We con-
clude the paper with a discussion of results and an outlook
on future work.

2. Background
Exhaustive work has been done in physically based anima-
tion. We provide an overview of the existing work that is
most relevant to this paper.

2.1. Deformable Solids & Fluids
Terzopoulos and co-workers pioneered the field of phys-
ically based animation in their seminal paper [TPBF87].
They proposed to compute the dynamics of deformable
models from the potential energy stored in the elastically
deformed body using finite difference discretization. They
extended their work to model plasticity and fracture [TF88].
In [TPF89], Terzopoulos et al. used a mass-spring system
to model heating and melting of deformable objects, achiev-
ing a (local) phase transition from solids to fluids by simply
varying the spring constant and finally removing a spring.
Similar work was presented by Tonnesen [Ton91], who ap-
plied the heat equation to a particle system. Desbrun and
Canni [DC96] introduced Smoothed Particle Hydrodynam-
ics (SPH) [Mon92] to the graphics community. SPH was
used by Müller et al. to derive an interactive fluid simula-
tion algorithm from the Navier-Stokes equations [MCG03].
Stora et al. [SAC∗99] simulated the flow of lava using SPH
by coupling viscosity with temperature. Stam achieved a
significant performance improvement for fluid animations
using a semi-Lagrangian method for fluid convection and
an implicit integrator for diffusion [Sta99]. Carlson and co-
workers used an Eulerian grid-based fluid simulation method
for melting, flowing and solidifying of objects [CMVT02].
Their method is capable of modelling different materials,
ranging from rigid solids to fluids, by varying the viscos-
ity. Recently, Carlson et al. presented an approach to sim-
ulate fluids as rigid bodies by adding an extra term to the
Navier-Stokes equations. This way the interplay between
rigid bodies and fluid could be computed efficiently using
the same simulation solver for both [CMT04]. Goktekin et
al. [GBO04] added elastic terms to the Navier-Stokes equa-
tions solving them using Eulerian methods, thus obtaining
viscoelastic fluids that can model a variety of materials such
as clay and pudding. Our work is similar to theirs in that
we also combine fluid and solid characteristics. Merging of
the solid mechanics with the Navier-Stokes equations allows

us to animate materials from highly stiff elastic and plasto-
elastic materials to fluids with low viscosity.

2.2. Surface Generation & Visualization
Desbrun and Canni model soft inelastic objects which split
and merge by coating a set of skeletons using an implicit rep-
resentation [DC95]. They extend their work by introducing
active implicit surfaces [DCG98], which move according to
a velocity field. The velocity field is chosen such that the sur-
face is attracted to a geometric coating, but other terms such
as surface tension and volume conservation are also applied.

State-of-the art methods in fluid simulation use level
sets, introduced by Osher and Sethian [OS88], to render
the fluid [FF01]. Level sets start with an implicit function
which is evolved over time using a velocity field. This al-
lows temporally smooth surface animation. However, level
set evolution can suffer from severe volume loss, especially
near detailed features such as splashes. As a solution, En-
right et al. propose to combine level sets with surface parti-
cles [EMF02, ELF04].

The techniques discussed so far animate the surface by
solving a PDE on a grid, followed by iso-surface extraction
for rendering. Witkin and Heckbert defined constraints to
keep surface particles on a moving implicit surface [WH94].
Surface particles adaptively sample the surface using a split-
ting and merging scheme. Szeliski and Tonnesen introduced
oriented particles for surface modeling [ST92]. Additionally
to long-range attraction and short-range repulsion forces,
they define potentials which favor locally planar or lo-
cally spherical arrangements. Their particle system can han-
dle geometric surfaces with arbitrary topology. Similar to
them, we use surfels as oriented particles. Our explicit sur-
face representation deforms by internal and external forces
and geometric constraints, similar to active implicit sur-
faces [DCG98]. We derive the forces by minimizing a po-
tential energy term which depends on both the surface and
the physical particles. Besides gaining efficiency in compu-
tation and memory, we can exploit all advantages of explicit
surfaces such as the simple representation of fine surface de-
tails.

2.3. Point-based Animation
Point-sampled surfaces have become popular the last few
years for editing [ZPKG02], modelling [AD03, PKKG03]
and rendering [ZPvG01, BK03, AA04]. Recently, mesh-free
physics has been combined with point-sampled surfaces in
so-called point-based animations [pba04]. Müller et al. in-
troduced to the computer graphics community a mesh-free,
continuum-mechanics-based model for animating elasto-
plastic objects [MKN∗04]. They showed how to embed a
point-sampled surface into the simulation nodes. Further-
more, they propose a multi-representation approach, consist-
ing of an implicit and a detailed representation. At places
where topological changes occur, a blending between the
detailed and the implicit representation is performed. Pauly

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

et al. [PKA∗05] extended their work to account for frac-
ture by introducing surface and volume sampling methods.
Our work is based on the physics framework of [MKN∗04].
While they are able to simulate highly viscous materials
by increasing the plasticity, we show how to introduce the
Navier-Stokes equations into their framework. This allows
us to simulate fluids with varying viscosity and the transition
from stiff elastic and plasto-elastic materials to fluids and
vice versa. A surface generation algorithm which is suitable
for both solids and fluids and supports melting and freezing
completes our framework.

3. Physics Framework
From a high-level point of view, the mechanics for solids
and fluids are quite similar. The main difference is that solids
have restoring forces due to stresses, while an ideal (Newto-
nian) fluid stores no deformation energy [TF88]. We refer
to [GBO04] for a broader discussion.

3.1. Governing Equations
Following [MSHG04], we can write the equations for an
elastic solid as

ρ ∂2u
∂t2 = ∇σs(u)+ f, (1)

and for an incompressible Newtonian fluid as

ρ Dv
Dt

= ∇σ f (v)+ f. (2)

Both Eq. 1 and Eq. 2 describe the change in momentum
which is equal to internal force density fields due to stresses
and body force density fields f, where ρ denotes the density,
u the displacement from the material coordinates, v the ve-
locity and σ the stress tensor. Dv

Dt is the material derivative of
the velocity field. Conservation of mass is represented as

∂ρ
∂t

+∇(ρv) = 0. (3)

These equations can be simplified when using a particle-
based Lagrangian approach. By assigning each particle pi
a constant mass mpi , mass conservation is guaranteed and
Eq. 3 can be omitted. Furthermore, because the particles
move with the fluid, the material derivative Dv

Dt of the veloc-
ity field is equal to the time derivative of the velocity of the
particles [MSHG04]. For the same reason the partial deriva-
tive of the displacement field is equal to the time derivative
of the displacement. Using that v = du

dt , Eq. 1 and 2 can be
written as

ρ d2u
dt2 = ∇σs(u)+ f, (4)

ρ d2u
dt2 = ∇σ f (v)+ f. (5)

Finally, we merge Eq. 4 and Eq. 5 as follows

ρ d2u
dt2 = ∇σ(u,v)+ f, (6)

where σ(u,v) = σs(u)+σ f (v) is the sum of the elastic, vis-
cous and pressure stress.

Note that although f is a force density field (force per unit
volume), we will denote it as force in the following subsec-
tions for simplicity.

3.2. Internal Forces
We will briefly summarize how to solve Eq. 6 using a point
collocation scheme. We refer to [MCG03] and [MKN∗04]
for details.

Elastic Force. As shown in [MKN∗04], the elastic force can
be computed via the strain energy density

U =
1
2
(εs ·σs),

where εs is the strain and σs the elastic stress. We use a linear
stress-strain relationship (Hooke’s law), i.e., σs = Cεs. For
an isotropic material, C depends only on Young’s Modulus
E and Poisson’s Ratio υ. The strain is measured using the
quadratic Green-Saint-Venant strain tensor

εs =
1
2
(∇u+∇uT +∇u∇uT),

where ∇u is approximated using Moving Least Squares
(MLS). We refer the reader to [LS81] for more details about
MLS.

To model plasticity, we follow [OBH02] and store for
each particle a plastic strain tensor εplast

pi , which is updated
in every time step depending on the plastic yield and plastic
creep material constants γyield and γcreep, respectively. The
difference between the measured strain εs

pi and the plastic
strain, i.e., ε̃s

pi = εs
pi − εplast

pi , is used to compute the elastic
force felastic

pi acting on a particle pi as the directional deriva-
tive of the strain energy density

felastic
pi = −∇uiU = −

1
2
∇ui(ε̃

s
pi ·Cε̃s

pi) = −σs
pi∇ui ε̃

s
pi .

Viscosity and Pressure Force. The fluid stress tensor σ f (v)
is composed of the viscosity stress and the pressure stress

σ f (v) = µ∇v−ϕI,

where µ is a viscosity constant and ϕ the scalar pressure. ϕ is
computed as ϕ = kgas(ρ−ρ0), where ρ0 is the rest density
and kgas is a gas constant [DC96]. Note that for melting and
freezing, µ can locally differ and is subject to change.

The viscosity and pressure force are derived using SPH,
similar to [MCG03]. For an introduction to SPH we refer
to [Mon92] and [DC96]. Application of the SPH rule yields
the following forces acting on a particle pi

fvisc
pi = ∑

p j

mp j

µpi +µp j

2
vp j −vpi

ρp j

∇2W visc(xpi −xp j ,hp)

fpressure
pi = −∑

p j

mp j

ϕpi +ϕp j

2ρp j

∇W pressure(xpi −xp j ,hp)

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

where hp is the support radius of a particle and p j are the
neighboring particles of pi within hp. We use the same ker-
nel functions W visc and W pressure as in [MCG03].

Surface Tension Force. Additionally to the above men-
tioned forces, cohesive forces between liquid molecules
keep the fluid together. We follow [MCG03] and define a
smoothed color field as

c(x) = ∑
p j

mp j

1
ρp j

W (x−xp j ,hp).

The gradient is denoted as nc(x) = ∇c(x). The surface
tension force acting near the surface is computed as

ftension
pi = −ktension∇2c(xpi)

nc(xpi)

‖nc(xpi)‖
,

where ktension is a material specific constant.

3.3. Melting & Freezing
In our setting, a material can be defined by the following
main properties: Stiffness (Young’s Modulus E), compress-
ibility (Poisson’s Ratio υ), plasticity (γyield and γcreep), vis-
cosity (µ) and cohesion between (surface) particles (surface
tension ktension). As long as these values are chosen in a
(physically) reasonable range, they can be arbitrarily com-
bined. Therefore, also materials which do not exist in reality
can be created, as e.g. elastic fluids.

For melting and freezing, the material parameters need
to change together with the changing aggregation state. To
allow local changes, each particle stores its own material pa-
rameters. If the material melts from solid to fluid, the stiff-
ness and viscosity decrease, while cohesion at the surface
and plasticity increase, and vice versa for freezing. The user
can set the parameters described above for two materials. We
assign to each particle pi a scalar value Tpi which is used to
interpolate between the two materials. We call Tpi the tem-
perature of pi. Assuming a scalar material parameter a was
set by the user to amin and amax for T min and T max, respec-
tively (see also Sec. 5), api is computed using linear interpo-
lation.

Heat transfer between particles is modelled by solv-
ing the heat equation dT

dt = kheat∇2T using SPH, similar
to [SAC∗99]

∇2Tpi = ∑
p j

m j
Tp j −Tpi

ρp j

∇2W visc(xpi −xp j ,hp),

where we use the same kernel as for computing the viscosity.

3.4. Particle Animation
Depending on the application, we either sample the volume
of an object or use a source that creates a stream of particles.
Mass mpi , density ρpi and volume vpi are initialized as is
done in SPH, we refer to [DC96] and [MKN∗04] for details.

In each iteration, we first compute for each particle p j

its particle neighborhood using a hash grid as a search data
structure [THM∗03]. The force density fields are then com-
puted as described in the previous sections, yielding the final
force density field fpi = felastic

pi + fvisc
pi + fpressure

pi + ftension
pi for

a particle pi. Finally, the acceleration api is

api =
d2upi

dt2 =
fpi

ρpi

.

For integration we use the Leap-Frog scheme, which showed
to be both efficient and stable for our animations. After an it-
eration step, we update the material coordinates as described
in [MKN∗04].

4. Surface Animation
The surface of the animated object is explicitly represented
using oriented point samples, called surfels. To be able to
animate and deform the surface, each surfel keeps a set
of neighboring particles and a set of neighboring surfels
(Sec. 4.1). After performing an animation step of the par-
ticles, we get an estimation of the new surface by carrying
the surfels along with the neighboring particles (Sec. 4.2.1).
Similar to active contour models [KWT88], the surface
adapts to the new position of the particles by minimizing
a potential energy term (Sec. 4.2.2) while fulfilling geomet-
ric constraints (Sec. 4.2.3). The surface resolution is adapted
using a simple resampling scheme that ensures a hole-free
surface (Sec. 4.3). Disjoint components of the surface are
identified and the particles and surfels are separated accord-
ingly (Sec. 4.4.1). We detect intersections of separated sur-
faces and merge the intersecting surface parts (Sec. 4.4.2).
Finally, we show how the surface can be blended smoothly
between detailed solid and smooth fluid surfaces (Sec. 4.5).

4.1. Surfel Neighborhoods
Each surfel si caches a set Pi of neighboring particles and
a set Si of neighboring surfels of the same object (Fig. 1).
The neighboring particles are used to estimate the displace-
ment of the surfels after an animation step. From the surfel
neighborhood, forces are computed to update the surface as
described below.

Particle Neighborhood. The neighboring particles are com-
puted in a pre-animation step. We reuse the hash grid data
structure (Sec. 3.4) of the particles to determine the particles
p j which are within the (particle) support radius hp

s of a sur-
fel si (we choose hp

s = 2hp, where hp is the support radius of
the particles, see Sec. 3.2). Furthermore, we store a weight
ωhp

s
xsi ,xp j

for each neighbor particle which is computed using
a smoothly decaying weight function depending on the dis-
tance to si. We use the following compactly supported poly-
nomial function with support radius h

ωh
x,y = ω(r) =

{
(1− r2)3 ‖r‖ ≤ 1
0 ‖r‖ > 1,

(7)

where r = (x−y)/h.

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

particles pj

surfels si

particle neighborhood Pi surfel neighborhood Si

Figure 1: Left: The surfels si are wrapped around the par-
ticles p j . Middle and Right: Each surfel si stores a particle
neighborhood Pi and a surfel neighborhood Si.

Surfel Neighborhood. Additional to the particle neighbor-
hood, a surfel si also caches the neighboring surfels within
the (surfel) support radius hs

s (we choose hs
s = hp). We use

again a hash grid as a search data structure. This neighbor-
hood is recomputed after the surface has been carried along
with the particles (see Sec. 4.2.1). Next, during surface up-
date (see Sec. 4.2.2), the position of the surfels change fre-
quently and therefore this surfel neighborhood needs to be
updated quite often. Instead of doing an update of the search
data structure and expensive recomputation of the neighbors
each time the position of a surfel changes, we use the fol-
lowing update scheme.

Assume the surfel si changed its position. Let the new
neighborhood be the (initially empty) set S′i . First, all surfels
in Si with an Euclidean distance smaller than hs

s are added to
S′i . Next, we iterate through all neighbors of the neighbors in
Si and add them to S′i if their Euclidean distance is smaller
than hs

s. By tagging neighbors which were already visited,
this update procedure can be performed very fast. Note that
not necessarily all neighbors are found, however, as the sur-
fel position does not change significantly during the surface
deformation, this update procedure showed to be sufficient.
Some of the following algorithms will only use the k near-
est neighbors from the neighbor set Si (we use k = 10). We
denote this subset as Ssub

i .

4.2. Surface Deformation
Surface animation is performed after animating the parti-
cle system. The deformation is applied in two steps. First,
the surfels are carried along with the particles (Sec. 4.2.1).
Next, they are updated to reflect the new particle positions
by minimizing the surface energy, where constraints restrict
the possible movements (Sec. 4.2.2).

4.2.1. Surface Displacement
The displaced surfel position xt+1

si is computed using a first
order accurate approximation of the displacements up j of the
neighboring particles p j as follows [MKN∗04]

xt+1
si = xt

si + ∑
p j∈Pi

ωhp
s

xsi ,xp j
(up j +∇T

u up j (x
t
p j −xt

si)),

where ωhp
s

x,y = ωhp
s

x,y/∑y ωhp
s

x,y, and ωhp
s

x,y is the weighting func-
tion defined in Eq. 7. We reuse the MLS approximation of
∇uup j , which is computed for deriving the elastic force as
described in Sec. 3.2. Similar to [PKKG03], both the sur-
fel center and its tangent axes are deformed, yielding the

deformed surfel normal nt+1
si . For brevity we will omit the

index t hereafter.

4.2.2. Surface Update
After carrying the surface along with the particles, it is de-
formed under the action of surface forces, similar to bal-
loons [Coh91]. The forces are derived by minimizing the
potential energy of the surface. The potential energy is com-
posed of external potentials which depend on the particles
and internal potentials which depend on the surfels. We de-
rive an implicit and an attracting potential such that the en-
ergy is minimized when the surfels are attracted to an im-
plicit surface and to the particles, respectively. Minimizing
the internal potentials, consisting of the smoothing potential
and the repulsion potential, yields a locally smooth and uni-
formly sampled surface. From the potential energy we derive
forces acting on the surfels. While the derived forces from
the implicit, attracting and smoothing potential act in nor-
mal direction, the repulsion force is applied in tangential di-
rection. Note that these forces are defined for deforming the
surface only, and are therefore independent of the physics
framework described in Sec. 3.

Implicit Potential. Similar to [DCG98], we define a purely
geometric implicit coating of the particles that attracks our
explicit surface. Each particle p j defines a field function. A
potential field is defined by computing the weighted sum of
the field functions at an arbitrary position in space [Bli82].
We use the color field c(x) described in Sec. 3.2 as a po-
tential field. We define the implicit potential φimpl

si as the
squared distance from the position xsi of a surfel si to its pro-
jected position ximpl

si on an iso-level I of the potential field,
i.e.,

φimpl
si =

1
2
(ximpl

si −xsi)
2.

ximpl
si is computed similar to [MKN∗04]. The normal nimpl

si

at ximpl
si is equal to the gradient of the color field , i.e. nimpl

si =

∇c(ximpl
si).

Attracting Potential. Generally, we want the surface to coat
the particles as tight as possible. Therefore we define a po-
tential such that the surfels are attracted to the particles. We
define the attracting potential φattr as the sum of weighted
squared distances from a surfel si to its neighboring parti-
cles p j ∈ Pi, i.e.,

φattr =
1
2 ∑

p j∈Pi

(xp j −xsi)
2ωhp

s
xsi ,xp j

,

where ωhp
s

xsi ,xp j
is the weighting function defined in Eq. 7.

Smoothing Potential. Minimization of the implicit and at-
tracting potential yields the well-known blob artifacts due to
the discretization of the volume with particles (see Fig. 2).
Therefore, we derive a potential φsmooth which yields a
smooth surface. We compute a weighted Least Squares (LS)

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

plane through the neighbors s j ∈ Si of a surfel si using
Prinicpal Component Analysis (see e.g. [PGK02]). We re-
strict the neighborhood to neighbor surfels whose normals
have an angle to the normal of si smaller than a threshold
(we choose π/4). The LS plane is given by the weighted
mean xmean

si and the LS plane normal nsmooth
si . The projec-

tion of xsi onto the LS plane gives the position xpro j
si =

xsi + (nsmooth
si · (xmean

si − xsi))nsmooth
si . Finally, we define the

smoothing potential φsmooth
si as the squared distance from si

to the LS plane, i.e.,

φsmooth
si =

1
2
(xpro j

si −xsi)
2.

Repulsion Potential. To achieve a locally uniform distribu-
tion, we define a repulsion potential φrep

si similar to [PGK02].
It is minimal when the neighboring particles s j ∈ Ssub

i of a
surfel si have a distance hs

s to si:

φrep
si =

1
2 ∑

s j∈Ssub
i

(hs
s −‖dsi,s j‖)

2,

where dsi,s j = xsi −xs j .

Minimizing Forces. The potential energy of the surfels si
is minimized by applying forces which are derived from the
energy fields:

fimpl
si = −∇xsi

φimpl
si = ximpl

si −xsi ,

fattr
si = −∇xsi

φattr
si = ∑

p j∈Pi

(ω(r)dp j ,si −
1
2

ω(r)′d2
p j ,si),

fsmooth
si = −∇xsi

φsmooth
si = xpro j

si −xsi ,

frep
si = −∇xsi

φrep
si = ∑

s j∈Ssub
i

(hs
s −‖dsi,s j‖)

‖dsi,s j‖
dsi,s j ,

where dp j ,si = xp j −xsi and r = dp j ,si/hp
s .

We restrict the repulsion force to only act in tangen-
tial direction and the other forces to only act in nor-
mal direction. We do this by computing a new surfel
normal n′

si as the average of the implicit gradient nimpl
si

and the smoothed normal nsmooth
si , i.e., n′

si = (kimplnimpl
si +

ksmoothnsmooth
si)/‖kimplnimpl

si + ksmoothnsmooth
si ‖. The tangen-

tial force ftan
si is then defined as the projection of the repul-

sion force frep
si on the tangent plane defined by the new surfel

normal n′
si :

ftan
si = frep

si − (n′

si · f
rep
si)n′

si .

The force in normal direction fnormal
si is computed as the pro-

jection of the implicit, attracting, smoothing and optional ex-
ternal forces:

fnormal
si = (n′

si · f
sum
si)n′

si ,

where fsum
si = kimplfimpl

si +kattrfattr
si +ksmoothfsmooth

si +kext fext
si .

The weights are user defined parameters, where there is al-
ways a tradeoff between smoothness and closeness of the
surface to the particles, see Fig. 2.

Figure 2: Illustration of the impact of the implicit, smooth-
ing and attracting force. Left: Implicit force only (kimplicit =
0.2). Middle: Implicit and smoothing force (kimplicit = 0.2,
ksmooth = 0.6). Right: Implicit, smoothing and attracting
force (kimplicit = 0.2, ksmooth = 0.6, kattr = 0.1).

Integration. Finally, we get the new surfel position using
Euler integration, i.e. x′si = xsi + α(fnormal

si + ftan
si), where

0 < α ≤ 1 is a scaling factor. Note that applying the forces
along the new surfel normal vector n′

si can be seen as a semi-
explicit Euler integration, yielding a very stable integration
if all weights are smaller than one, as n′

si is smooth (assum-
ing that the iso-value I is chosen such that the iso-surface is
smooth). To avoid oscillations, we damp the system by mul-
tiplying α at each iteration with a damping constant. The
integration is repeated until the maximal displaced distance
of all surfels of a surface component is below a threshold.

4.2.3. Constraints
Constraints restrict the position and movement of the sur-
face. We propose to use two constraints which are applied in
the following order:

Implicit Constraint. Optionally, we restrict a surfel to be
within a minimal iso-level (see the implicit force description
in the previous section), which is useful for splitting of solid
objects as will be shown in Sec. 4.4.1. If the color field value
c(xsi) of a surfel si is smaller than a user defined minimal
iso-value Imin, it is projected onto Imin. This can also be seen
as a maximum allowed distance to the particles.

External Constraints. External constraints are used in our
case to restrict the surface to a certain area, for exam-
ple when doing collision detection with an obstacle (e.g. a
glass). During collision detection we only consider the par-
ticles. Therefore it can happen that surfels still penetrate the
obstacle although the particles do not. Surfels which pene-
trate the obstacle are projected back onto the colliding ob-
ject. This projection is performed (if necessary) after each
surface deformation iteration. Because of the smoothing po-
tential the surface remains smooth at the border of the pro-
jected surfels.

4.3. Resampling
Resampling is important to adapt the number of surfels when
the surface is stretched or compressed. Each time before
a force (Sec. 4.2.2) is computed, we test if the number of
neighbors |Si| of a surfel si is smaller or larger than a mini-
mum or maximum threshold, respectively. In the former case
the number of missing neighbors are randomly distributed
around si, where the new surfels inherit the neighbors of si.
A neighbor update is then performed for the new surfels and

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

split

merge

Figure 3: Top row: When a surfel is outside the minimal iso-
value it is projected onto it. Flood filling over all the surfels
results in the construction of separated components. Bottom
row: Merging is performed by detecting and removing col-
liding surfels from different components.

the neighbors of si. If the number of neighbors is too large,
we delete the surfel and remove it from all its neighbors. We
make the neighbor thresholds dependent on the radius of a
surfel. Assume that all surfels have the same radius rs and
that the surfels are distributed uniformly, i.e. they lie on a
hexagonal grid. Then a distance between two neighbors on
this grid equal or smaller than rs guarantees a hole-free sur-
face. Therefore, we choose 6hs

s/rs as the minimum threshold
and 9hs

s/rs as the maximum threshold.

This resampling scheme is also used to create an initial
surface enclosing the particles, e.g. when using a source.
At each particle position we create a surfel. These surfels
are projected onto the implicit surface by setting the surface
constants kimpl = 1 and kattr = ksmooth = 0. Performing a
few steps of surface deformation with resampling yields one
or more closed surface components. Finally, the surface con-
stants are reset to the user values. Applying the surface de-
formation scheme yields the final surface.

4.4. Topological Changes
By recomputing the neighborhood and using the forces and
constraints described above, the surface implicitly handles
topological changes such as disjoint components and merg-
ing (see Fig. 3). The implicit constraint ensures that a (lo-
cally) stretched surface is always split even if the implicit
force weight is chosen to be small. Furthermore, two inter-
secting surface components are merged automatically by re-
computing the surfel neighborhood and the applied forces.
A well known problem of handling topological changes im-
plicitly is that two surface components will blend rather than
collide, i.e., they are merged before they intersect which
results in considerable artifacts. Therefore, we suggest a
method to detect disjoint surface components similar to the
blending graph described in [DC95]. These are then handled
as separated objects. We show how intersecting separated
objects are merged.

4.4.1. Splitting
To detect two disjoint components of a surface, we perform
a flood-fill over all surfels using restricted surfel neighbor-
hoods Srest

i after having deformed the surface. A neighbor

s j ∈ Ssub
i is added to Srest

i if the angle between its normal
and the normal of si is smaller than a threshold (we choose
π/4). Starting with an arbitrary surfel si, we add si and the
surfels in Srest

i to a set Ssep. The neighbors of the restricted
neighborhood of the surfels in Srest

i are then added recur-
sively to Ssep, until no neighbors are left. This procedure is
repeated (with new sets) as long as there are surfels which do
not belong to a set yet. By tagging surfels which belong to
a set already, the detection can be done in linear time to the
number of surfels assuming a constant maximum number of
neighbors.

After separating the surfels we assign the particles to the
appropriate set by performing an inside/outside test similar
to [PKKG03]. A particle is added to a set if it is inside the
surface represented by the surfels. Each set then builds a sep-
arated surface component. The surfel neighbors Si and the
particle neighbors Pi of a surfel si are always computed from
the surfel and particle set of its separated component.

4.4.2. Merging
When two disjoint components intersect they either need to
be merged or contact handling has to separate them. For
merging we require that not only the surfaces intersect, but
also that at least one particle is inside the other surface. This
guarantees that the surfaces are merged smoothly.

We first compute a bounding box for each object surface
part (see Fig. 3). From two intersecting bounding boxes, the
colliding particles can be efficiently computed [KMH∗04].
If we find a set of colliding particles, we also compute the
colliding surfels which are deleted before we merge the
two separated objects again. The surfel neighborhoods are
then recomputed and the separated objects merge smoothly
through the acting surface forces. Note that this way we
avoid the unnatural blending typically arising when using
the implicit function for merging, i.e., we avoid the blending
of two separated surface parts before they intersect.

When merging is not appropriate, collision response
forces could be applied to separate the colliding surface
components, similar to [KMH∗04].

4.5. Blending Between Solids and Fluids
While solids might have a very detailed surface, fluid sur-
faces are usually rather smooth. The particles account for
this by surface tension. However, to smooth the surface this
is not sufficient. Assume we start with a highly detailed solid
which melts. In this case we expect the detail to disappear.
On the other hand if we freeze a fluid, the existing detail
should be preserved.

If we only apply the surfel displacement according to the
particles as described in Sec. 4.2.1, all the detail is preserved,
but if we additionaly update the surface using the potential
fields as described in Sec. 4.2.2, the detail vanishes and the
surface huddles against the particles. To get a smooth transi-
tion between solids and fluids, we perform both approaches
and blend between them, similar to [MKN∗04].

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

Assume that after particle animation, a surfel si is dis-
placed to the position xsi . Let x′si be the positions afte ap-
plying the surface deformation forces and constraints. We
get the blended position xblend

si and normal nblend
si by sim-

ple interpolation: xblend
si = (1− βi)xsi + βix′si and nblend

si =
((1−βi)nsi +βin′

si)/‖(1−βi)nsi +βin′
si‖.

For melting and freezing, we use the temperature Tsi as a
blending factor (see Sec. 3.3). The temperature of a surfel
is approximated from the neighboring particles, i.e., Tsi =

∑p j∈Pi
ωhp

s
xsi ,xp j

Tp j . The normalized temperature is then used

as a transition factor, i.e., βi = (Tsi −T min)/(T max −T min),
where T max and T min are the temperature thresholds de-
scribed in Sec. 3.3.

5. Results
We tested our physics framework and the surface generation
with a variety of examples. Fig. 4 shows the simulation of
a pure fluid, i.e., Young’s Modulus E is set to 0 and vis-
cosity µ to 5. The surface is smooth and encloses the parti-
cles tightly. As also shown in the accompanying video, our
surface is able to handle all topological changes like split-
ting, merging and self-intersections of the surface. Merging
of disjoint surface components prevents from blending two
components before they intersect (see Sec. 4.4.2), resulting
in less artifacts compared to implicit merging.

The example shown in Fig. 5 exploits the possibilities of
our physics framework with the incorporated Navier-Stokes
equations. It shows a quicksilver-like fluid which is poured
into a glass. While it is flowing, we decrease the tempera-
ture of all particles within 10 iterations from T max to T min.
Therefore, the fluid freezes to an elastic solid with stiffness
E = 5e5Nm−2. At the same time we remove the glass. The
freezed fluid elastically bounces onto the ground where it
splits.

Finally, different melting behaviors are shown in Fig. 6
and 7 (images taken at corresponding timesteps). We start
with an elastic bust of the Nefertitis (57k surfels) which is
dropped onto a heated box. When a particle collides with
the box, its temperature increases with a constant value and
diffuses to the other particles. The temperature locally af-
fects the stiffness, plasticity, viscosity and surface tension
of the object as described in Sec. 3.3. Therefore, upon col-
lision the model starts melting. Depending on the heating
transfer parameters, the temperature of the heating box and
the maximal viscosity, the model shows different melting be-
haviors. In Fig. 6, the box has a temperature of 8000◦C and
we choose kheat = 0.3. The particles heat up very quickly,
resulting in a splashing fluid with low viscosity µ = 5. In the
animation of Fig. 7 the box’s temperature is set to 4000◦C
and kheat is set to 0.04. The model first bounces elastically
and then slowly melts to a viscous fluid (µ = 10). Note that
the surface detail is still preserved even though large parts of
the model are already liquid. The phase state of the Nefertitis
is color coded from blue for solid to red for fluid.

Animation Particles/Surfels Physics Surface fps

Fluid 3k/3.4k 0.13 s 1.3 s 0.7
Freezing 2.4k/3.4k 0.4 s 1.2 s 0.5
Melting 1 3.9k/60k 3.2 s 22 s 0.03
Melting 2 3.9k/56k 3.1 s 20 s 0.03

Table 1: Average timings of our system running on a 3 GHz
Pentium 4 with a GeForce FX GPU. Timings are shown for
one physics animation step and one surface deformation it-
eration step, followed by the resulting frame rate for all the
sequences presented in this paper.

In our examples, the physics animation runs in interactive
time with 2400 to 3900 particles, see Table 1. The perfor-
mance of the surface generation algorithm depends on the
surface resolution and the surfel neighborhood radius hs

s. For
the fluid example shown in Fig. 4 (average number of 3.4k
surfels) our algorithm needs on average 1.3s per iteration
step. For the same example with smaller neighborhood (av-
erage number of 1.2k surfels) the animation runs with 1.5
fps. We use a low resolution surface for interactive anima-
tions and prototyping and increase the resolution for making
production animations. Interactive rendering is achieved us-
ing surface splatting on the GPU [BK03]. The pictures in the
paper and the video were created with the open-source ren-
derer POV-Ray (http://www.povray.org), which we modified
for raytracing point-sampled objects [AA04].

6. Conclusion & Future Work
Merging the continuum mechanics approach for solids pre-
sented in [MKN∗04] with the Navier-Stokes equations
proved to be very stable, and indeed did not affect the sta-
bility of the pure solid mechanics approach. It allows to
model a variety of materials which could not be simulated
before, like elastic and freezing fluids, and solids which melt
to splashing fluids. Melting and freezing are modelled by
simply changing the material parameters.

Our surface generation approach fits our needs to rep-
resent both highly detailed solids and smooth fluids with
rapidly changing topology. Surfels showed to be suitable
as an explicit representation because no mesh needs to be
maintained. However, there are limitations and possible ex-
tensions which we plan to address in future work:

• We are able to avoid blending artifacts by separating dis-
joint surface components and merging them when two
components intersect. However, these artifacts still occur
when surface parts come close which have not been split.
Avoiding this is a very difficult problem, that includes the
detection of self-intersections.

• To represent small drops in a strongly splashing fluid a
prohibitive high number of surfels with small radii are
needed. In the future we want to adapt the density of the
surfels depending on whether they lie on a flat or on a
highly curved surface.

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

• Volume preservation is a well-known problem in SPH
based methods. Furthermore, also our surface generation
approach is not volume preserving. This could be im-
proved by adding an additional force which lets the vol-
ume shrink or grow, similar to the volume preservation
constraint suggested in [DCG98].

• So far we use a global termination criterion for the itera-
tive integration of the surface forces for surface deforma-
tion (see Sec. 4.2.2). Because the forces are defined lo-
cally, efficiency could be improved significantly by com-
puting and integrating the forces only for surfels si whose
position changed and for the neighbors of si.

• In the future we want to allow particles to adaptively split
and merge similar to [DC99]. This poses a challenge for
the surface animation as the surface should not be affected
by the particle resampling.

• The implicit constraint ensures that largely stretched sur-
faces of solids split, resulting in a smoothly closed sur-
face. For stiff materials, a fracturing approach as sug-
gested in [PKA∗05] would produce more realistic looking
results.

Acknowledgements. Bart Adams is funded as a Research
Assistant by the Fund for Scientific Research - Flanders,
Belgium (F.W.O.-Vlaanderen). Thanks to Miguel Otaduy for
helpful comments.

References
[AA04] ADAMSON A., ALEXA M.: Approximating bounded, non-orientable sur-

faces from points. In Proc. of Shape Modeling International (2004). 2, 8

[AD03] ADAMS B., DUTRE P.: Interactive boolean operations on surfel-bounded
solids. ACM Trans. Graph. 22, 3 (2003), 651–656. 2

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based rendering on modern
gpus. In Proc. of Pacific Graphics 2003 (2003), pp. 335–343. 2, 8

[Bli82] BLINN J. F.: A generalization of algebraic surface drawing. ACM Trans.
Graph. 1, 3 (1982), 235–256. 5

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Trans. Graph. 23, 3 (2004), 377–384.
2

[CMVT02] CARLSON M., MUCHA P., VAN HORN III B., TURK G.: Melting and flow-
ing. In Proc. of the ACM SIGGRAPH Symposium on Computer Animation
(2002). 2

[Coh91] COHEN L. D.: On active contour models and balloons. CVGIP: Image
Underst. 53, 2 (1991), 211–218. 5

[DC95] DESBRUN M., CANI M.-P.: Animating soft substances with implicit sur-
faces. In Computer Graphics Proceedings (1995), ACM SIGGRAPH,
pp. 287–290. 2, 7

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new paradigm for ani-
mating highly deformable bodies. In 6th Eurographics Workshop on Com-
puter Animation and Simulation ’96 (1996), pp. 61–76. 2, 3, 4

[DC99] DESBRUN M., CANI M.-P.: Space-Time Adaptive Simulation of Highly De-
formable Substances. Tech. rep., INRIA Nr. 3829, 1999. 9

[DCG98] DESBRUN M., CANI-GASCUEL M.-P.: Active implicit surface for anima-
tion. In Proc. of Graphics Interface (1998), pp. 143–150. 2, 5, 9

[ELF04] ENRIGHT D., LOSASSO F., FEDKIW R.: A fast and accurate semi-lagrangian
particle level set. 479–490. 2

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.: Animation and rendering of
complex water surfaces. In SIGGRAPH: Proc. of the 29th annual conference
on Computer graphics and interactive techniques (2002), pp. 736–744. 2

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids. In SIGGRAPH ’01:
Proc. of the 28th annual conference on Computer graphics and interactive
techniques (2001), pp. 23–30. 2

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.: A method for an-
imating viscoelastic fluids. In Proc. of ACM SIGGRAPH (2004), vol. 23,
pp. 463–468. 2, 3

[KMH∗04] KEISER R., MÜLLER M., HEIDELBERGER B., TESCHNER M., GROSS M.:
Contact handling for deformable point-based objects. In Proc. of Vision,
Modeling, Visualization VMV (Nov 2004), pp. 339–347. 7

[KWT88] KASS M., WITKIN A., TERZOPOULOS D.: Snakes: active contour models.
International Journal of Computer Vision 1, 4 (1988), 321–331. 4

[LS81] LANCASTER P., SALKAUSKAS K.: Surfaces generated by moving least
squares methods. Mathematics of Computation 87 (1981), 141–158. 3

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-based fluid simulation for
interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer animation (2003), pp. 154–159. 1, 2, 3, 4

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M., GROSS M., ALEXA M.:
Point based animation of elastic, plastic and melting objects. In Proc. of the
ACM SIGGRAPH/Eurographics symposium on Computer animation (2004),
pp. 141–151. 1, 2, 3, 4, 5, 7, 8

[Mon92] MONAGHAN J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. and
Astrophysics 30 (1992), 543. 2, 3

[MSHG04] MÜLLER M., SCHIRM S., HEIDELBERGER B., GROSS M.: Interaction of
fluids with deformable solids. In Computer Animation and Virtual Worlds
(CAVW) (2004), pp. 159–171. 3

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.: Graphical modeling and
animation of ductile fracture. In Proc. of SIGGRAPH (2002), pp. 291–294.
3

[OS88] OSHER S., SETHIAN J. A.: Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys.
79, 1 (1988), 12–49. 2

[pba04] Point-based animation. http://www.pointbasedanimation.org, 2004. 2

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient simplification of point-
sampled surfaces. In Proc. of the conference on Visualization (2002), IEEE
Computer Society, pp. 163–170. 6

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P., GROSS M., GUIBAS L. J.:
Meshless animation of fracturing solids. In Proc. of ACM Siggraph (2005).
To appear. 3, 9

[PKKG03] PAULY M., KEISER R., KOBBELT L. P., GROSS M.: Shape modeling with
point-sampled geometry. In Proc. of ACM Siggraph (2003), pp. 641–650. 2,
5, 7

[SAC∗99] STORA D., AGLIATI P.-O., CANI M.-P., NEYRET F., GASCUEL J.-D.: An-
imating lava flows. In Proc. of Graphics Interface (1999), pp. 203–210. 2,
4

[ST92] SZELISKI R., TONNESEN D.: Surface modeling with oriented particle sys-
tems. In SIGGRAPH ’92: Proc. of the 19th annual conference on Computer
graphics and interactive techniques (1992), pp. 185–194. 2

[Sta99] STAM J.: Stable fluids. In SIGGRAPH: Proc. of the 26th annual conference
on Computer graphics and interactive techniques (1999), pp. 121–128. 2

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling inelastic deformation: vis-
colelasticity, plasticity, fracture. In Proc. of the 15th annual conference on
Computer graphics and interactive techniques (1988), ACM Press, pp. 269–
278. 2, 3

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M., POMERANERTS D.,
GROSS M.: Optimized spatial hashing for collision detection of deformable
objects. In Proc. Vision, Modeling, Visualization VMV (2003), pp. 47–54. 4

[Ton91] TONNESEN D.: Modeling liquids and solids using thermal particles. In
Graphics Interface (June 1991), pp. 255–262. 2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.: Elastically de-
formable models. In Computer Graphics Proceedings (July 1987), Annual
Conference Series, ACM SIGGRAPH 87, pp. 205–214. 2

[TPF89] TERZOPOULOS D., PLATT J., FLEISCHER K.: Heating and melting de-
formable models (from goop to glop). In Graphics Interface (1989), pp. 219–
226. 2

[WH94] WITKIN A. P., HECKBERT P. S.: Using particles to sample and control
implicit surfaces. In Computer Graphics Proceedings (1994), ACM SIG-
GRAPH, pp. 269–277. 2

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.: Pointshop 3d: an in-
teractive system for point-based surface editing. In Proceedings of the 29th
annual conference on Computer graphics and interactive techniques (2002),
pp. 322–329. 2

[ZPvG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Surface splatting.
In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques (2001), pp. 371–378. 2

c© The Eurographics Association 2005, to appear.

Keiser et al. / A Unified Lagrangian Approach to Solid-Fluid Animation

Figure 4: Pouring a pure fluid into a glass.

Figure 5: Freezing a quicksilver fluid which is poured into a glass. After removing the glass, the elastic solid bounces onto the
ground and fractures.

Figure 6: An elastic solid is dropped onto a heated box and melts to a splashing fluid due to the quick heat transfer.

Figure 7: An elastic solid is dropped onto a heated box and slowly melts to a viscous fluid.

c© The Eurographics Association 2005, to appear.

