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ABSTRACT
We present a new framework to build motion training sys-
tems using machine learning techniques. The goal of our
approach is the design of a training method based on the
combination of body and visual sensors. We introduce the
concept of a Motion Chunk to analyze human motion and
construct a motion data model in real-time. The system pro-
vides motion detection and evaluation and visual feedback
generation. We discuss the results of user tests regarding the
system efficiency in martial art training. With our system,
trainers can generate motion training videos and practice
complex motions precisely evaluated by a computer.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentations]: Mul-
timedia Information Systems; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques

Keywords
Motion Training System, Body Sensor, Visual Sensor, Mo-
tion Chunk, Motion Analysis, Visual Feedback

1. INTRODUCTION
Watching and following motions performed by a trainer has
been considered a fundamental principle for motion training.
Beyond the conventional books and video, there have been
plenty of interactive CD-ROMs with multimedia contents.
Moreover, to provide a bidirectional motion based interac-
tion, Virtual Reality (VR) systems have also been employed
to check how a trainee follows an avatar [6, 14]. Along this
line, motion training environments have been investigated
focusing on the interactivity based on human motion and
feedback type.

However, most of the current systems use only visual sensors
to reconstruct the user’s postures and check how the trainee
imitates the trainer’s motion. These approaches are limited

Visual Sensor

Motion Analysis
Motion

Evaluation

Motion

Visual Expression

Motion Training

Video

Body SensorTrainer Trainee

Motion Data Model

Figure 1: Concept diagram. Body sensors and visual
sensors are combined to develop a motion training
system for both a trainer and a trainee.

in sensing and evaluating detailed movements which can be
critical in the practical motion training. Furthermore, the
previous systems have been developed only for trainees and
not for trainers. Generally, traditional motion training is
performed between trainers and trainees. A motion train-
ing system should be a medium where trainees practice fol-
lowing expert motions and trainers also perform motions to
create instructive material which the trainees refer to. Thus
providing functionality for both trainees and trainers is re-
quired. In this paper, we describe our approach to build a
motion training system for both trainers and trainees. Our
goal is twofold. Firstly, we aim to combine body sensor
and visual sensor data to provide an unique motion train-
ing method which improves the traditional motion training.
Secondly, we provide intelligent functionalities of a motion
training system that are important for trainers and trainees,
including motion evaluation and motion training video gen-
eration, as shown in figure 1.

We utilize wireless sensor technologies for a body sensor and
a camera as a visual sensor remaining the users’ movements
un-tethered. The body sensor precisely measures the tilt de-
tection, movement, and vibration of the body parts. On the
other hand, like a mirror in conventional training places, the
visual sensor provides the images of the users in real-time.
Combining these heterogeneous sensor types, we improve
the required tasks for motion training. For example, the ac-
celerometer on a trainer’s wrist provides precise tilt angles of
the hand and amount of speed changes which are not visible
to the naked eyes. Users can observe the sensor data of the
performed motions and correct their motions by comparing
them with another user’s data such as a trainer.



In a real-time motion training system, one challenge is to
continuously capture and process human motions. We in-
troduce the motion chunk as a flexible segment unit to store
a piece of motion information. Motion chunk allows us to
make a motion model out of unstructured human motions.
With this model, we can apply motion detection and eval-
uation for motion training. We developed various function-
alities for both trainers and trainees. Trainers and trainees
can analyze their motion performances by watching a hybrid
representation of visual and body sensor data and by gener-
ating a motion training video automatically. Thus, they do
not have to manually record and edit the video for editing
image frames.

We performed user tests in martial arts training to validate
our training system (figure 2). Since we have developed our
framework as general as possible, the approach can be ap-
plied to a wide variety of motion trainings which require
real-time motion recognition and visual motion data pro-
cessing.

2. BACKGROUND AND RELATED WORK
The following research is relevant to our work. It includes
specifically sensors, motion analysis, and prior art regarding
motion training. Due to large body of literature in these
fields we will only give an overview of the most relevant
publications.

2.1 Sensors
The advances in sensor technologies including wireless sen-
sors and cameras has increased interest in motion analysis
[8]. The sensors can be categorized into two groups: envi-
ronment sensors and body sensors. Environmental sensors
such as ultrasound trackers or visual sensors like cameras
have been investigated to capture motion not burdening a
user with heavy sensing devices [1]. Specifically, visual sen-
sors have been utilized to reconstruct a 3D user body which
can be useful to analyze human motions [9]. A typical exam-
ple of using body sensors is a wearable computer system. In
contrast to environment sensors, body sensors can provide
straightforward motion information. These days, further ad-
vances in miniaturization make it possible to develop sensors
in the convenient form factor of watches, bracelets, adhesive
patches, or belt which could be placed on various parts of
the user’s body. Body-centric sensors do not hamper the
users’ movement any more. Thus combining body sensors
and visual sensors has become a demanding task for devel-
oping interactive applications. In this paper, we use both a
body sensor and a visual sensor to support motion training.

2.2 Motion Analysis
The speech analysis has been developed using the Hidden
Markov Model (HMM) to recognize words and sentences
and to verify speakers [10]. However, in motion analysis, it
is still problematic to process real-time motion signals and
apply machine learning techniques to motion data. Thus
body sensor have been mainly used to analyze pre-recorded
general human activity using machine learning techniques
such as running, walking, etc [3]. This paper introduces a
novel concept called motion chunk to structure and analyze
sequential human motions. We analyze motion data for mo-
tion training using a Hidden Markov Model. We employ
wireless sensors to analyze complex user-defined motions in

real-time. Wireless sensors have also been studied for visual-
izing human motion using audiovisual media components for
entertainment [11]. While these approaches combine visual
and body sensors, we apply sophisticated machine learning
techniques to analyze complex motions. Using the HMM,
Chambers used a body sensor for the purpose of annotating
video frames [5]. Starner and Pentland recognized hand ges-
tures out of the vocabulary of the American Sign Language
using a camera [12]. However, we detect and evaluate hu-
man motions for motion training by combining visual and
body sensor data.

2.3 Systems for Motion Training
A number of applications have been proposed for motion
training systems. Davis developed a vision-based motion
training system, called Virtual PAT (Personal Aerobics -
Trainer) using IR light sources providing manually pre-
recorded instructive videos and audio feedback [7]. Becker
described a system for teaching Tai Chi gestures based on
head and hand tracking by using a pair of stereo cameras
[4]. Yang developed the ”Just Follow Me” system using an
optical motion capture system [14]. From this, Baek pro-
posed evaluation methods by retargeting trainees’ motion
to the pre-generated avatar [2]. Chua developed a wireless
VR system for Tai Chi training using a light-weight HMD
display and optical motion capture device [6]. The trainees’
motions are evaluated based on skeleton matching to mea-
sure how they mimic avatar motions. Takahata presented
a martial art training method using sound generators and
accelerometers without providing motion recognition and vi-
sual feedback [13].

To the best of our knowledge, our system is the first ap-
proach which combines visual and body sensor data to de-
velop a motion training system. While most of the previous
training systems have been developed for trainees, ours sup-
ports both trainers and trainees. Using the machine learn-
ing techniques, we structuralize and label human motions in
real time and automatically generate an instructive motion
training video. Thus, we achieved full automation while
supporting motion training functionalities. We evaluated
our training methods in a scenario of teaching martial arts.

Figure 2: Motion training system in action.
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Figure 3: Motion training system setup using a body
sensor, a visual sensor, and display devices.
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Figure 4: The procedure to evaluate human mo-
tions and to generate visual feedback combining vi-
sual and body sensor data.

3. SYSTEM ARCHITECTURE
The system consists of a visual sensor (camera), a body sen-
sor (wireless sensor network) and a display device (a projec-
tor or a monitor) (figure 3). The system is operated with a
series of software components that constructs a motion data
model by combining body and visual sensor data. Figure 4
describes the sequential dataflow between the components.
During data acquisition, we collect signals from both the
body sensor and the visual sensor. Wireless accelerometers
transfer signals to the sensor base station which is connected
to the main PC. We read the data with a sample rate of 10
Hz and transmit each packet 10 readings in size, so that the
update frequency is overall 100 Hz. Synchronously, a Point
Grey Research Dragonfly captures 15 images per second and
transmits the data to the host PC.

The host PC accomplishes several steps to analyze the hu-
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Figure 5: Euler coordinate system of our body sen-
sor (a) roll, pitch and yaw axes of the sensor on the
wrist, (b) an example posture 1 with roll average 67
and pitch average 93 (c) an example posture 2 with
roll average 80 and pitch average 17 in range 1-100

man motion in real time. First, signal segmentation (Sect.
4.2) is performed to divide signals based on the structure of
a motion chunk (Sect. 4.1). To recognize reference motions
from the segmented motion chunks, motion detection (Sect.
4.3) is performed based on HMMs. Afterwards, the input
motion is evaluated and assigned a score by comparing with
reference data (Sec. 4.4). For processing visual sensor data,
first the acquired image data is processed in real-time to
track the body position. Visual and body sensor data are
synchronized by time-stamp. We generate visual feedback in
the images incorporating the body sensor data (Sect. 5.2).
The next chapter describes each component in detail.

3.1 Body Sensor
For the accelerometer we use an Euler coordinate system.
The orientation is represented by three different angular val-
ues: yaw, pitch and roll. These values are commonly used
to describe the movement of a ship or a plane. To measure
these values, the accelerometer is the most suitable because
it enables the detection of tilt, movement, and vibration.
The small size of such sensors is also appropriate for the
human body. For example, we can attach the sensor to the
wrist like a watch (figure 5). Then, the roll axis of the sensor
is parallel to the forearm, and the pitch axis is horizontal and
perpendicular to the roll axis. Yaw values point out the up-
right position of the hand. Unlike the other two angles, yaw
values are changed depending on the absolute orientation of
the attached body part. In our setting, we utilize only 2-axes
of the accelerometer providing pitch and roll, as shown in
figure 5c. Using pitch and roll, we can measure the posture
of the body part it is attached to, i.e. the forearm. We can
infer other, adjacent body parts as well. For example, since
the sensor is located on the forearm near the hand, it is also
indicative for the orientation of the hand. That is, we can
estimate whether the palm is facing back or front, or facing
up and down. We divide the body sensor information into
two categories: postures and gestures. Postures are static
expressions described orientation, whereas gestures are dy-
namic movements essentially defined by velocity and by the
changes thereof. For instance, if the forearm rests in a cer-
tain position, it provides constant values for roll and pitch,
i.e. a posture. Figure 5 illustrates different static accelera-
tions of two postures which have different average roll and
pitch angles. On the other hand, when the forearm moves
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Figure 6: 4 example roll and pitch signals of a ges-
ture ranging from a start posture (1) to and end
posture (2). Notice that each signal starts and ends
with approximately same average roll and pitch val-
ues.

in space, it provides a precise rate of change of velocity over
time, i.e. a gesture. Figure 6 shows a collection of signals
generated between two postures. As can be seen in Figure 6,
when a motion is performed between two distinct postures,
an acceleration signal starts at the end of posture 1 and fin-
ishes with the beginning of posture 2. As will be explained
subsequently, it is this acceleration signal that we utilize as
a basis for our motion analysis.

4. MOTION RECOGNITION
We developed a method for motion analysis which supports
motion training functionalities in real-time. We introduce
the notion of a motion chunk to explain how to decompose
and analyze human motion. Then, we process the sensor
data following the techniques outlined in figure 4.

4.1 Motion Chunk
We introduce the motion chunk to process and decompose
unstructured human motion. Similar to the human voice,
human motion is sequential in time. We assume that human
motion can be represented with a sequential combination of
chunks similar to speech analysis. We induce several types
of motion structure from the recognition point of view: sin-
gle motion recognition, recognition of a sequence of motions,
and overall motion understanding. We extend the analogy
as follows: a single motion such as punching, blocking, kick-
ing, and striking can be considered as a ”word level” motion
since they do not involve sequences of other motions. Us-
ing ”word level” motion recognition, we can detect ”sentence
level” motions by evaluating transition probabilities between
”word level” activities. For example, sparring could be a
sentence level motion involving sequences of punching and
blocking.

The basic idea at the motion chunk is to decompose com-
plex, sequential human motions into atomic units to simplify
analysis. These units, called motion chunks, are similar in
spirit to phonemes in speech recognition. Following our ear-
lier definitions of postures and gestures we create two types
of motion chunks: static chunks and dynamic chunks.
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Figure 7: Structure of a motion chunk. A recognized
single motion consists of two static chunks and one
dynamic chunk.

We now define the motion chunk of one single motion as
a combination of three chunks: start-static chunk+dynamic
chunk+end-static chunk. This is intuitively clear as it com-
bines the start posture, the gesture, and the end posture.
Figure 7 illustrates that a single step motion consists of two
static chunks denoted by C and one dynamic chunk denoted
by D. Likewise, two step motions are combined sharing one
in-between static chunk and so forth. To recognize an in-
put single motion, each of the K single motions known to
the system are assigned a motion type ΩK . The recognition
rule rK maps the observation sequence on the basis of the
start-static chunk Ci−1, the end-static chunk Ci+1, and the
dynamic chunk Di to a motion index κ of motion type ΩK ,
i.e.

rK : [Ci−1, Di, Ci+1] 7→ κ (1)

Based on the motion chunk structure, we detect human mo-
tions using machine learning techniques (Section 4.3), and
evaluate them for improved motion training (Section 4.4).

4.2 Signal Segmentation
Signal segmentation divides the acquired signal into a se-
quence of motion chunks. In speech analysis, it is required
to segment start and end of the human voice. Similarly, we
also need to detect when a motion starts and ends within
the motion signals. Our goal is to segment the acceleration
signals for the static chunk and the dynamic chunk. We
developed a simple segmentation method by measuring a
standard deviation of the raw signal. First, we compute a
standard deviation over 10 points of the raw signal. In a
subsequent step, we calculate a second standard deviation
over the 10 previously computed standard deviations. If the
second standard deviation value is above a threshold, we as-
sume that a motion starts. This strategy provides segmen-
tation results which are robust against regularly-vibrated
motions. In addition, we check the length of the segmented
signal and eliminate too long and too short signals.

4.3 Motion Detection
Motion detection in our system distinguishes reference mo-
tions from the user’s arbitrary motions. Whereas in the
speech recognition, the major challenging problem is to ex-
tract human voice from the environmental noise, our appli-



cation requires to detect a motion by eliminating the arbi-
trary motions from a long sequence of human motions. We
employ HMMs to accomplish this.

4.3.1 Hidden Markov Models
HMMs have been applied extensively in speech recognition
to determine written words from speech. A HMM is based
on the assumption that the process can be described as a
first-order Markov process and represented as a set of dis-
tinct states [10]. The change from one state to another is a
stochastic process. The general idea of an HMM is that a se-
quence of hidden “states” can be inferred from the observed
data. For example in speech recognition, the hidden states
may represent words or phonemes and the observations rep-
resent the acoustic signals. In our motion detection, the
motion chunk is represented by a sequence of hidden states,
and motion signals are processed to generate each observa-
tion of the states respectively. A HMM of a set of states (S)
is characterized by initial state distribution (π), transition
probabilities (A) and item output probabilities (B). Thus,
an HMM lambda (figure 8) can be characterized by a set of
parameters regarding two states S1 and S2:

λ = (π, A, B) (2)

where A is the transition matrix A = {a1,1, a1,2, a2,1, a2,2},
π = {π1, π2} are the prior probabilities, and
B = {b1(On), b2(On)} are the observation probability distri-
butions for each state given the observation On = {S1, S2}.
Considering our purpose to detect a motion chunk, there
are two main processes to use HMMs. Firstly, we create a
HMM for each motion and adjust the model parameter us-
ing observation sequences maximizing the probability of the
observation sequence denoted by P (On|λ) given the HMM
model. Second, we apply the new observation sequence to
compute P (On|λ) given the HMMs trained in the previous
step. Comparing these probability values, we detect input
motions.

4.3.2 Motion Chunk based HMMs
We apply the concept of a motion chunk to represent the
hidden states. The topology of each motion is represented
as two distinct states which can be regarded as a two-state
machine. We use the start-static chunk and the end-static
chunk only, because the in-between dynamic chunk features
a highly variant signal heavily depending on speed and power.
As illustrated in figure 6, individual signals posses a large
variability even when the same motions are performed by
the same user. However, the signals of the static chunks are
stable enough to be used as an observation vector. Each
HMM is created with the performance of two static pos-
tures (start and end). This usually takes below one minute,
as explained in Section 6.3. Using the signals as the ob-
servation sequences, we train the HMM parameters of each
motion. We employ an iterative procedure called Baum-
Welch method [10] widely used to find a local maximum
of the probability. Once the HMM model is trained, the
system is able to detect the newly performed motion. For
this, we employ the probability of the observations using
a Viterbi algorithm [10]. If the probability is high enough
given a HMM model of a motion type, we detect the input
motion and generate a motion chunk with resampled data.
The resampling is necessary to evaluate the quality of the

a1,2
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S1 S2
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Figure 8: An example HMM topology of two states:
S1 (start-static chunk) and S2 (end-static Chunk) ,
a1,2and a2,1 (transition matrix between S1and S2)

time

Figure 9: An example for motion detection for three
different motions. Notice that each detected motion
has relatively different start- and end-static chunks.

motion. Then, the further processes, such as motion eval-
uation and motion training video generation, are executed.
In our current training scenario, we usually detect only one
motion type at a time from arbitrary motions. However, the
system can also classify several motions by comparing their
probabilities to each other (figure 9).

4.4 Motion Evaluation
We evaluate motions based on the quality of their motion
chunks. While we use only static chunks for motion de-
tection, we also take a dynamic chunk for evaluation. The
evaluation of each motion chunk provides distinct scores for
start posture, gesture, and end posture. The three scores
are averaged for a score of one motion. The evaluation of
two static chunks explains how the start and end postures
have been performed respectively. The evaluation of the dy-
namic chunk tells how the gesture is performed with respect
to power and speed. We use a Euclidean distance metric to
measure the similarity of two motion chunks. During the
motion detection process explained in Section 4.3, the mo-
tion chunk is generated and resampled to the resolution of
the reference motion in the motion data base. This compen-
sates for potential timing differences. We compare the ac-
tual motion chunk with 10 different reference motion chunks
of a trainer stored in our database. We take the minimum
distance as the final score. The scores are normalized to a



Figure 10: Observations for body sensor tracking
with LED markers on the wrist body sensor.

maximum value of 100. During the tests, we found that this
minimum distance is better suited than mean or median to
measure quality. The computed scores are displayed on the
motion training video panel in real-time.

5. MOTION TRAINING VIDEO
A motion training video is necessary for trainees and train-
ers as a reference to follow and analyze motions. However,
producing such a video usually takes a lot of time. First,
it requires simultaneous video recording during the trainer’s
performance. Also, the captured videos should be edited for
the purpose of motion training such as selecting video frames
and adding explanatory information. We provide a method
for automatic generation of motion training videos. As soon
as the input motion is detected, we save both the relevant
video frames and the body sensor data. Then we generate a
video displaying body sensor data along the tracked sensor
positions, as illustrated in figure 11.

5.1 Body Sensor Tracking
We extract sensor positions from the captured images and
use the positions to generate visual feedback. We made
various experiments to find suitable tracking solution for
our purpose. First, the color band tracking highly depends
on the training environment condition such as lighting and
color. We also tested IR light sources, but they omit color
information which is required. We found that color LED
markers are most suitable for our purpose. Their brightness
provides relatively robust tracking results in indoor train-
ing environments. We developed a simple vision tracking
algorithm to find the pixel positions within a certain color
and brightness range. The number and position of LEDs
are designed depending on the sensor position. In our tests,
we attached four LEDs at the four sides of the wrist bend.
This installation allows us to detect at least one point reli-
ably even when the hand is rotated in different directions.
Figure 10 illustrates four cases where one, two, three points
are detected respectively. We use the center of the detected
point as the position of the body sensor.

5.2 Visual Feedback
Visual feedback helps trainers and trainees to explain and
improve their motion practice. During the user tests, we
ascertain the fact that visual feedback for body sensor data
is absolutely needed. Users wanted to see how the body
sensor data is changing with the appearance of the posture.
Especially for the trainees, visualizing motion path helps
significantly to understand a dynamic gesture between two
static postures. Thus we focus on visualizing body sensor
data on the images along the motion path as illustrated in
figure 11. We use the tracked sensor positions and design a
simple template to display a moving circle along the path

Figure 11: Example video frames for visual feedback
with the mean power of acceleration signal.

changing its size as a function of the magnitude of the ac-
celeration. There are various design alternatives, of course,
varying the shape and its transformation rules.

6. USER EXPERIMENTS
We conducted a set of user experiments to quantify the costs
and benefits of combining visual and body sensor data for
motion training. We expect our motion training system to
provide significant benefits over conventional motion train-
ing. In our motion training system, visual sensor data is
used as a feedback to the user allowing him to coarsely ad-
just his motion to the reference motion. Conversely, the
body sensor data is utilized for adjusting required body part
of the user precisely. In our experiment we measure this
benefit. In addition, we quantify how our system evaluates
postures and gestures and how it detects human motions in
real-time. To this end, we use a martial art training scenario.
Martial art training is specifically suited for our experiment
because it includes highly complex, precise motions which
contain both postures and gestures.

6.1 Subjects
For this experiment, we used a trainer who is a master of
Taekwondo and six additional subjects as trainees, three
male and three female, all of them having no experience in
martial art training.

6.2 Task
We designed the separate tasks for the trainer and for the
trainees. The task of the trainer was to produce the ref-
erence motion data model for 10 sets of five motions each
(punch, outside block, upper block, inside block, and down
block). This model was used for the trainee experiment later
on. Subsequently, the trainer was asked to perform 5 sets of
10 outside-blocks for testing the motion evaluation methods.
The rest time between each set was two hours, and in each
set he performed 10 times repeatedly without resting.

For the trainees, we designed two basic training conditions:
posture training and gesture training. The task of posture
training was to learn start and end postures of the five mo-
tions. The gesture training serves for practicing individual
gestures between a start posture and an end posture. In
posture training, the trainees were told to perform postures
of four motions three times each while watching a reference
image without resting. We measured how long it takes to
learn to match their postures to the trainer’s average roll
and pitch values. Among the five motions, we selected the
punch motion which is relatively easy for teaching novices
to use the system. The end posture of the punch is also
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Figure 12: Experimental results of trainee subjects
in posture training: average time (in seconds) to
complete the task of posture training for four dif-
ferent motions. Note that the first and the last
experiment use only a Boolean feedback indicating
whether the current posture is correct or not. The
second experiment displays a signal which trainees
can follow.

employed as an initial posture for the trainee to start with.
We designed a simple progress bar which provides Boolean
feedback indicating whether the current posture is correct.

In gesture training, we evaluate how the trainees perform a
single motion in rapid succession of the start posture, the
gesture, and the end posture. Each trainee was told to do an
outside block motion. Before this, they had to learn the start
and end postures of the block motion. In our training sce-
nario, we utilized trainer’s reference data to train the HMM.
Thus, trainees first have to learn the required two start and
end postures so that their motion can be detected. This usu-
ally takes several minutes, as we found out during the user
tests. Note that this process is most similar to the practi-
cal training and thus, it is not considered as an additional,
unnecessary step to prepare the system. We evaluated each
motion based on the trainers’ data of the previous experi-
ment. From the first posture training experiment, we found
that the outside block is the most difficult one and is ap-
propriate for testing the gesture training. Again, trainees
were asked to perform 3 sets of 10 outside-blocks with ap-
proximately a two hours time interval between each set. All
subjects were granted a minimum time to become familiar
with the new training devices, the wireless accelerometer
worn on the right wrist, and the video projection.

6.3 Results
We collected the trainees’ performance data for each of the
tasks. For the trainer’s task, we found that the trainer com-
pleted nearly all tasks correctly. Thus, we could use the time
to complete the task as an overall performance measure for
potential trainers. It only took the trainer 10 minutes to
create the 10 reference sets of the five motion data. From
this, we obtained 50 motion training videos (10 for the five
motions) containing both body and visual sensor data as
well as visual feedback. The motion training video gener-
ation was performed very well with the help of automatic
motion detection. Figure 13 shows the average scores af-
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Figure 13: Experimental results of a trainer subject
during gesture training: average scores of two pos-
tures and one gesture and their overall score after
five sets of 10 outside blocks.
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Figure 14: Experimental results of trainee subjects
for gesture training: average scores of two postures
and one gesture and their overall score after doing
three sets of 10 outside blocks. The legend is the
same as in figure 13

ter the trainer’s gesture training. As mentioned in Section
4.4, each performed motion was scored against three parts:
start posture, gesture, and end posture. The overall scores
are provided by averaging the three scores. We can see how
he improved after 5 sets of 10 outside blocks each. While
the scores of the end postures are constant, the scores of the
start postures and the gestures change slightly over time in-
dicating the adaptation to the reference. After interviewing
with the trainer, we realized that the end posture scores are
slightly going down, because the trainer focused on the ges-
ture while spending less effort on the postures. We could also
infer that gesture training bears more potential for further
improvement than static posture. Even though the trainer
masters the postures, it is very difficult to keep the right



postures during the dynamic performance - a skill that dis-
tinguishes masters on the highest level. This shows that the
resolution of our training system is sufficiently high for eval-
uations on highest levels and that it can be used to practice
gestures with self-created reference data.

The result of the posture and gesture training clearly demon-
strates that the system helps trainees learn complex martial
art postures in a short time. As illustrated in figure 12,
watching the body sensor signals helps the trainees to find
the correct postures. After this experiment, we could also
compare the individual postures and realized that some pos-
tures are relatively difficult to learn. We found that if the
body sensor is further away from the trainee’s body, it is
more difficult to repeat a constant posture. The gesture
training experiment of the six subjects yielded quite inter-
esting result. Similar to the trainer’s experiment, the static
posture scores are higher on average than the gesture. In-
terestingly, we found that there were three different styles.
First, trainee1 and trainee2 focused very much on improv-
ing gestures. As a result their start postures were getting
worse over time. On the other hand, trainee4, trainee5 and
trainee6 focused their attention to the improvement of their
static postures rather than on the dynamic gestures. Fi-
nally, trainee3 improved both postures at the same time -
which is clearly the desirable case. Even though trainees
know the start and end postures, it was difficult for them to
perform correctly in the dynamic setting. We also felt that
the male subjects tend to use more power, whereas female
subjects focus on technique. However, this finding did not
influence the results significantly.

6.4 User Feedback
During the experiments, we collected interesting user reac-
tions and received many comments. Some users felt that our
training system can be useful for computer games related to
sports and martial art sparring. They suggested that using
real motions would make the interactions in playing com-
puter games more appealing. Some participants were get-
ting very involved in the training and all of them performed
very seriously. As one participant commented: ”The system
helps me to focus my attention on precise my body move-
ments”. Most of people asked to use the system on a regular
basis. Since we employ low cost technologies, the system can
be easily tailored towards an individualized personal train-
ing system. We also let the members of Computer Graphics
Laboratory, at ETH play with the system. In order to test
long term training progress, we also repeated some experi-
ments after a while. Although some users had lower initial
scores compared to last time, they quickly caught up and
made progress.

7. CONCLUSION AND FUTURE WORK
We presented an approach to build a motion training sys-
tem combining body and visual sensor data. We described a
novel motion decomposition procedure called motion chunk
for real-time motion analysis. Based on the motion chunk,
we detect and evaluate a specific motion using Hidden Markov
Models. We also presented an automatic video editing method
to generate a motion training video including visual feed-
back. During a series of user experiments, we demonstrated
how our motion training system can be used for the practi-
cal training. We also tested the motion detection, evaluation

and motion training video generation in real-time. The sys-
tem helps both trainers and trainees to improve fine static
postures and dynamic gestures. So far, our research has
mainly focused on analyzing single motions. Future work
will be devoted to the analysis of longer sequences of mo-
tions. From this, users can eventually practice combinations
of multiple motions.
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