
Data Streaming in Telepresence Environments

Edouard Lamboray* Stephan Würmlin Markus Gross
Computer Graphics Laboratory

Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

lamboray@cyfex.com {wuermlin, grossm}@inf.ethz.ch

In this paper, we discuss data transmission in telepres-
ence environments for collaborative virtual reality
applications. We analyze data streams in the context of
networked virtual environments and classify them
according to their traffic characteristics. Special
emphasis is put on geometry-enhanced (3D) video. We
review architectures for real-time 3D video pipelines
and derive theoretical bounds on the minimal system
latency as a function of the transmission and processing
delays. Furthermore, we discuss bandwidth issues of
differential update coding for 3D video. In our telepres-
ence system – the blue-c – we use a point-based 3D
video technology which allows for differentially
encoded 3D representations of human users. While we
discuss the considerations which lead to the design of
our three-stage 3D video pipeline, we also elucidate
some critical implementation details regarding decou-
pling of acquisition, processing and rendering frame
rates and audio/video synchronization. Finally, we dem-
onstrate the communication and networking features of
the blue-c system in its full deployment. We show how
the system can possibly be controlled to face processing
or networking bottlenecks by adapting the multiple sys-
tem components like audio, application data and 3D
video.

Keywords: H.4.3 [Communications Applications]:
Computer conferencing, teleconferencing, and video-
conferencing. I.3.2 [Graphics Systems]: Distributed/
network graphics. I.3.7 [Computer Graphics]: Three-
dimensional graphics and realism

1. Introduction
The use of spatially-immersive projection environ-

ments as portals for telepresence applications offers
unprecedented possibilities for collaboration and com-
munication of multiple users, located at distant sites.
Along with data acquisition and rendering, a spatially-
immersive portal for telepresence also raises many tech-
nical challenges for data communication. The time-
varying state of a distributed collaborative virtual real-
ity application needs to be transmitted to remote sites,
respecting the delay tolerances for interactive user com-
munication.

The data generated by the system does not only
include application data, but also audio/video streams
for teleconferencing. A special novelty of our telepres-
ence system – the blue-c – is the visual representation of
the user [5]. The users are rendered based on 3D geom-
etry data, the appearance attributes being extracted from
multiple live video cameras.

Moreover, the design of our system is motivated by
the guideline to use an attribute-centric approach and
thus, to avoid approaches based on a priori models. On
the one hand, the use of a priori models for describing
real-world or synthetic data often allows for a very effi-
cient data representation. On the other hand, the render-
ing of the data is also limited by the data model. In fact,
model-based approaches do not allow for motions,
actions or deformations which are not described by the
model in the first place. And allowing for those alter-
ations results in adapting – if not completely changing –
the underlying model. In most cases, this task cannot be
performed without modifying the system’s implementa-
tion. Concerning the manipulation of objects in the vir-
tual environment, we intend to reproduce the
modifications at the remote sites as naturally and con-
tinuously as they are initially performed.

Furthermore, porting a collaborative virtual reality
telepresence system from an experimental setup in a
well controlled and well behaved laboratory into a pro-
duction application requires that the system is able to
adapt to various networking and application conditions.
Thus, we investigated possibilities for application adap-
tation and fault-tolerance during adverse networking
conditions and performance bottlenecks.* The author is now with Cyfex AG, Zurich, Switzerland.

Figure 1: A blue-c CAVE-like portal.

At ETH Zurich, we investigate novel immersive pro-
jection and acquisition environments for telepresence
[5]. During the blue-c project, two networked virtual
reality portals, consisting of CAVE-like environments,
augmented by an array of cameras, were developed. In
full operation mode, the two portals enable networked
collaborative applications enhanced by 3D video con-
ferencing features. Figure 2 depicts the components of
the blue-c system, including the combined acquisition
and projection hardware based on shuttered projection
screens, the acquisition and rendering hard- and soft-
ware and the distributed software architecture. The
mainly graphical application data is handled by a dis-
tributed shared scene graph [13].

This paper is organized as follows: After a short dis-
cussion of related work, we analyze the data streams in
networked virtual environments in Section 2. In Section
3, we discuss 3D video architectures for teleconferenc-
ing and in Section 4 we present the design of the system
we implemented. In Section 5 we present application
simulation results from our telepresence environment.
1.1. Related work

Cruz-Neira et al. demonstrated the first CAVE, a sur-
round-screen projection-based virtual reality environ-
ment [2]. Raskar et al. presented an unprecedented
system allowing for simultaneous per-pixel depth
extraction and projection in an office environment [16].
Their Office of the Future demonstrated the potentiali-
ties of the smart combination of real-time computer
vision and computer graphics technologies for telepres-
ence applications. Subsequent examples of combining
simultaneous acquisition of live 2D or 3D video streams
and full-wall projection displays are the Teleport envi-
ronment [3], the 3D video conferencing system by
Kauff and Schreer [7], and the National Tele-Immersion
Initiative [17].

Free-viewpoint video can be computed by extracting
geometry and texture information from a set of concen-
tric views of the same object. We will refer to this
geometry-enhanced video streams as 3D video. Matusik
et al. investigated real-time reconstruction and render-
ing using the visual hull algorithm [12]. This approach
is also used by Prince et al. in their augmented reality
enhanced video conferencing system [15].

A variety of networked virtual environment architec-
tures have been proposed in the literature, but only few
researchers investigated the characteristics of the data to
be shared and transmitted. In the NPSNET system,
objects in the virtual world are modelled as entities hav-
ing state information, e.g. attributes like location, veloc-
ity, color, orientation [11]. Audio and video streaming
has been integrated into the MASSIVE architecture and
changes in the scene are communicated following the
event communication paradigm [4]. Leigh et al. investi-
gated whether differentiated service mechanisms are
suitable for tele-immersive applications [10]. In that
context, they classified the data streams of tele-immer-
sive applications with respect to the networking charac-
teristics and requirements.

2. Data streams in telepresence environments
2.1. Data stream classification

Using the results from previous research on net-
worked virtual environments, we propose to distinguish
the following data streams in telepresence environ-
ments:
• Conventional 2D video and audio data: These data

streams have been thoroughly investigated in the past.
Their deployment within networked virtual environ-
ment applications is similar to their usage in conven-
tional video conferencing applications.

• Avatar data: Contains the information required for
describing an avatar’s state. This information typi-
cally has a predefined format and a fixed size.

• 3D Video: Unlike conventional video, 3D video con-
tains geometric information of the respective object
or scene. This data thus allows for free-viewpoint and
stereoscopic rendering.

• Application updates: Data which is generated interac-
tively by the users while working with the applica-
tion. We distinguish updates which lead to visual
changes and updates which only concern internal
application states but do not lead to visual changes. In
summary, these data updates are generated through
user interaction with the scene and the application. If
the underlying scene data structure is a distributed
shared scene graph, the scene graph update messages
fall into this category.

• Initial application data: Data which leads to a pre-
defined state in the application. A predefined starting
point is needed at application start-up time, but can
also be required at several intermediate stages. This
data also includes the initial scene description.

• Awareness management data: Fixed format data
describing where a user is focusing on in the virtual
environment, e.g. a user’s current position and view-
ing direction.

• System control data: Fixed format data describing
internal system states.
Data which is of a predefined format and which does

not depend on the user interaction is predictable and, in
some sense, well-behaved for transmission over com-
puter networks. The data streams falling into this cate-

Figure 2: Hard- and software components of the
blue-c system.

Graphics
engine

Acquisition
cluster

Graphics
engine

Acquisition
cluster

Network

Software
layers

3D video object

16 synchronized cameras

Shutter
glasses

Shutter
glasses

LCD
shutter

Shuttered
projection screens

16 synchronized cameras

Synchronized
active light

Synchronization

Synchronization

gory are awareness management and system control
data, possibly also avatar state information and, to some
extent, audio data.

Conventional 2D as well as the novel 3D video for-
mats present the difficulty that the required bandwidth
depends strongly on the deployed coders. Since most
coders use motion prediction, the short-term bandwidth
depends heavily on the user’s motion and hence the
streams present a medium or high burstiness. For video
transmission in general, a regular update rate is more
important than a lossless transmission. High packet loss
rates however lead to prominent visible artifacts.

Application updates, or scene graph messages, also
present a potentially medium or high burstiness and are
not easy to predict, since they completely depend on the
user interacting with the application. In many applica-
tions, their average bandwidth requirements are
expected to be significantly lower than those for video
streams. However, efficient collaborative applications
only tolerate short-term differences in the distributed
shared data. Thus, a consistent data representation
needs to be guaranteed through error resilient transmis-
sion of the application data. The scene description and
application initialization streams are not critical because
of their burstiness, since they do not present strict
requirements with respect to latency or jitter.

In summary, we can distinguish three major data
classes: bulk data, sporadic events and real-time
streaming data. Each of these categories has its specific
characteristics and must be handled with an appropriate
communication technology. Table 1 classifies the previ-
ous data streams into these categories.

Among the above data types, those which directly
lead to a visual or aural output are more critical than
others. This is especially true, if the visualized motion is
intuitively understood as a continuous movement by the
human observer.

2.2. Bandwidth
The system bandwidth of a telepresence system is

the achievable bit rate between the acquisition site and
the rendering site. It thus includes limitations imposed
by applications, hosts and communication networks.
Since a telepresence application is an inherently multi-
stream application, the total bandwidth is the sum of the
bit rates of all individual streams , i.e.

.

In a typical blue-c application, each site produces a single
3D video stream at the bit rate , a high-quality audio
stream at and an application update stream at .
Thus, can be approximated by

.

The bit rate of the awareness management and sys-
tem control data streams are of a lower order of magni-
tude and are not really important for bit rate
calculations. In a reasonably controlled environment –
as it is the case between our two blue-c portals, installed
at distant locations on the ETH campus – the maximum
network bandwidth is in the order of tens or even hun-
dreds of megabits per second.

2.3. Latency and jitter

The latency or delay is the time elapsing between the
emission of a data block at the sender, and its arrival at
the receiver. In his review of virtual reality applications,
Brooks counts latency – inter-system latency, as well as
latency due to communication over a computer network
– among the major problems of virtual reality applica-
tions [1].

If we analyze the latency of a system, it is important
to notice that there exists a threshold under which
delays are not perceivable. A second threshold defines
the range in which interaction among experienced users
is still possible, but where the user performance starts
degrading. The user performance is generally measured
in a usability study which analyzes how fast or how
accurate a well-defined task can be executed. If the
latency becomes too important, no reasonable interac-
tion is feasible anymore. The absolute values of these
thresholds depend on the task that needs to be accom-
plished. During a networked ball playing experiment,
first problems in real-time interaction are reported for
delays of 500 milliseconds, and interaction stops com-
pletely when the delays approached 1 second [18]. In
the voice transmission community, it is generally admit-
ted that communication performance drops dramatically
if round-trip delays approach 500 milliseconds [8].

In general, jitter – the variation of the latency – is
admitted to be more harmful than latency. Park and
Kenyon confirm this statement by analyzing the user
performance in collaborative virtual environments
under various latency and jitter conditions [14]. They
report no significant difference between experiments
with a latency of 200 milliseconds without jitter and a
latency of 10 milliseconds with jitter, i.e. a long latency
without jitter has a lower effect on performance than
short latencies with substantial jitter. The experiments
of Vaghi et al. show that experienced users develop
intuitive strategies to cope with system latency, but
these strategies fail if the latency is not constant [18].

Table 1: Data stream classification.
Data category Examples

Bulk data Scene description, initial application
data

Sporadic events Avatar, application updates (punctual
user interaction), system control data

Real-time
streaming data

Audio, video, 3D video, awareness
management, application updates (con-
tinuous user interaction)

BS

bi

BS bi
i
∑=

b3dv
baudio bapp

BS

BS b3dv baudio bapp+ +=

3. Real-time 3D Video

3.1. System architectures
There exist two main approaches for generating free-

viewpoint or 3D video:
• Image-based 3D video approaches generate the vir-

tual views from a dense set of camera images by
interpolating between neighboring views [6];

• Geometry-based 3D video approaches compute a
geometric 3D reconstruction from a sparser set of
camera images [12].
Deploying both approaches for teleconferencing

leads to two different solutions. The image-based
approach either requires at the rendering site the origi-
nal set of camera images or a new image constructed
from a subset of the input images and rendered for the
respective viewpoint. The image-based approach thus
requires the transmission of one or several 2D video
streams.

In the geometry-based approach, either the camera
streams are transmitted to the rendering site, where also
the geometry computations are executed, or a truly
geometry-enhanced video, containing e.g. per-pixel
depth data, is transmitted. Figure 3 illustrates the two
options for real-time 3D video architectures.

Many precedent real-time 3D video systems recon-
struct and render the 3D video object on the same node.
Such a setup, however, does not correspond to the situa-
tion one encounters in telepresence or video conferenc-
ing systems, since the acquisition and rendering sites
are at physically remote locations. Hence, if we opt for
a geometry-based approach and the architecture of Fig-
ure 3b, an efficient and robust streaming for the time-
varying 3D data needs to be devised. This architecture
however, also presents a couple of advantages. We
expect the streaming of 3D data to be more bandwidth
efficient than the streaming of the sum of the 2D video
streams it was generated from. Moreover, the 3D recon-
struction requires synchronized 2D video data which is
easier to realize if all contributing nodes reside in a
local area network, than if the 2D streams must be trans-
mitted over a wide area network. Finally, the transmis-
sion of a 3D geometry-enhanced video stream frees the

rendering and application nodes from the extensive pro-
cessing required for the generation of the 3D user repre-
sentation.
3.2. Latency constraints

In this section, we discuss the theoretical latencies
for the various design options of real-time 3D video
streaming systems. Let us introduce a variable
describing the one-way transmission delay of the com-
munication channel and describing the period of the
camera frame rate. The latency of the 3D video system
can be modelled using the communication delay and the
processing delay. In a real-time system, the processing
must not be longer than the period of the camera frame
rate, i.e. the processing time per frame is bounded by

.
A pipeline architecture allows to stretch the process-

ing time per frame over several nodes at the cost of a
higher system latency. We propose a three-stage pro-
cessing pipeline with an acquisition stage, a geometry
processing stage and a rendering stage, see Figure 3. In
this case, we can use two time slots for processing and
the available processing time becomes . Thus, the
accumulated processing latency in both pipelines of
Figure 3 is of , where is the rendering time.
The minimum value for is 16 milliseconds. The new
approximation of the one-way system latency thus
becomes

. (1)

We assume that two stages of the pipeline reside in
the same LAN and we neglect the transmission delay
between these two stages.

A different situation occurs during camera hand-
overs, i.e. the renderer’s virtual viewpoint changes such
that the set of cameras contributing to the 3D video
stream changes. In this case, the two-way system
latency is the important characteristic value. We now
analyze the two-way latency for a single stage and a
pipelined system, with and without back-channel trans-
mission of the renderer’s virtual viewpoint.
• S – single stage system without back-channel:

Since all video streams are permanently at the ren-
derer’s disposal, this architecture leads to the smallest
possible delay. From Equation (1), .
However, this design does not enable a prefiltering of
the data at the acquisition site and hence requires also
the highest transmission bandwidth.

• S+ – single stage system with back-channel:
In this case, the new virtual viewpoint first needs to
be transmitted to the acquisition site. Moreover, we
expect an average time of before the cameras
grab new images. Thus, the expected latency becomes

.
We observe that is almost twice as high as ,
but in this configuration the required bandwidth is
only times the bandwidth of system S, since
only the video streams required for the final ren-
dering are transmitted. In the real-time 3D video pipe-
line which we describe in Section 4.1, and

 or .

Figure 3: Architectures for a real-time 3D video
streaming pipeline with acquisition and rendering
at remote sites.

Reconstruction RenderingWAN

RenderingWANReconstruction

(a)

(b)

∆t

∆f

∆f

2∆f

2∆f ∆r+ ∆r
∆r

Λ

Λ ∆t 2∆f ∆r+ +=

ΛS ∆t ∆f ∆r+ +=

0.5∆f

ΛS+ 2∆t 1.5∆f ∆r+ +=
ΛS+ ΛS

K N⁄
K

N 16=
K 2= K 3=

• P – pipelined system (3 stages) without back-channel:
From Equation (1), .
The comments on the required bandwidth of system S
remain valid.

• P+ – pipelined system (3 stages) with back-channel:
Similar to S+, we must take into account the transmis-
sion time of the virtual viewpoint and the average
time until the next image grabbing. We thus obtain

.
Figure 4 illustrates the pipelined processing of a 3D

video stream and Figure 5 depicts the above system
latencies as a function of the camera frame rate and for
various transmission delays. We observe quite high
latencies at the low frame rates which are essentially
provoked by the relatively high value of . Although
the system inherent latency remains quite high, the sys-
tem becomes practicable at rates of 10 to 15 frames per
second in most configurations. The configurations with

, e.g. a transatlantic connection between ETH
Zurich and the US West Coast, lead to a considerable
latency which is due to the high value of . The dis-
tinction between S/P and S+/P+ however, is only rele-
vant for analyzing delays during camera hand-overs
because of virtual viewpoint changes. For describing
the one-way latency of e.g. the user performing a move-
ment and the respective rendering, the S and P curves
are representative.

From the previous discussion, we conclude that real-
time 3D video at 10 or 15 fps can be used in teleconfer-
encing applications. A three-stage processing pipeline
provides sufficient computation time and still allows for
interactive communication. For long-distance commu-
nication however, the latency constraints imposed by
the rules of interactivity for multi-user communication
systems are difficult to meet. Moreover, all previous
results are of a theoretical nature and suppose lossless
communication channels. Thus, the practical system
latencies will be larger, eventually because of packet
loss or sub-optimal system implementations.

A common technique to prevent jittering in the ren-
dering frame rate after a networked transmission is to
use an extra buffer at the renderer which then can be
used for smoothing the playback frame rate. Unfortu-
nately, the extra buffer also introduces an extra delay.
Since the system inherent latency of a 3D video pipeline
does not leave much time for extra delays, we suggest to

reduce jittering by controlling the frame rate at all pipe-
line stages and by adapting the data processing if per-
formance or transmission problems arise. This strategy
however, does not allow for a complete elimination of
jitter.

3.3. 3D Video in blue-c

In the blue-c system, the underlying user representa-
tion is a 3D point sample cloud. With this data represen-
tation, we can establish a direct mapping from a pixel in
2D image space to a point sample in 3D space. Thus, we
avoid interpolation and alignment artifacts which fre-
quently occur in mesh-based representations, where
geometry and texture are treated as heterogeneous data
types. Furthermore, we do not rely on complicated and
restricting a priori models, e.g. avatars or articulated
human-body models.

Figure 4: Pipelined processing of a 3D video
stream. The feedback line illustrates the back-
channel transmission of the virtual viewpoint.

Video images 2D video from
multiple cameras

3D video stream
over network

3D video
streaming

Feedback

Screen

Processing &
encoding

Decoding &
rendering

2D
acquisition

ΛP ∆t 2∆f ∆r+ +=

ΛP+ 2∆t 2.5∆f ∆r+ +=

∆f

∆t 75ms=

∆t Figure 5: System latency of various real-time 3D
video pipelines as a function of the camera frame
rate for various transmission delays. The latency
threshold at 200 ms guarantees an acceptable
round-trip latency for duplex human communica-
tion. a) Single stage system; b) 3-stage pipelined
system.

0

100

200

300

400

500

600

5 10 15 20 25 30

Frame rate [fps]

L
a
te

n
c
y
 [

m
s
]

S_dt=1ms S_dt=20ms S_dt=75ms

S+_dt=1ms S+_dt=20ms S+_dt=75ms

One-way lateny threshold @ 200 ms

0

100

200

300

400

500

600

5 10 15 20 25 30

Frame rate [fps]

L
a
te

n
c
y
 [

m
s
]

P_dt=1ms P_dt=20ms P_dt=75ms

P+_dt=1ms P+_dt=20ms P+_dt=75ms

One-way lateny threshold @ 200 ms

(a)

(b)

Our real-time 3D video system uses a pixel-based
differential update scheme, which exploits the spatio-
temporal inter-frame coherence. We detect pixels
which, within two consecutive frames, change from
background to foreground or vice versa. The pixels
which are in the foreground in both frames are analyzed
with respect to attribute changes, e.g. geometry and
color. The reconstruction process transforms the 2D
pixels into 3D point samples using the geometry infor-
mation provided by the silhouettes. For this purpose, we
use a variant of the image-based visual hull algorithm
[12]. In each frame, the reconstructed 3D object can be
described by a stream of point sample operators which
insert, delete or change the attributes of individual point
samples. Since our differential update scheme is image-
based, we obtain an efficient load-balancing by using
the system architecture of Figure 3b.

At the receiver node, the 3D video stream is rendered
from the current virtual viewpoint only. Thus, the back-
channel communication of the observer’s virtual view-
point allows to optimize the 3D video reconstruction
and streaming for the respective view.

Figure 6 illustrates the processing steps which lead
from 2D images to a 3D video object integrated into a
virtual scene. A detailed description of our differential
update scheme, the dynamic viewpoint adaptation and
the transmission of real-time 3D video can be found in
[9, 19].

3.4. Bandwidth constraints
In this section, we focus on the operator framework

of our real-time 3D video pipeline. We evaluate various
configurations of the differential update scheme for
geometry attributes and discuss the consequences of the
subsequent bandwidth and quality trade-offs.

For this purpose, we simulate the real-time process-
ing of a 3D video sequence of 100 pre-recorded frames.
During this experiment, the dynamic viewpoint adapta-
tion is disabled and, hence, no progressive sampling is
performed [19]. This leads to significantly higher bit
rates than in a real-time session since all pixels are pro-
cessed in each frame. In this experiment, we evaluate
the update operator for the point sample positions. The
positional update threshold denotes the maximum abso-
lute depth difference between clusters in subsequent

frames. Because of the metric calibration of our system,
a threshold of, e.g., 0.04 denotes a maximum depth dif-
ference of 4 cm.

Figure 7 shows rendered images with a varying posi-
tional update threshold. The difference images in Figure
8 illustrate the block artifacts in the object geometry
which appear if the threshold is too high.

Table 2 and Figure 9 summarize the quality and per-
formance measures of different positional updates con-
figurations. We compare the correct and differentially
updated depth images and average the result over all
frames of the sequence. We see that the quality of the
differential depth images is very high for all evaluated
thresholds. But for thresholds over 0.02 on average
more than half of the point samples get updated in each
frame. This leads to a high bit rate in the real-time
stream. Nevertheless, even with a threshold of 0.04 and
an update of 25%-30% of the points per frame, a decent
image quality can be achieved.

4. The blue-c communication architecture
The blue-c system relies on a CORBA-based com-

munication layer. This allows for a straightforward use
of remote method invocations for system control and
data transmissions which are not performance critical.
Furthermore, we use CORBA services such as the Nam-
ing and Audio/Video Streaming Service for connection
management. The real-time streaming data, such as 3D
video, audio and application data, is directly transmitted
via IP sockets. For this purpose, we developed a mes-

Figure 6: 3D video transmission and rendering.

Inter-frame
prediction

CompositingVirtual scene
Screen

Differential
streaming

Deferred
operations

3D video object
rendering

Color

Image

2D pixel operators

3D point operator stream

Object inlay

Enriched 3D scene
3D scene

Network

Dynamic system
control

Figure 7: Rendered images in differential 3D vid-
eo evaluating positional updates. a) threshold 0.04,
b) threshold 0.02, c) threshold 0.01, d) threshold
0.005.

Figure 8: Difference images for positional updates
evaluation comparing correct and differentially
updated depth images, from a camera contributing
to the view in Figure 7, magnified by a factor of
5. a) threshold 0.04, b) threshold 0.02, c) threshold
0.01, d) threshold 0.005.

(a) (b) (c) (d)

(a) (b) (c) (d)

sage streaming protocol based on UDP. Alternatively to
the connectionless and unreliable UDP transmission,
the message streaming protocol offers a reliable mode
in which all messages are delivered without loss and in
order.

Both modes include a forward and a backward chan-
nel, which is inspired by the RTP/RTCP protocol suite
and which is extensively used for 3D video streaming
[9]. The original RTCP packet format, however, was
conceived to carry statistical data describing the trans-
mission quality. It could be used to carry the steady and
low latency feedback that we require for our 3D video
system, but the overhead of using RTCP packets
becomes pretty high. Thus, we decided to develop a
special protocol for real-time streaming in the blue-c
communication layer.
4.1. 3D video system

As suggested in Section 3.2, our 3D video system is
composed of three classes of computing nodes for
acquisition, reconstruction and rendering. Each camera
has a dedicated node which performs 2D image pro-
cessing operations, i.e. background segmentation, con-
tour extraction and image differentiation. They run at
the pace of an hardware camera trigger and our current
system for combined projection and acquisition allows

for acquisition rates of up to 10 frames per second for
 images. The reconstruction node collects the

data from the acquisition nodes and transforms it into a
stream of 3D point operations. Those update the render-
ing data structure at the receiver side. The use of sepa-
rate threads for networking and graphics at the renderer
decouples the rendering frame rate from the reconstruc-
tion frame rate.

In order to generate a consistent 3D video stream,
every operation issued by a camera node needs to be
processed at the reconstruction node. In our implemen-
tation, we achieve this feature by running the recon-
struction node asynchronously from the camera nodes,
and thus we decouple the reconstruction frame rate
from the acquisition frame rate. However, we need to
deal with scheduling and synchronization issues at the
reconstruction node, which are explained in the follow-
ing paragraphs.

The reconstruction node collects data from all cam-
era nodes. The camera data consists of contour informa-
tion and texture data. The contour data per frame is
described in a list of image coordinate vectors and the
texture information describes pixel-based insert, delete
or color update operations. A performance improve-
ment of the CPU-consuming geometric computations
can be achieved with a multi-threaded implementation
of the reconstruction node. Hence, the data processing
of the diverse camera nodes is distributed on separate
threads. In fact, the reconstruction process needs the
contours from many different cameras, but all texture
processing is completely independent for each camera.
Thus, the concurrent access to the contour data structure
only needs to be protected during the write operation
whenever a new contour arrives. Figure 10 illustrates
the scheduling and multi-threading of camera and
reconstruction nodes. It is important to notice that a
consistent 3D video object representation and an effi-
cient processing requires all delete operations from one
camera client to be executed before the insert operations
of the same. The camera clients support this operation
flow by first transmitting contour data, then delete and
update operations and, finally, insert operations.

Another critical section exists at the single communi-
cation channel from the reconstruction to the rendering
node. For algorithmic reasons, it is important to main-
tain the order of the operations generated by the same
camera, but interleaving the operations from different
cameras is not critical. Hence, each processing thread of

Table 2: Results from positional updates in dif-
ferential 3D video. The PSNR values and bit
rates for different positional update thresholds
compare correct and differentially updated
depth images at 15 fps, from a camera contribut-
ing to the view in Figure 7.

UpdatePos
threshold

PSNR
[dB]

Total bit
rate [Mbps]

Bit rate Update-
Pos only [Mbps]

0.040 35.4 4.8 2.1
0.020 37.8 6.3 3.5
0.010 40.6 8.1 5.3
0.005 44.1 10.1 7.4

Figure 9: Number of positional updates (UpPos)
in differential 3D video for various positional up-
date thresholds. The data is extracted from a single
camera contributing to the virtual viewpoint used
in Figure 7.

0

2'000

4'000

6'000

8'000

10'000

12'000

14'000

16'000

0 1 0 2 0 30 40 50 60 70 80 9 0 1 0 0
Frames

N
u

m
b

er
 o

f p
o

in
ts

UpPos=0.005 UpPos=0.01 UpPos=0.02
UpPos=0.04 Number of points

Figure 10: Scheduling and multi-threading of
camera and reconstruction nodes.

640 480×

Hardware trigger

Acquisition

Grabbing Contour extraction Image differencing Idle

Idle
Contour
reception

Idle

Frame
switch

3DV processing

3DV processing

3DV processing

Multi-threaded reconstruction

Segmentation

Delete Update Insert

3DV processing

Grabbing

Frame i

Frame i-1

Frame i+1

Frame i

the reconstruction node has its own queue for storing
3D operations. Every time a new operation is pushed
into the queue, the thread tries to get write access to the
communication channel. On success, all operations con-
tained in the respective queue are forwarded to the
transmission channel. Thus, asynchronous access to the
transmission channel for multiple threads is provided.

The camera weights, which are determined by the
texture blending algorithm of the dynamic viewpoint
adaptation [19], are used for load-balancing the contrib-
uting cameras over the multiple threads. More load is to
be expected from a high camera weight. At every frame
switch, the reconstruction node checks the camera
weights and redistributes the processing load over the
available threads. In our concrete system with a dual-
processor reconstruction node and up to three active
cameras, this simply means that the camera with the
highest weight is processed by one thread and the two
remaining cameras share the second thread.

Note that every camera node, even those which are
not used for the current virtual viewpoint, transmits at
least an empty set of contours for every frame. This
strategy allows the reconstruction node to check if all
clients are still synchronized. The acknowledgement
message of contour data contains the new state informa-
tion for the corresponding acquisition client. The recon-
struction node detects a frame switch while receiving
contour data of a new frame. At this time, state compu-
tations, which are only necessary once per frame, are
triggered.
4.2. Audio/Video synchronization

In a 3D video conferencing system, we typically
have multiple video acquisition nodes. The audio sam-
ples are thus not necessarily acquired by the same node
than the corresponding video and a technique for syn-
chronizing audio and video streams is required.

In our system, we can use the same strategy for con-
sistent timestamping of audio and video packets than
we use for synchronizing the camera frames on the mul-
tiple acquisition nodes.

For a consistent 3D representation, it is important to
correctly associate the corresponding contours and tex-
tures of many different cameras. It is true that a hard-
ware camera trigger guarantees a synchronized image
grabbing, but since all cameras may not start up at
exactly the same time, the frames still need to be syn-
chronized by a unique distributed frame ID. If all cam-
era nodes have their own frame counter, which is
incremented every time an image is grabbed, the camera
which was started first will have the highest counter
value and hence provide the highest frame ID. The
reconstruction node determines the highest frame ID for
each frame and forwards this frame ID as the master
frame ID to all camera clients, together with the camera
state information. The camera clients check if they are
synchronized with the master frame ID and adapt their
own frame counter to the master frame ID. With this
strategy, all cameras synchronize their frame IDs and
hence an asynchronous camera start-up becomes possi-
ble.

Finally, if the audio acquisition process is integrated
into the same camera acquisition loop, the audio packets
can be marked with the same consistent timestamps
than the video frames and thus also a synchronized
audio/video playback becomes possible at the rendering
site.

5. Application simulations
In this section, we analyze the overall performance

of our communication system. For this purpose, we use
the three main components, i.e. the real-time 3D video
pipeline, the audio conferencing module and the distrib-
uted shared scene graph. We record the real-time perfor-
mance of the system during an application simulation
which is detailed in the following section.
5.1. Simulation setup

In the following experiments, we run the system in a
local loop using the configuration of Figure 11. An SGI
Onyx 3200 (hostname pacific) runs all receiver appli-
cation processes and the atlantic Linux cluster runs
all sender processes. The 3D video stream is generated
using the full real-time setup, but the real camera image
is replaced by the corresponding frame of a pre-
recorded sequence. Thus, we can produce the same data
for various experiments. The acquisition frame rate of
the camera nodes is 10 fps. The dual processor host
atlantic2 is used as reconstruction node and com-
putes the 3D video stream for a constant virtual view-
point. A duplex speech transmission is simulated
between the pacific and atlantic3 nodes. The dual
processor Linux node atlantic1 acts as application
host and simulates a duplex application data stream
with pacific.

Our SGI Onyx 3200 is equipped with eight 400 MHz
MIPS R12000 processors and 4MB of main memory
and runs SGI Irix 6.5. atlantic1 is a dual processor
AMD AthlonMP 1600+ PC with 512kB of main mem-
ory and atlantic2 is a dual processor AMD Athlo-
nMP 2400+ PC with 1MB of main memory. atlantic3
is an AMD AthlonXP 1600+ single processor PC with
512kB of main memory. The PCs run Red Hat 2.4
Linux.

The Naming Service and the Connection Server run
on atlantic2. In the system adaptation experiments,
atlantic16 runs an application simulation from which
all participating hosts retrieve the current application
state via CORBA remote method invocations.
atlantic3 and atlantic16 do not act as camera
nodes in the 3D video pipeline.

The setup of Figure 11 is not really full-duplex, inas-
much as the 3D video transmission from Portal B to
Portal A is omitted. Since only dedicated computing
nodes are involved in the 3D video generation and since
we report the results for the application node at Portal
B, which runs the same processes than in the true full-
duplex setup, we nevertheless think that our experi-
ments describe the correct system performance and that
our test configuration can be qualified as a duplex setup.

In the following discussion, we analyze time inter-
vals of length 0.5 seconds for the illustration of the bit
rates. In order to distinguish long-term and short-term
averages in the bit rate, we call the total average bit rate
of the test sequences mean bit rate (MBR) and the
short-term average, i.e. the mean bit rate on 0.5 second
intervals, peak bit rate (PBR).

The application simulation for the system adaptation
experiments demonstrates how the blue-c system can
adapt to different situations during an application ses-
sion and thus adapt to processing or networking bottle-
necks. For each data stream, we foresee various states.
The bit rate of the audio streams is controlled by the bit
depth of the audio samples and by the sampling fre-
quency. In our 3D video pipeline, we cannot change the
camera input frequency, but the transmission bandwidth
is reduced by lowering the resolution of the input cam-
eras. The application updates are generated at 30 frames
per second, the update messages having an average size
of bytes. For simulating a high user activity, we raise
the average update message size to , but at the same
time, we reduce the update rate to 15 frames per second.
A low user activity is simulated with an average mes-
sage size of bytes, the update rate being 7 frames per
second. During serious bottlenecks, we further reduce
the application update rate to 1 frame per second. The
bulk data transfer is implemented via continuous
streaming of data using the same reliable protocol than
for the application updates.

For the simulation of different loads and priorities of
the involved data streams, we suggest the application
scenario of Table 3. The timings in Table 3 are indica-
tive and multiple state changes are stretched over an
interval of several seconds.

5.2. Lossless local loop simulation

Figure 12 reports the results of the application simu-
lation of Table 3, which ran in the local loop setup of
Figure 11. From the curve describing the point resolu-
tion of the 3D video object, the different application
periods, i.e. states of the 3D video transmission, can
clearly be recognized. During the HIGH periods, the res-
olution is higher than 30k points. It drops down to 20k
points during the NORMAL periods, and to 10k points
during the LOW period. The peak bit rate of the 3D
video stream is however not noticeably smaller during
the HIGH and NORMAL periods, but during the LOW
period the peak bit rate remains lower than 1 Mbps.

In presence of sharp changes in the point resolution,
high peak bit rates appear in the 3D video stream. This
seems to be reasonable in case of a point resolution
increase, since the new point samples need to be
inserted into the remote data structure. But the peaks
pose a major problem for point resolution reduction. In
case a downgrading of the point resolution is deployed
as a reaction to transmission bottlenecks, this strategy
first requires a high peak bit rate to face bandwidth
problems. In fact, the peak bit rate results from the dele-
tion of single point samples in our current implementa-
tion. The extension of the 3D video framework with a
DELETE operation, allowing for the removal of groups
of points, i.e. all points from a given input camera at a
given sampling level, could solve this problem. The
additional DELETE operator could also be deployed for
fading out points during camera hand-overs where a
similar behavior of the bit rate is observed.

Figure 11: Experimental setup for a local loop sys-
tem test.

3D video
receiver

Shared
scene graph

sender

receiver

Audio

sender

receiver

pacific.ethz.ch

3D video
sender

atlantic2.ethz.ch

Shared
scene graph

sender

receiver

atlantic1.ethz.ch

Audio

sender

receiver

atlantic3.ethz.ch

Portal A Portal B

Connection
server

Naming
server

Services: atlantic2.ethz.ch

Application
server

Application control: atlantic16.ethz.ch

M
3M

M

Table 3: Application scenario.

Time Audio 3D
video

App.
data

Bulk
data Description

0 s high high normal off Application start-
up.

10 s normal normal off on A bulk data trans-
fer starts.

20 s high normal high off

The bulk data
transfer ends and is
followed by a peri-
od of high user in-
teraction.

35 s high high normal off Normal user inter-
action.

50 s
52 s high normal

high
high

normal off
Short period of
high user interac-
tion.

60 s
70 s

normal
low

normal
low

low
overload off

Simulation of a
transmission bot-
tleneck.

85 s
90 s

normal
high

normal
high normal off

Recovering from
the transmission
bottleneck.

Figure 12b shows the bit rate of the application data
(application updates and bulk data transfer) and audio
streams. They correspond to the behavior expected from
the application simulation.

Figure 12c depicts the cumulative probability distri-
bution of the inter-frame periods at the 3D video sender
and receiver. We observe that the inter-frame period at
the sender corresponds to the expected 100 ms over
90% of the time. But, also higher inter-frame periods,
often around 160 ms exist. These correspond to the
frames which need more extensive computations at the
3D video reconstruction node and which exceed the
allocated time. The dynamic system control of the 3D
video pipeline however is able to handle this situation
and still achieves an average inter-frame period of
100ms. In Figure 12d, the inter-frame periods of the
audio and application data streams are shown. Applica-
tion and audio data streams show almost constant
behavior within the respective state intervals. Note that
several successive audio samples are grouped into one
transmission buffer, and that we display in Figure 12d
the time periods in between two buffer arrivals. We con-
figured the audio transmission such that the sender fre-
quency of the transmission buffers is almost constant.
For the different audio modes, this means that a differ-
ent number of audio samples is contained in the trans-
mission buffers.

5.3. Lossy local loop simulation
In this experiment, we repeat the application simula-

tion of Section 5.2 while simulating burst errors on all
communication channels. We use the Gilbert-Elliott
channel model with and .

While comparing Figure 12a and Figure 13a, we
observe that the resolution of the 3D video object dur-
ing a lossy transmission is not only influenced by the
application simulation but also by the error bursts.
Moreover, recovering from the sporadic errors requires
again peaks in the bit rate, i.e. for reinserting the point
samples of the higher sampling levels into the data
structure. Figure 13c shows the behavior of the 3D
video stream for the same application and network sim-
ulation while using the redundant mode of the 3D video
streaming pipeline. In this case, the mean bit rate is
higher, 4 Mbps versus 2.4 Mbps, because of the redun-
dant information contained in the stream. Also the reso-
lution of the 3D video object is not constant during
periods of no or short packet losses and does not
achieve the same maxima than in the reliable, but non-
redundant mode. However, also the drop-off in resolu-
tion is less pronounced during the periods of error
bursts.

The application data transmission ran with the same
configuration than in the local loop simulation of Sec-
tion 5.2. The effect of the noisy communication chan-
nels appears in the more noisy inter-frame periods, see

Figure 12: Local loop simulation at RZ: a) Number of points and peak bit rate of the 3D video stream; b) Peak
bit rate of the application data and the audio stream; c) Cumulative probability distribution of the inter-frame
period of the 3D video stream; d) Inter-frame period of the audio and application data streams.

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

Time [s]

P
B

R
 [

M
b

p
s
]

0

5'000

10'000

15'000

20'000

25'000

30'000

35'000

40'000

N
u

m
b

e
r

o
f

p
o

in
ts

PBR Number of points

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Time [s]

P
B

R
 [

M
b

p
s
]

Application data Audio

0.1%

1.0%

10.0%

100.0%

60 80 100 120 140 160 180 200

3D video inter-frame period [ms]

Sender Receiver

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

Time [s]

In
te

r-
fr

a
m

e
 p

e
ri

o
d

 [
m

s
]

Audio Application data

(a) (b)

(c) (d)

pPASS 0.99= pFAIL 0.50=

Figure 13d. For the audio stream, we did not perform
retransmissions of lost packets and hence the missing
data packets produce audible noise during playback.
These artefacts can however be partly avoided by
redundant encoding of the audio data or by interpola-
tions during playback. In Figure 13b, the lost audio
packets are visible in the bit rate drop-offs of the audio
stream.
5.4. Summary

From the experiments of this section, we conclude
that our system behaves correctly in a controlled load
environment. If the application foresees discrete operat-
ing states, the various data streams of the blue-c system
can be configured such that they meet the targets of the
application.

The results from Section 5.3 confirm that the redun-
dant 3D video streaming mode outperforms the non-
redundant mode if the communication channel is lossy.
For the application data however, we still rely on a reli-
able transmission, and methods for a redundant encod-
ing of the application data should be investigated in the
future. Also the audio transmission can be improved by
using packet loss recovery strategies.

Our two blue-c prototypes are located at 5 km from
each other and are connected via the ETH backbone
network, operating in controlled load. In this setup, the
network bandwidth is abundant and delays are short, i.e.

the transmission conditions are less severe than those
simulated in Section 5.3. As we demonstrate through
the experiments of this section, the blue-c system is
however versatile enough to operate in different condi-
tions. Video clips which illustrate the blue-c system can
be downloaded from our project webpages blue-
c.ethz.ch and graphics.ethz.ch/3dvideo.

6. Conclusions and outlook
From the discussion of Section 3, we conclude that

for telepresence applications a three-stage pipeline for
real-time 3D video presents a reasonable trade-off
between system latency, processing power and practical
implementation issues. The system experiments of Sec-
tion 5 validate our system architecture and indicate how
a telepresence system which foresees discrete operating
states can adapt to network and processing bottlenecks.

The extension of the blue-c platform from a one-to-
one to a many-to-many system raises some issues of
scalability. 3D video multicasting can be implemented
by the unreliable transmission of a redundantly encoded
3D video stream, combined with a modification of the
dynamic viewpoint adaptation algorithm. A solution
which does not require reliable multicasting of the
attribute-centric application updates has yet to be

Figure 13: Local loop simulation with simulated burst losses: a) Number of points and peak bit rate of the 3D
video stream in the reliable mode; b) Peak bit rate of the application data and the audio stream; c) Number of
points and peak bit rate of the 3D video stream in the redundant mode; d) Inter-frame period of the application
data and the audio stream.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

Time [s]

P
B

R
 [

M
b

p
s
]

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u

m
b

e
r

o
f

p
o

in
ts

PBR Number of points

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Time [s]

P
B

R
 [

M
b

p
s
]

Application data Audio

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

Time [s]

In
te

r-
fr

a
m

e
 p

e
ri

o
d

 [
m

s
]

Application data Audio

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

Time [s]

P
B

R
 [

M
b

p
s
]

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u

m
b

e
r

o
f

p
o

in
ts

PBR Number of points

(a) (b)

(c) (d)

devised. Finally, we would like to propose automatic
application adaptation based on the system control data
and monitoring at the network level.
Acknowledgements

We would like to thank Martin Näf for the distributed
shared scene graph; Silke Lang and Doo-Young Kwon
for the 3D video test sequences; Michael Waschbüsch
for his help with the simulation environment; Thomas
Gross for the fruitful discussions; and all blue-c project
members. The blue-c project was funded by ETH grant
No. 0-23803-00 as an internal poly-project.

References
[1] F. P. Brooks. What’s real about virtual reality. IEEE

Computer Graphics and Applications, 19(6):16–27,
1999.

[2] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Sur-
round-screen projection-based virtual reality: The
design and implementation of the CAVE. In Pro-
ceedings of SIGGRAPH, pages 135–142, 1993.

[3] S. J. Gibbs, C. Arapis, and C. J. Breiteneder. TELE-
PORT - towards immersive copresence. Multimedia
Systems, 7(3):214–221, 1999.

[4] C. M. Greenhalgh and S. D. Benford. Massive: A
virtual reality system for teleconferencing. ACM
Transactions on Computer Human Interfaces,
2(3):239–261, 1995.

[5] M. Gross, S. Wuermlin, M. Naef, E. Lamboray,
C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda,
L. V. Gool, S. Lang, K. Strehlke, A. V. Moere, and
O. Staadt. blue-c: A spatially immersive display and
3D video portal for telepresence. In ACM Transac-
tions on Graphics, Proceedings of SIGGRAPH 2003
(Conference Issue), pages 819–827. ACM Press /
ACM SIGGRAPH, July 2003.

[6] T. Kanade, P. W. Rander, and P. Narayanan. Virtual-
ized reality: Constructing virtual worlds from real
scenes. In IEEE MultiMedia, volume 4, pages 43–
54, January-March 1997.

[7] P. Kauff and O. Schreer. An immersive 3D video-
conferencing system using shared virtual team user
environments. In Proceedings of the 4th interna-
tional conference on Collaborative virtual environ-
ments, pages 105–112. ACM Press, 2002.

[8] N. Kitawaki and K. Itoh. Pure delay effects on
speech quality in telecommunications. IEEE Jour-
nal on Selected Areas in Communications,
9(4):586–593, May 1991.

[9] E. Lamboray, S. Wuermlin, and M. Gross. Real-
time streaming of point-based 3D video. In Proceed-
ings of the IEEE Virtual Reality 2004 conference,
pages 91–98. IEEE Computer Society Press, March
2004.

[10]J. Leigh, O. Yu, D. Schonfeld, R. Ansari, E. He,
A. Nayak, J. Ge, N. Krishnaprasad, K. Park, Y. joo
Cho, L. Hu, R. Fang, A. Verlo, L. Winkler, and T. A.
DeFanti. Adaptive networking for tele-immersion.
In Proceedings of the Immersive Projection Tech-
nology/Eurographics Virtual Environments Work-
shop (IPT/EGVE), pages 199–208, Mai 2001.

[11]M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Bar-
ham, and S. Zeswitz. NPSNET: A network software
architecture for large scale virtual environments.
Presence, 3(4), Fall 1994.

[12]W. Matusik, C. Buehler, R. Raskar, S. J. Gortler,
and L. McMillan. Image-based visual hulls. In SIG-
GRAPH 2000 Conference Proceedings, ACM Sig-
graph Annual Conference Series, pages 369–374,
2000.

[13]M. Naef, E. Lamboray, O. Staadt, and M. Gross.
The blue-c distributed scene graph. In J. Deisinger
and A. Kunz, editors, Proceedings of IPT/EGVE
2003, pages 125–133. ACM Press, Mai 2003.

[14]K. S. Park and R. V. Kenyon. Effects of network
characteristics on human performance in a collabo-
rative virtual environment. In Proceedings of the
IEEE Virtual Reality 1999 conference, pages 104–
111, 1999.

[15]S. Prince, A. D. Cheok, F. Farbiz, T. Williamson,
N. Johnson, M. Billinghurst, and H. Kato. 3-D Live:
Real time interaction for mixed reality. In Proceed-
ings of the 2002 ACM conference on Computer sup-
ported cooperative work, pages 364–371. ACM
Press, 2002.

[16]R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin,
and H. Fuchs. The office of the future: a unified
approach to image-based modeling and spatially
immersive displays. In Proceedings of the 25th
annual conference on Computer graphics and inter-
active techniques, pages 179–188. ACM Press,
1998.

[17]A. Sadagic, H. Towles, J. Lanier, H. Fuchs, A. van
Dam, K. Daniilidis, J. Mulligan, L. Holden, and
B. Zeleznik. National tele-immersion initiative:
Towards compelling tele-immersive collaborative
environments. presentation given at Medicine meets
Virtual Reality 2001 conference, January 2001.

[18]I. Vaghi, C. Greenhalgh, and S. Benford. Coping
with inconsistency due to network delays in collab-
orative virtual environments. In Proceedings of the
ACM symposium on Virtual reality software and
technology, December 1999.

[19]S. Wuermlin, E. Lamboray, and M. Gross. 3D video
fragments: Dynamic point samples for real-time
free-viewpoint video. Computers & Graphics, Spe-
cial Issue on Coding, Compression and Streaming
Techniques for 3D and Multimedia Data, 28(1),
2004.

