
Illuminated Lines Revisited

Ovidio Mallo∗ Ronald Peikert† Christian Sigg‡ Filip Sadlo§

ETH Zürich

ABSTRACT

For the rendering of vector and tensor fields, several texture-
based volumetric rendering methods were presented in recent years.
While they have indisputable merits, the classical vertex-based ren-
dering of integral curves has the advantage of better zooming capa-
bilities as it is not bound to a fixed resolution. It has been shown
that lighting can improve spatial perception of lines significantly,
especially if lines appear in bundles. Although OpenGL does not
directly support lighting of lines, fast rendering of illuminated lines
can be achieved by using basic texture mapping. This existing tech-
nique is based on a maximum principle which gives a good ap-
proximation of specular reflection. Diffuse reflection however is
essentially limited to bidirectional lights at infinity. We show how
the realism can be further increased by improving diffuse reflec-
tion. We present simplified expressions for the Phong/Blinn light-
ing of infinitesimally thin cylindrical tubes. Based on these, we
propose a fast rendering technique with diffuse and specular reflec-
tion for orthographic and perspective views and for multiple local
and infinite lights. The method requires commonly available pro-
grammable vertex and fragment shaders and only two-dimensional
lookup textures.

CR Categories: Picture/Image Generation I.3.3 [Computer
Graphics]: Picture/Image Generation—Viewing algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Color, shading, shadowing, and texture; I.3.8 [Computer Graphics]:
Applications;

Keywords: Field lines, illumination, vector field visualization,
texture mapping, graphics hardware

1 INTRODUCTION

A core topic of scientific visualization is the representation of vec-
tor and tensor fields in three-dimensional space. The dimensional-
ity of the problem forbids a direct visualization such as color coding
and requires an abstraction to be made, classically either arrows or
integral curves. The latter kept their place in scientific visualiza-
tion even though a wide spectrum of innovative techniques have
evolved over the years (see e.g. [11]). The reason is certainly that
field lines have a physical meaning for most kinds of simulation or
measurement data such as electric and magnetic fields, velocity and
vorticity fields. Beyond field lines, streaklines and trajectories can
be used for visualizing transient flow, whereas integral curves of
eigenvectors is a way of visualizing tensor fields.

While explicit computation of field lines has been practiced since
the early days of scientific visualization, newer techniques provide
an implicit way of visualizing field lines. Crawfis and Max [4] were

∗e-mail:ovidiom@student.ethz.ch
†e-mail:peikert@inf.ethz.ch
‡e-mail:sigg@inf.ethz.ch
§e-mail:sadlof@inf.ethz.ch

Figure 1: Flow in a Francis draft tube visualized by streamlines regu-
larly seeded on a cone and colored by speed. Streamlines are illumi-
nated based on cylinder averaging. In the vertical part of the tube,
a vortex rope is visible.

the first to adapt direct volume rendering to vector fields. A few
years later, the line integral convolution method of Cabral and Lee-
dom [3] was extended to three dimensions for volume rendering by
Interrante and Grosch [6]. More recently, a texture-based method
exploiting programmable graphics hardware was presented by Li
et al. [8]. For the visualization of tensor fields, methods based on
anisotropic volume rendering have been developed by Sigfridsson
et al. [14] and by Schussman and Ma [13], the latter being also
applicable to general sets of lines.

In other areas of computer graphics, the display of lines in space
is of much less importance nowadays. This probably explains why
graphics libraries such as OpenGL do not offer an automatic ac-
cess to high-quality rendering of polylines comparable to that of
polygonal surfaces. In fact, OpenGL’s entire lighting system is tar-
geted at polygons. But it is obvious that lighting is as important
for the spatial perception of line bundles as it is for surfaces. The
rendering of lines as tubes is a theoretical solution but in practice
it is too costly and produces poor quality caused by thin elongated
polygons. Nevertheless, the cylindrical tube is the basis for two line
rendering techniques that have been described in literature. Banks
[1] introduced the idea of maximizing the reflected light over the
perimeter of an infinitesimally thin cylinder, treating diffuse and
specular reflection separately. Zöckler, Stalling and Hege [17, 15]
found a fast way of rendering polylines illuminated according to
this maximum reflection principle in OpenGL. Their method re-
quires only 2D textures and texture transformations, concepts that
were commonly available on graphics cards of that time. Under
these hardware constraints, their method is probably the optimal
tradeoff between speed and quality. The idea of using texture trans-
formations for lighting has been studied in the context of polygon
rendering by Heidrich and Seidel [5]. A variation of the maximum
reflection illumination model has been applied to the visualization
of diffusion tensor imaging data by Wenger et al. [16].

The maximum reflection only approximates the reflection from
the cylinder as calculated by integrating over its perimeter. In the
case of high gloss specular reflection, the approximation works

To appear in proceedings of IEEE visualization 2005

peikert
Inserted Text

quite well since the angles near the maximum contribute most to
the integral. The method produces best results if the reflection type
is chosen to be mostly specular. Diffuse reflection is not well ap-
proximated by the maximum which is not even sensitive to the sign
of the light direction. This means that any (infinite) light source
is effectively bidirectional, in the sense that there is a second light
source in the opposite direction. Bidirectional lights are less dis-
turbing if the light direction is close to the viewing direction. In
fact, the use of a headlight is also recommended in [15].

As an alternative to the maximum reflection principle, cylinder
averaging can be used for illumination of lines. Here, the spatial
curve is treated as the limit of a cylindrical tube of a radius ap-
proaching zero. The cylinder is considered opaque and has there-
fore self-occlusion which eliminates much of the diffusely reflected
light. Diffuse and specular reflection are calculated by integrating
over the visible part of the perimeter. Such a lighting model has
been used by Schussman and Ma [13]. The diffuse component of
their model is a view dependent version of the one introduced by
Kajiya and Kay [7]. Early work on numerically computed diffuse
and specular reflection from cylinders was done by Miller [9] for
the rendering of hair and by Poulin and Fournier [12] for the pur-
pose of modeling surface anisotropy.

Illuminated lines based on maximum reflection was an optimal
way of utilizing a past generation of graphics hardware. It is the
goal of this work to find out how illuminated lines can be improved
with the features offered by current graphics cards. We aim at line
rendering at a speed and quality comparable to standard OpenGL
rendering of polygons. Therefore, our focus is on efficiency, not on
realistic lighting in a physical sense. Our contributions are simpli-
fied expressions for cylinder averaging, allowing the computation
of diffuse and specular reflection for orthographic and perspective
views, multiple local and infinite lights and variable gloss without
the need for 3D textures. We implemented our polyline render-
ing as a replacement for OpenGL’sglMultiDrawArrays function,
making it easy to switch between standard rendering and illumi-
nated lines. Finally, we demonstrate on a few examples how the
improved diffuse reflection can help to better perceive spatial struc-
tures visualized by bundles of field lines.

2 L INE I LLUMINATION

If a point P on asurfaceis to be lit, the standard Phong [10] and
Phong/Blinn [2] lighting models require besides the material and
light properties the three unit vectorsV (pointing fromP towards
the camera),L (pointing fromP towards the light source) andN
(oriented surface normal).

The Phong lighting model for a single white light source and a
single channel is

I = Ia + Id + Is = ka +kdL ·N +ks(V ·R)n (1)

whereka, kd andks denote the ambient, diffuse and specular reflec-
tion coefficients andn the specular exponent.R is the reflection of
L at N. The intensitiesId andIs are clamped between 0 and 1 and
in the case of multiple or colored lights they are weighted sums.

The Phong/Blinn model avoids computingR and uses instead
the halfway vectorH = (V +L)/‖V +L‖. It is

I = Ia + Id + Is = ka +kdL ·N +ks(H ·N)n (2)

and approximates Eq. 1 with a specular exponent ofn
4 . This model

is used by OpenGL as it is more efficiently computed.
For a pointP on acurve in space, the situation differs in that a

curve does not have a uniquely defined normal. Lighting must in-
stead be computed from the three unit vectorsV, L and the tangent
T to the curve at the pointP. Throughout this paper we will use
a curve/view-aligned coordinate frame(T,N,B), with the binormal

B = T×V/||T×V|| and the normalN = B×T. If the curve is
understood as an infinitesimally thin cylinder, it has atP the normal
vectorsNθ = Ncosθ + Bsinθ where the phase is chosen such that
N0 = N. This is illustrated in Fig. 2.

Figure 2: Front and top view of cylinder, unit vectors. Visible sector
of diffuse reflection (red arc and lighter shading).

2.1 Maximum reflection principle

Banks [1] resolved the ambiguity in the choice of the normal vector
by choosing those anglesθ for which the dot products occurring in
the diffuse and specular terms of Eq. 1 are maximal. In general, two
different angles result for the diffuse and the specular term. Their
derivation is recapitulated in the next two subsections.

2.1.1 Diffuse term

Calculation of the diffuse reflection is based on the assumption of
a Lambertian reflector, meaning that diffuse reflection does not de-
pend on the viewing direction. According to Phong’s model, dif-
fuse reflection isL ·Nθ , the product of the light vector and the facet
normal. In the basis(T,N,B), these vectors are

L =




LT
LN
LB


=




LT√
1−L2

T cosα√
1−L2

T sinα




Nθ =




0
cosθ
sinθ


 (3)

whereα is the angle betweenN and the projection ofL onto the
(N,B) plane. The dot product of the two vectors is

L ·Nθ =
√

1−L2
T cos(θ −α). (4)

The maximum is reached atθ = α, making the diffuse term

Id = kd

√
1−L2

T . (5)

To appear in proceedings of IEEE visualization 2005

2.1.2 Specular term

The specular term, if computed according to the Phong model, re-
quires the view vector

V =




VT√
1−V2

T
0


 (6)

and the reflection of the vectorL atNθ

Rθ =−L +2(L ·Nθ)Nθ =




−LT√
1−L2

T cos(2θ −α)√
1−L2

T sin(2θ −α)


 . (7)

The dot product to be maximized is then

V ·Rθ =−VTLT +
√

1−V2
T

√
1−L2

T cos(2θ −α) (8)

and its maximum is reached atθ = α/2, making the specular term:

Is = ks

(
−VTLT +

√
1−V2

T

√
1−L2

T

)n

. (9)

In [1] Eq. 9 is given with opposite signs. The first sign gets
positive due to the different definition ofL , but the sign preceding
the square roots is nevertheless positive. The expression is given
correctly in [15] though its derivation does not apply to the general
case.

2.1.3 Rendering

As is described in [15], the diffuse and specular parts of this light-
ing model can be implemented in OpenGL for standard shaders.
3D textures can be avoided by restricting to orthographic view and
lights at infinity. Then the vectorsV andL are constants. The three
components of the tangentT are taken as original texture coordi-
nates from which the dot productsL ·T andV ·T are computed by
multiplying with an appropriate texture transformation matrix. Fi-
nally, the diffuse and specular intensities are looked up in textures
built up from Eq. 5 and 9, respectively.

The main drawback of lighting based on the maximum princi-
ple is its unrealistic modeling of diffuse reflection. As is shown in
Fig. 3, lateral lighting from the left and from the right cannot be dis-
cerned if only diffuse reflection is present. A more realistic diffuse
lighting of lines has to be view dependent.

2.2 Cylinder averaging

Schussman and Ma [13] calculate diffuse and specular reflection
by integrating the reflection from the infinitesimally thin facets of a
cylinder. The range of integration consists of those facets which are
both visible and lit. It depends on the angleα between the projec-
tions ofV andL onto the(N,B) plane. To get simpler formulas, we
can forceα to lie between 0 andπ by making the third component
of L nonnegative, i.e. by possibly reflectingL at the(T,V) plane.
This way the integration bounds are alwaysα− π

2 and π
2 .

The contribution of each facet to the total reflected light depends
on the projected area as seen from theV direction. For a cylin-
der of unit height and unit radius, the facet perpendicular toNθ is
projected to an area of

V · (Ncosθ +Bsinθ)dθ = V ·Ncosθdθ . (10)

The total projected area is2V ·N, therefore the integrand has to
be weighted withcosθ

2 .

Figure 3: Stack of horizontal sine curves with directional lighting
from the right. Left image: Maximum reflection produces bidirec-
tional diffuse lighting (bottom half), a strong specular component
is needed to disambiguate light direction (top half). Right image:
Cylinder averaging. The light direction is clear even without a spec-
ular component (bottom half).

2.2.1 Diffuse term

The diffuse term for an infinitesimally thin cylinder facet is given
by Eq. 4. As explained above, this term has to be multiplied with
the weightcosθ

2 and integrated fromα − π
2 to π

2 . The integral can
be resolved analytically, giving:

Id = kd

π/2∫

α−π/2

(L ·Nθ)
cosθ

2
dθ

= kd

√
1−L2

T

π/2∫

α−π/2

cos(θ −α)
cosθ

2
dθ

= kd

√
1−L2

T
sinα +(π−α)cosα

4
. (11)

An equivalent but less compact expression was published in [13].
Our expression lets us recognize the square root term as obtained
with the maximum reflection principle (Eq. 5), but multiplied with a
factor between 0 andπ4 depending on the angleα between projected
view and projected light. By taking the dot product ofL and V
given in Eq. 3 and Eq. 6, respectively, this angle can be computed
as

α = arccos
V ·L −VTLT√
1−V2

T

√
1−L2

T

. (12)

In the special case of constant vectorsV andL (i.e. for ortho-
graphic view and directional light) the technique of [17] can be ap-
plied. First,VT andLT are computed by a texture transform from
T, thenId is looked up in a 2D texture.

In the general case,V andL must be computed per vertex which
can be done in a vertex program.

2.2.2 Specular term

Cylinder averaging of the specular term can be done for both the
Phong and the Phong/Blinn model. However, both lead to inte-
grals which need to be solved numerically. In the case of the Phong
model, the integral of Eq. 8 depends on the three parametersVT ,
LT andα if the specular exponentn is considered fixed. The three
parameters describe the relative orientation ofT, V andL and are
independent in general. If the numerical integrals are precomputed
and stored in lookup textures, this would imply 3D textures which
we find an inappropriate use of resources for the sole purpose of
line illumination.

To appear in proceedings of IEEE visualization 2005

Therefore, we follow [13] and use the Phong/Blinn model lead-
ing to simpler expressions and finally to 2D textures only. FromV
andL we first compute the halfway vector

H =
V +L
‖V +L‖ =




HT√
1−H2

T cosβ√
1−H2

T sinβ


 . (13)

Note that the angleβ between projected view and projected
halfway vector can vary between 0 andπ, (not just π

2) 1.
Using the weighting term and the integration bounds as above,

the specular term can be calculated as:

Is = ks

π/2∫

α−π/2

(H ·Nθ)
cosθ

2
dθ

= ks

√
1−H2

T

n
π/2∫

α−π/2

cosn(θ −β)
cosθ

2
dθ . (14)

Further simplification yields:

Is = ks

√
1−H2

T

n(sinβ
2(n+1)

(
sinn+1 β −sinn+1(α−β)

)
+

cosβ
2

(Sn+1(π−α + β)−Sn+1(β))
)

(15)

where the function

Sn+1 (x) =
x∫

0

sinn+1 tdt (16)

can be precomputed and tabulated forx= 2πh/2m, h= 0,1, · · · ,2m.
This means that numerics is needed only for generating a 1D lookup
table, assuming a fixed specular exponentn. The 2D lookup table
(or texture map) can then be computed analytically. As an alterna-
tive, it is also possible to treatn as variable. Then, computingIs
involves a sequence of 2D lookups forSn+1(x) and for powers of
trigonometric functions.

Eq. 15 is equivalent to formulas (16) and (17) in [13] up to the
plus signs in the integration bounds which should be minus signs.

2.3 Brightness adjustment

2.3.1 Excess brightness

Diffuse and specular lighting based on maximum reflection leads
to high average brightness of rendered scenes. To compensate for
this, Banks [1] proposed an artificial brightness reduction factor.
Lighting based on cylinder averaging does not have this problem.
By definition of the lighting model, a random set of lines has the
same brightness distribution as a random set of polygons.

1An example is

V =



√

3
/

2
1
/

2
0


 ,L =



−1
/

2
−√3

/
2

0


 ,H =




√
2
/

2

−√2
/

2

0


 ,cosβ =−1

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 50 40 30 20 10 1

Figure 4: Maximum of specular term as a function of the specular
exponent n.

2.3.2 Stretching of dynamic range

Because of the averaging process in the infinitesimal cylinder
method, both the diffuse and the specular term have a maximum
less than 1. This offers the option to stretch the dynamic range by
multiplying the reflection term with a constant, which has the effect
of brighter light sources. For the diffuse term (Eq. 11) the max-
imum is π

4 at α = 0,LT = 0,kd = 1. Therefore, it is possible to
stretch the dynamic range by multiplying Eq. 11 with4

π .
Likewise, the specular term (Eq. 14) has a maximum at

ks = 1, HT = α = β = 0, of
√

π
2

Γ
(

n+1
2

)/
Γ
(

n+3
2

)
. (17)

This is a monotonically decreasing function (see Fig. 4) which
simplifies to

2
3

4
5

6
7
· · · n

n+1

for (positive) evenn and to

π
2

1
2

3
4

5
6

7
8
· · · n

n+1

for oddn.
This maximum decreases rapidly with increasingn, therefore it

is advisable to stretch the dynamic range at least for the typically
high specular exponents.

3 IMPLEMENTATION

The lighting model presented in this paper has been implemented
in C++ on top of the OpenGL graphics library. Since our main
goal was to allow for a transparent and seamless integration of
our code into already existing applications, the interface pro-
vided by our implementation consists of a replacement of the
glMultiDrawArrays function which is part of the OpenGL API.
This makes it possible to easily switch between standard rendering
and illuminated lines.

As opposed to OpenGL, our lighting model will be evaluated on
a per-pixel basis. For maximum performance, this is done by a com-
bination of traditional texture mapping and modern programmable
Graphics Processing Units (GPUs).

3.1 Lighting Textures

For evaluating the lighting model, two 2D lighting textures are used,
one for the diffuse, the other for the specular component of the
lighting model. We will refer to the values stored inside those tex-
tures through the functionsFd andFs for the diffuse and specular
part, respectively. ForFd, we have

Fd(cosα,LT) =
√

1−L2
T

sinα− (π−α)cosα
4

. (18)

To appear in proceedings of IEEE visualization 2005

This basically corresponds to the full diffuse term as given in
Eq. 11, without the reflection coefficientkd, which is not stored
inside the texture. For the specular part, we only store the integral
given in Eq. 14 in the texture, which needs to be integrated numeri-
cally, since storing the full specular term would require 3D textures
to be used. Thus, forFs, we have

Fs(cosα,cosβ) =

π/2∫

α−π/2

cosn(θ −β)
cosθ

2
dθ . (19)

For actually computing this texture during the preprocessing step,
Eq. 15 is used for better efficiency.

Evidently, the expressionscosα, cosβ andLT used in Eq. 18
and Eq. 19 all lie in[−1,+1]. Therefore, they need to be range
compressed to[0,1] in order to use them as texture coordinates.
If x is any of those expressions, this can simply be done by the
transformation(x+1)/2.

Note that we use the cosine ofα and β instead of the angles
themselves for accessing the textures since the arc cosine function
is usually not directly supported by programmable GPUs and there-
fore very slow.

Using these textures, for every incoming fragment with colorCin,
the final color of the illuminated fragment can be computed as

Cout = Cin (ka +kdFd(cosα,LT))

+ks

√
1−H2

T

n
Fs(cosα,cosβ). (20)

3.2 Shader Programs

For evaluating Eq. 20, we first of all need to compute the tangent
vector at each vertex. With today’s powerful programmable GPUs,
this can be done efficiently at each frame in a vertex program. To do
so, for each vertexPi , we passPi−1 andPi+1 as texture coordinates
to our vertex program, where the tangent vectorT is then computed
asT = (Pi+1−Pi−1)/||Pi+1−Pi−1||. Of course, this does not work
for the first and last vertex of each polyline. For those vertices, the
tangent vectors are computed in software.

Furthermore, ifO is the position of our light, the vertex program
computes in camera coordinates the light vectorL = O−P and the
viewing vectorV =−P.

L , V and T are then passed to a fragment program. Since
per-vertex data is only interpolated linearly between vertices be-
fore being passed to the fragment processing unit, those vectors
need to be normalized at each fragment. After this normalization,
the curve/view-aligned coordinate frame(T,N,B) described in sec-
tion 2 as well as the halfway vectorH are computed.

The expressions needed for accessing the lighting textures
according to Eq. 18 and Eq. 19 can then be computed as
cosα = (L ·N)/

√
1− (L ·T)2, cosβ = (H ·N)/

√
1− (H ·T)2 and

LT = L ·T, which in turn allows us to easily evaluate our lighting
model according to Eq. 20.

3.3 Multiple Lights

Throughout the discussion of our lighting model, we have restricted
ourselves to the case of a single light source in the scene. Never-
theless, a generalization for supporting multiple lights is straight-
forward. In Eq. 18 and Eq. 19, we can see that the values stored in
the lighting textures are independent of any light source. Therefore,
no additional texture resources are needed for supporting multiple
lights.

The vertex program only needs to be changed in that, instead
of computing and passing a single light vectorL to the fragment
program, it has to do so for each light source, yielding a set of light
vectorsL i .

In the fragment program, we see that the local coordinate frame
(T,N,B) does not need to be computed for each light source, since
it only depends onT andV, but the halfway vector and the texture
coordinates actually do depend on the light vectorL i . The number
of light sources must be fixed and is of course limited by perfor-
mance requirements and size of the fragment program.

By adding an indexi to each expression dependent on the light
vectorL i , the generalized version of Eq. 20 supporting multiple
lights reads

Cout = Cin ∑
i

(
kai +kdi

Fd(cosαi ,LTi)
)

+∑
i

ksi

√
1−H2

Ti

n
Fs(cosαi ,cosβi). (21)

3.4 Depth Sorting

Data sets which need to be visualized often result from areas such
as computational fluid dynamics (CFD) and other numerical simu-
lations, which typically produce a vast amount of data. In such sit-
uations, where very dense line bundles need to be rendered, the use
of alpha blending can considerably improve the visual perception
of the scene. Unfortunately, this makes it necessary to depth-sort
the scene as mentioned in [15], since alpha blending only yields
correct results if the objects are drawn in back to front order.

Although this need for sorting the scene is not limited to the ren-
dering of lines, but a general issue related to alpha blending itself,
we have integrated a sorting routine in our implementation. We
have opted for performing a full depth sort instead of using approx-
imations like the one described in [15] where real sorting is actually
avoided.

For the actual sorting, we use thesort function provided by the
STL library of the C++ programming language. For simplicity rea-
sons, we sort the individual line segments of the polylines according
to the averaged depth of their end points.

There is another less apparent scenario which is more tightly re-
lated to line rendering and which makes depth sorting necessary:
antialiasing. Due to the way antialiased lines are realized in render-
ing APIs like OpenGL, i.e. using alpha blending for smoothing out
the edges of the lines, depth sorting of the scene becomes necessary
although no transparent lines are actually drawn. Since antialias-
ing is visually very important when rendering lines and since full
depth sorting is by far the most expensive step during the render-
ing process, it is an option to replace the OpenGL line antialiasing
mechanism by a full scene antialiasing technique using multisam-
pling. This makes depth sorting superfluous and yields good results
at significantly higher frame rates.

3.5 Vertex Buffer Objects

Usually, the rendering of lines does not involve a complex setup
of the rendering pipeline, but the problem typically consists in an
efficient visualization of a large amount of data. In such situations,
the bottleneck usually lies in sending the data from main memory
to the GPU. With the traditional use of vertex arrays (VAs), this
requires sending the data at each frame over the bus to the GPU,
even for static scenes.

To avoid this, at least for static datasets, we have found the con-
cept of so called vertex buffer objects (VBOs) very useful. While
VBOs are conceptually very similar to VAs, the data stored in
VBOs is cached in high-performance graphics memory directly on
the GPU, thereby increasing the rate of data transfers during the
rendering process. The use of VBOs often led to important perfor-
mance gains, as can be seen in Table 1, by comparing the “default”
and “dynamic data” rows. Table 1 also reveals, that the actual ben-
efit of using VBOs is GPU specific.

To appear in proceedings of IEEE visualization 2005

Table 1: Performance measurements for various rendering modes.
Frames per second are given for the ATI (fps1) and nVidia cards
(fps2).

Dataset Lorenz El. Field Draft tube
Vertices 600,000 883,564 1,431,599

fps1 fps2 fps1 fps2 fps1 fps2

default 51.8 22.4 39.4 14.5 25.7 11.7
dynamic data 17.0 21.8 16.9 13.6 6.8 10.7
1024x1024 pixels 36.1 15.8 26.2 11.1 22.7 9.0
high quality 5.7 4.7 3.8 3.0 2.0 1.5
no multisampling 58.1 50.5 41.7 21.3 26.8 30.7
directional 51.5 79.4 60.2 58.1 34.2 36.1
no illumination 94.3 113.6 99.0 78.1 54.3 54.1

4 RESULTS

For validating our implementation we selected a number of datasets
with different characteristics in terms of size and distribution of
lines in space. The Lorenz attractoru = (10(y− x),28x− y− xz,
− 8

3z+ xy) was chosen for its near planar substructures near its two
foci. It is visualized by uniformly seeded streamlines which are col-
ored by seed location. The electrostatic field of the water molecule
is another simple test dataset which we chose for its high degree of
symmetry. It is computed by the superposition of three potentials of
point charges and the field lines are seeded on a recursively subdi-
vided sphere centered at the oxygen atom. The draft tube dataset is
computed from industrial CFD data. As a test visualization, instan-
taneous streamlines are seeded on seven rings close to the (roughly
conical) hub of the rotor. For all three datasets, the classical fourth-
order Runge-Kutta integration was used to generate polylines from
the given seed points.

In Fig. 5 the three datasets are rendered with illumination based
on maximum reflection and on cylinder averaging. In all image
pairs the expected good positional match of the specular highlights
between the two methods is confirmed. The highlights were ad-
justed to roughly equal brightness by stretching the dynamic range
as described in section 2.3.2. This makes the different distribution
of diffuse reflection clearly visible in that there are more and larger
dark regions in the right column of images. Even though this dif-
ference is present in all three image pairs, from the point of view
of spatial perception the improvement is most noticeable in some
areas of the draft tube data where the effect of Fig. 3 comes into
play. The same data is visualized in Fig. 1 with fewer but wider
lines and a different light position.

4.1 Performance

We measured frame rates on two PCs with ATI Radeon X800 Pro
and nVidia GeForce 6800 graphics cards. The CPUs were Pentium
4 with 3.0 and 3.2 GHz, respectively. The datasets are those de-
picted in Fig. 5 ranging from 600,000 to 1,431,599 vertices. We
placed the objects such that the image was roughly filled, but such
that no frustum culling occurred.

In Table 1 the “default” rendering mode refers to a 512x512 pixel
image rendered with maximal multisampling (6x for ATI, 8x for
nVidia) and using vertex buffer objects. In this mode, interactive
frame rates can be obtained even with large datasets.

In the “dynamic data” mode VBOs are not used and the vertex
arrays are filled with new data for each frame. The higher frame

rates achieved with the default mode demonstrate mostly the bene-
fits of VBOs which pays off especially on the ATI system.

The “1024x1024” mode is the same as “default” up to the image
resolution. It is remarkable that even though most of the processing
is done within the fragment program, the frame rates drop by less
than a third when the resolution is doubled.

In “high quality” mode, lines are semitransparent and antialiased
and consequently also depth sorted. This mode is required only if
multisampling is not available. Due to the sorting step, it is not suit-
able for interactive use, but can serve for redrawing a static scene.

“No multisampling” is the same as “default” but with multisam-
pling turned off. The frame rates indicate that it is not worth turning
multisampling off.

In “directional” mode, illumination is computed for constantV
and L which is done without vertex/fragment programs. On the
nVidia system, this mode is significantly faster than the default
mode and is an option if directional light and orthographic view-
ing is sufficient.

Finally, “no illumination” simply draws Gouraud shaded lines.
As can be seen, the price to pay for line illumination is a factor of
about 2 to 6 on our two systems.

5 CONCLUSION

In this paper, we have presented a method for rendering illuminated
lines in three-dimensional space. The method results from a view-
dependent lighting model based on averaged Phong/Blinn lighting
over the surface of an infinitesimally thin cylinder. Orthographic
and perspective views, as well as multiple local and infinite lights
are supported.

We have derived simpler expressions for the given lighting
model and implemented it on top of the OpenGL API using tradi-
tional resources such as texture mapping, but also exploiting mod-
ern hardware capabilities provided by todays graphics processing
units, in particular shader programs2. Several issues related to the
rendering of field lines such as antialiasing, but also depth sorting
in conjunction with the use of alpha blending have been discussed,
and solutions for an efficient and high-quality rendering have been
provided.

REFERENCES

[1] David C. Banks. Illumination in diverse codimensions. InSIGGRAPH
’94: Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, pages 327–334. ACM Press, 1994.

[2] James F. Blinn. Models of light reflection for computer synthesized
pictures. InSIGGRAPH ’77: Proceedings of the 4th annual confer-
ence on Computer graphics and interactive techniques, pages 192–
198. ACM Press, 1977.

[3] B. Cabral and L. Leedom. Imaging vector fields using line integral
convolution. InProc. of SIGGRAPH-93: Computer Graphics, pages
263–270, Anaheim, CA, 1993.

[4] Roger Crawfis and Nelson Max. Direct volume visualization of three-
dimensional vector fields. InVVS ’92: Proceedings of the 1992 work-
shop on Volume visualization, pages 55–60, New York, NY, USA,
1992. ACM Press.

[5] Wolfgang Heidrich and Hans-Peter Seidel. Realistic, hardware-
accelerated shading and lighting.Computer Graphics, 33(Annual
Conference Series):171–178, 1999.

[6] Victoria Interrante and Chester Grosch. Strategies for effectively vi-
sualizing 3d flow with volume lic. InVIS ’97: Proceedings of the 8th
conference on Visualization ’97, pages 421–424., Los Alamitos, CA,
USA, 1997. IEEE Computer Society Press.

2A simple implementation can be downloaded from
http://graphics.ethz.ch/flowvis/illumlines.

To appear in proceedings of IEEE visualization 2005

Figure 5: Comparison of illumination based on maximum reflection (left) and on cylinder averaging (right). Visualized datasets are (from top):
Lorenz attractor, electrostatic field, drafttube

To appear in proceedings of IEEE visualization 2005

[7] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional
textures.Computer Graphics, 23(3):271–280, July 1989.

[8] G. Li, U.D. Bordoloi, and H. Shen. Chameleon: An interactive
texture-based rendering framework for visualizing three-dimensional
vector fields. InProceedings of IEEE Visualization 2003, pages 241–
248, Oct 2003.

[9] G. S. P. Miller. From wire-frames to furry animals. InProceedings
on Graphics interface ’88, pages 138–145, Toronto, Ont., Canada,
Canada, 1988. Canadian Information Processing Society.

[10] Bui Tuong Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311–317, 1975.

[11] Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee,
and Helmut Doleisch. Feature extraction and visualization of flow
fields. InEUROGRAPHICS 2002, State of the Art Reports, pages 69–
100, 2002.

[12] Pierre Poulin and Alain Fournier. A model for anisotropic reflection.
In SIGGRAPH ’90: Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, pages 273–282, New
York, NY, USA, 1990. ACM Press.

[13] Greg Schussman and Kwan-Liu Ma. Anisotropic volume rendering
for extremely dense, thin line data. InVIS ’04: Proceedings of the
IEEE Visualization 2004 (VIS’04), pages 107–114. IEEE Computer
Society, 2004.

[14] A. Sigfridsson, T. Ebbers, E. Heiberg, and L. Wigstrom. Tensor field
visualisation using adaptive filtering of noise fields combined with
glyph rendering. InProc. IEEE Visualization, pages 371–378, 2002.

[15] Detlev Stalling, Malte Z̈ockler, and Hans-Christian Hege. Fast display
of illuminated field lines. IEEE Transactions on Visualization and
Computer Graphics, 3(2):118–128, 1997.

[16] Andreas Wenger, Daniel Keefe, Song Zhang, and David H. Laidlaw.
Interactive volume rendering of thin thread structures within multi-
valued scientific datasets.IEEE Transactions on Visualization and
Computer Graphics, 10(6):664–672, November/December 2004.

[17] Malte Zöckler, Detlev Stalling, and Hans-Christian Hege. Interactive
visualization of 3d-vector fields using illuminated stream lines. InVIS
’96: Proceedings of the 7th conference on Visualization ’96, pages
107–114. IEEE Computer Society Press, 1996.

To appear in proceedings of IEEE visualization 2005

