
Meshless Animation of Fracturing Solids

Mark Pauly Richard Keiser Bart Adams Philip Dutré Markus Gross Leonidas J. Guibas
Stanford University ETH Zurich KU Leuven KU Leuven ETH Zurich Stanford University

Figure 1: Brittle fracture of a hollow stone sculpture. Forces acting on the interior create stresses that cause the model to fracture and explode.

Abstract

We present a new meshless animation framework for elastic and
plastic materials that fracture. Central to our method is a highly dy-
namic surface and volume sampling method that supports arbitrary
crack initiation, propagation, and termination, while avoiding many
of the stability problems of traditional mesh-based techniques. We
explicitly model advancing crack fronts and associated fracture sur-
faces embedded in the simulation volume. When cutting through
the material, crack fronts directly affect the coupling between sim-
ulation nodes, requiring a dynamic adaptation of the nodal shape
functions. We show how local visibility tests and dynamic caching
lead to an efficient implementation of these effects based on point
collocation. Complex fracture patterns of interacting and branch-
ing cracks are handled using a small set of topological operations
for splitting, merging, and terminating crack fronts. This allows
continuous propagation of cracks with highly detailed fracture sur-
faces, independent of the spatial resolution of the simulation nodes,
and provides effective mechanisms for controlling fracture paths.
We demonstrate our method for a wide range of materials, from
stiff elastic to highly plastic objects that exhibit brittle and/or duc-
tile fracture.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: physics-based animation, elasticity, plasticity, frac-
ture, meshless methods

1 Introduction

Physics-based simulation has gained increasing importance in
many fields of computer graphics, including 3D game engines,
computer animation for feature films, surgery simulation, and vir-
tual reality. With growing demand for realism and detail, the com-
plexity of animations has been steadily increasing, incorporating
a wide range of physical phenomena, such as elastic and plastic
deformation [Terzopoulos et al. 1987], [Terzopoulos and Fleischer
1988], melting and flow [Carlson et al. 2002], fire [Nguyen et al.
2002], smoke [Fedkiw et al. 2001], and explosions [Feldman et al.

2003]. A central goal of physics-based animation is to ease the
burden of the animator by partially automating the creation of par-
ticularly complex animations that are consistent with our everyday
experiences of the physical world. Fracture simulation of deform-
ing solids [O’Brien and Hodgins 1999], [O’Brien et al. 2002] is
one prominent example, where manually specifying all animation
parameters quickly becomes infeasible. Research in computer an-
imation has thus focused on simulating fracturing materials based
on physical models developed in computational fracture mechan-
ics [Anderson 1995].

A current trend in this area is to enhance finite element methods
(FEMs) using meshfree methods, e.g., particle-based approaches,
to model the physical behavior around a crack front [Sukumar et al.
2000], [Belytschko et al. 2003] or to resort entirely to meshless
methods [Krysl and Belytschko 1999]. There are a number of
features of these methods that make them favorable for fracture
simulation (see [Belytschko et al. 1996] for a detailed discussion).
Most importantly, meshless methods avoid complex remeshing op-
erations and the associated problems of element cutting and mesh
alignment sensitivity common in FEM. Maintaining a conforming
mesh can be a notoriously difficult task when the topology of the
simulation domain changes frequently [Ortiz and Pandolfi 1999].
Repeated remeshing operations can adversely affect the stability
and accuracy of the calculations, imposing undesirable restrictions
on the time step. Finally, meshless methods are well suited for
handling large deformations due to their flexibility when locally re-
fining the sampling resolution.

On the downside, special treatment is required for the enforcement
of essential boundary conditions, due to the lack of the Kronecker
delta property of meshless shape functions (see [Fernandez-Mendez
and Huerta 2004] for a recent survey). Also, meshless methods are
computationally more involved, since the connectivity of nodes is
determined at run-time and the evaluation of the shape functions
requires an inversion of the moment matrix. However, by exploiting
temporal coherence using local caching schemes, the computational
burden can be reduced significantly as has lately been demonstrated
in the real-time system of [Müller et al. 2004].

1.1 Contributions

In this paper we are concerned with the application of meshless
methods to the domain of computer animation. The meshless ap-
proach provides us with essential flexibility in adapting the volume
and surface sampling resolutions to the simulation fidelity and ap-
pearance requirements of the animation, while handling topological
changes in a lightweight and efficient manner. Our key contribution



is a new meshless animation framework for elastic and plastic ma-
terials that fracture. Our method incorporates

• the dynamic creation and maintenance of fracture surfaces by
continuously adding surface samples during crack propaga-
tion,

• a meshless initial sampling of the volumetric domain and lo-
cal dynamic re-sampling that adapts the nodal sampling reso-
lution to handle fracturing and large deformations,

• the dynamic adaptation of shape functions wherever new
crack surfaces are created,

• the handling of the complex topological events associated
with multiple branching and merging cracks.

After discussing related work in Section 1.2, we explain our mesh-
less approach for solving the equations of continuum mechanics in
Section 2. Section 3 describes how we propagate cracks through
a solid and control the topology of crack surfaces and the simu-
lation domain. Dynamic adaptation of the spatial discretization is
discussed in Section 4 and details of the implementation are given
in Section 5. We conclude the paper with a discussion of results
and an outlook on future work.

1.2 Relation with Previous Work

[Terzopoulos et al. 1987] pioneered physics-based animation of de-
forming objects using finite difference schemes to solve the under-
lying elasticity equations. This work has been extended in [Ter-
zopoulos and Fleischer 1988] to handle plastic materials and frac-
ture effects. Mass-spring models [Hirota et al. 1998] and constraint-
based methods [Smith et al. 2000] have also been popular for mod-
eling fracture in graphics, as they allow for easy control of frac-
ture patterns and relatively simple and fast implementations. Re-
cent efforts have focused on finite element methods that directly
approximate the equations of continuum mechanics [Chung 1996].
O’Brien et al. were the first to apply this technique for graphical
animation in their seminal paper on brittle fracture [O’Brien and
Hodgins 1999]. Using element cutting and dynamic remeshing they
adapt the simulation domain to conform with the fracture lines that
are derived from the principal stresses. [O’Brien et al. 2002] in-
troduces strain state variables to model plastic deformations and
ductile fracture effects. Element splitting has also been used in vir-
tual surgery simulation, where [Bielser et al. 2003] introduced a
state machine to model all configurations of how a tetrahedron can
be split. [Müller et al. 2001] and [Müller and Gross 2004] demon-
strate real-time fracturing using an embedded boundary surface to
reduce the complexity of the finite element mesh. The virtual node
algorithm of Molino et al. [2004] combines the ideas of embedding
the surface and remeshing the domain. Elements are duplicated
and fracture surfaces are embedded in the copied tetrahedra. This
allows more flexible fracture paths, but avoids the complexity of
full remeshing and associated time stepping restrictions.

Meshless methods have been introduced to computer graphics by
Desbrun and Cani [1995], who model soft inelastic materials us-
ing particle systems coated with a smooth iso-surface. Smoothed
Particle Hydrodynamics (SPH) has been applied in [Desbrun and
Cani 1996] and extended using space and time adaptive sampling
in [Desbrun and Cani 1999] (see also [Debunne et al. 2001]).
[Chang and Zhang 2004] presents a meshless method for animat-
ing elastic solids, using linear superposition of approximate analyt-
ical solutions for point loading, analogous to the boundary element
method of [James and Pai 1999].

Our system is mainly motivated by recent advances in meshless
methods for computational mechanics (see [Liu 2002] or [Fries

and Matthies 2003] for good overviews). We build upon [Müller
et al. 2004] who introduced a meshless animation framework us-
ing point-based representations for both the simulation volume and
the boundary surface of elastically and plastically deforming solids.
To simulate fracture effects we integrate the dynamic computation
of shape functions of [Belytschko et al. 1994] and [Organ et al.
1996], who discussed numerical examples for simple 2D crack
problems. An extension to 3D domains was presented in [Krysl and
Belytschko 1999], where fracturing was limited to non-interacting,
non-branching cracks. [Ventura et al. 2002] introduced a meshless
fracturing method using level sets to define fracture surfaces im-
plicitly. They show examples for single cracks in 2D, but assert that
their method can be extended to 3D simulations. In our scheme 3D
fracture surfaces are modeled and sampled explicitly. This supports
efficient modeling of fine geometric detail, such as sharp creases
and corners, and allows for easy control of fracture patterns, both
of which are crucial for graphics applications.

2 Meshless Simulation

We first give a brief review of the relevant equations of continuum
mechanics and discuss the discretization in the meshless setting.
Then we explain how we can adapt the simulation to incorporate
discontinuities introduced by fracture.

Given a 3-dimensional solid with material coordinates x, we define
the positions of the deformed model in world coordinates as x+u,
where u = (u,v,w)T is a displacement vector field. The deforma-
tion induced by u creates a strain, which can be computed from the
gradient ∇u using the quadratic Green-Saint-Venant strain tensor as

ε = (∇u+∇uT +∇u∇uT )/2.

Assuming a Hookean material, the elastic stress σ is related to the
strain ε as σ = Cε , where C is a rank four tensor that defines the
constitutive law of the material. The elastic force per unit volume
at x can then be derived as f = −σ∇uε (see [Müller et al. 2004]
for details). To discretize the force distribution, the displacement
field u is typically approximated as u(x)≈ ∑i Φi(x)ui, where ui are
the displacement vectors at a discrete set of nodes {xi} and Φi are
shape functions associated with these nodes. For FEM, the Φi are
constructed using a tessellation of the simulation domain into non-
overlapping elements. Meshless methods require no such spatial
decomposition, but instead use techniques such as the moving least
squares (MLS) approximation [Lancaster and Salkauskas 1981] to
define the shape functions based on the location of the nodes only.
Given a complete polynomial basis p(x) = [1 x . . . xn]T of or-
der n and a weight function ωi, the meshless shape functions can be
derived as

Φi(x) = ωi(x,xi)pT (x)[M(x)]−1p(xi), (1)

where [M(x)]−1 is the inverse of the moment matrix defined as

M(x) = ∑
i

ωi(x,xi)p(xi)pT (xi).

A detailed account on how to construct shape functions for mesh-
less methods can be found in [Fries and Matthies 2003]. The weight
function ωi plays an important role in this context, as it defines the
support of the shape functions and thus the coupling between the
nodes. We use the compactly supported radial spline function

ωi(x,y) = ωi(r) =

{

1−6r2 +8r3 −3r4 r ≤ 1
0 r > 1,

where r = (‖x−y‖)/hi. The support radius hi is determined adap-
tively depending on the local density of nodes, which is important



when dynamically re-sampling the simulation domain during frac-
turing (see Section 4). Since we are mainly interested in the gradi-
ent ∇ui = [∇ui ∇vi ∇wi] at the nodes xi, we directly apply the MLS
procedure to the derivatives [Müller et al. 2004]. This yields

∇ui = [A(xi)]
−1 ∑

j
ωi(xi,x j)(u j −ui)(x j −xi), (2)

where A(xi) = ∑ j(x j − xi)(x j − xi)
T ωi(xi,x j) is also used for the

computation of ∇vi and ∇wi. This approximation avoids the costly
computation of the derivative of the inverted moment matrix, which
would be necessary when directly computing the derivatives of
Equation 1. To obtain a first order accurate approximation scheme,
we use the linear basis p = [1 x]T . Note that even though the weight
functions are radially symmetric and given in analytical form, the
shape functions and the approximation of their derivatives can in
general only be evaluated numerically using Equations 1 and 2.
Compared to FEM, meshless Galerkin methods typically require
a higher number of integration points when solving the PDE in the
weak formulation [Belytschko et al. 1994]. We overcome this prob-
lem by applying a point collocation scheme, i.e., the unknowns are
only evaluated at the discrete nodes xi [Zhang et al. 2001]. We
also incorporate the strain state variables of [O’Brien et al. 2002] to
handle plastic deformation as discussed in [Müller et al. 2004].

2.1 Modeling Discontinuities

When fracturing the model, we need to adapt the shape functions
to respect the discontinuity created by a crack. Belytschko et
al. [1994] introduced a visibility criterion, where nodes can only
interact with each other, if the ray connecting the two node cen-
ters does not intersect a boundary surface. However, considering
only this line-of-sight constraint causes undesirable discontinuities
of the shape functions not only across the crack, but also within the
domain (see Figure 2 (a)). We use the transparency method pro-
posed by Organ et al. [1996] to allow partial interaction of nodes in
the vicinity of the crack front. Suppose the ray between two nodes
xi and x j intersects a crack surface at a point xs (Figure 2 (c)).
Then the weight function ωi (and similarly for ω j) is adapted to
ω ′

i (xi,x j) = ωi(‖xi − x j‖/hi +(2ds/(κhi))
2), where ds is the dis-

tance between xs and the closest point on the crack front, and κ
controls the opacity of the crack surfaces (we use κ = 1 in all
our computations). Effectively, a crack passing between two nodes
lengthens the interaction distance of the nodes until eventually, in
this adapted distance metric, the nodes will be too far apart to inter-
act. As shown in Figure 2 (b) this method avoids the discontinuities
of the shape functions within the domain.

3 Crack Propagation and Surface Sampling

Introducing cuts into the model exposes interior parts of the solid
that need to be bounded by new surface sheets. Previous approaches
based on FEM define fracture surfaces using faces of the tetrahe-
dral elements [O’Brien and Hodgins 1999], [Bielser et al. 2003],
[Müller and Gross 2004], which requires complex dynamic remesh-
ing to avoid unnaturally coarse crack surfaces. The virtual node al-
gorithm of [Molino et al. 2004] extends this concept by combining
element boundaries with piecewise linear surface parts embedded in
duplicated tetrahedra. To simplify the topological complexity and
avoid stability problems during the simulation, all of these mesh-
based approaches impose restrictions on where and how the mate-
rial can fracture. Depending on the discretization of the domain,
these constraints can lead to temporal or spatial aliasing artifacts,
such as button-popping or jagged fracture lines, that degrade the
realism of the animation. Our goal is to lift these restrictions and

Φi
ω
i Φi

ω
i

xi

x j

xs

crack

support of 

(a) (b)

Φi
ω
i

(c) (d)

ds

xi

Figure 2: Comparison of visibility criterion (a) and transparency
method (b) for an irregularly sampled 2D domain. The effect of
a crack, indicated by the horizontal white line, on weight function
ωi and shape function Φi is depicted for the node xi marked by the
cross. A schematic view of the transparency method is shown in (c)
and the effect of dynamic upsampling is illustrated in (d).

define a fracture algorithm that allows arbitrary crack initiation and
propagation, while avoiding a strong dependence on the underlying
discretization. To this end we use the idea of an embedded surface,
but explicitly create new fracture surface sheets whenever the ma-
terial is cut. The dynamic adaptation of the shape functions using
the transparency method described above will then automatically
adjust the simulation to the newly created fracture surfaces.

3.1 Surface Model

We use the point-based representation proposed in [Pauly et al.
2003] to model the initial object surface and all dynamically created
fracture surfaces. The boundary of a 3D solid is defined by a set of
surface sheets, represented as collections of overlapping, elliptical
splats, called surfels. Since no explicit connectivity information
needs to be maintained between surfels, dynamic surface sampling
is simple and efficient, which is crucial for complex fracture simu-
lations. Sharp creases and corners are represented implicitly as the
intersection of adjacent surface sheets using the CSG method pro-
posed by [Wicke et al. 2004]. The precise location of crease lines
is evaluated at render time (see Figure 9), avoiding costly surface-
surface intersection calculations during simulation.

Crack Model. A crack consists of a crack front and two sepa-
rate surface sheets that are connected at the front to form a sharp
crease. The crack front itself is defined by a linear sequence of
crack nodes c1, . . . ,cn that continuously add surfels to the fracture
surfaces while propagating through the material. For surface cracks
the end nodes of the front lie on a boundary surface or a fracture
surface of a different crack. Interior cracks have circularly con-
nected crack fronts, i.e., the two end nodes c1 and cn coincide (see
Figures 3 and 5).

3.2 Crack Initiation and Propagation

Crack initiation is based on the stress tensor σ . A new crack is
created where the maximal eigenvalue of σ exceeds the threshold
for tensile fracture (opening mode fracture [Anderson 1995]). This
condition is evaluated for all simulation nodes. To allow crack ini-
tiation anywhere on the surface or in the interior of the model, we
also apply a stochastic scheme to initiate crack fronts. We create a
random set of surface and interior sample points and evaluate the



projection resampling

projection

c
id

i

propagation

propagation
crack front

crack node

Figure 3: Front propagation and fracture surface sampling. The
upper row shows a top view of an opening crack, the lower part
shows a side view of a single fracture surface. After propagating
the crack nodes ci according to di, end nodes are projected onto the
surface. If necessary, the front is re-sampled and new surfels are
added to the fracture surface sheets.

stress tensor at these points using weighted averaging from adja-
cent simulation nodes. The inherent smoothing is usually desired
to improve the stability of the crack propagation [Belytschko et al.
2003]. If a crack front is initiated at one of these spatial locations,
we increase the fracture thresholds of all neighboring samples to
avoid spurious branching [Molino et al. 2004]. We initialize a new
crack with three crack nodes, each of which carries two surfels with
identical position and radius, but opposing normals. These surfels
form the initial crack surfaces that will grow dynamically as the
crack propagates through the solid (Figure 3). Crack propagation
is determined by the propagation vectors di = αiλi(vi × ti), where
λi is the maximal eigenvalue of the stress tensor at ci, and vi is the
corresponding eigenvector. The vector ti approximates the tangent
of the crack front as ti = (ci+1 − ci−1)/‖ci+1 − ci−1‖, where we
set c0 = c1 and cn+1 = cn for surface cracks. The parameter αi
depends on the material and can be used to control the speed of
propagation. The new position of a crack node ci at time t + ∆t is
then computed as ci + ∆tdi, where ∆t is the simulation time step.
We additionally project the end nodes of surface cracks back onto
the surface that they originated from using the projection method
of [Alexa and Adamson 2004]. Since propagation alters the spacing
of crack nodes along the front, we dynamically adjust the sampling
resolution of the crack nodes after each propagation step. If two ad-
jacent crack nodes are further apart than the radius of their associ-
ated surfels, a new node is inserted using cubic spline interpolation
to determine the new node’s position. We remove redundant crack
nodes when the distance to the immediate neighbors becomes too
small. Fracture surface sheets are sampled by inserting new surfels
if the propagation distance exceeds the surfel radius, indicating that
a hole would appear in the surface. This spatially (along the crack
front) and temporally (along the propagation vectors) adaptive sam-
pling scheme ensures uniformly sampled and hole-free crack sur-
faces (see Figure 3).

Transparency Weights. We determine the transparency weight
ω ′

i (xi,x j) for a pair of simulation nodes by computing the in-
tersection point on the fracture surface of the ray connecting the
two nodes (Section 2.1) using the method proposed by [Alexa and
Adamson 2004]. The distance ds to the crack front is approximated
as the shortest Euclidean distance to the line segments defined by
adjacent crack nodes.

fracture surfacesreplicated surfel

new simulation nodes

crack initiation

simulation nodes

surfels

invisible nodecrack front

Figure 4: Transparency weights for embedding surfels in the sim-
ulation domain. The thickness of the lines indicates the influence
of a simulation node on the displacement of a surfel. During crack
propagation, new surfels and simulation nodes are created using
dynamic re-sampling as described below.

To animate the boundary surface of the solid, we apply a free-form
deformation approach that embeds surface sheets in the volumetric
domain. The displacements of surfels are computed as a weighted
average from neighboring simulation nodes, using the gradient ap-
proximation ∇ui as described in [Müller et al. 2004]. Here the use
of the transparency method (Section 2.1) is crucial to compute these
weights, as it ensures a smooth displacement field at the crack front
(see Figure 4). We exploit the fact that during simulation, changes
of the transparency weights are localized to a small region around
the crack front. Thus only a small fraction of the weights need to be
updated in every time step, leading to an efficient implementation.

3.3 Topology Control

The major challenge when explicitly modeling fracture surfaces is
the efficient handling of all events that affect the topology of the
boundary surfaces and the simulation domain. Apart from crack
initiation, we have identified three fundamental events that are suf-
ficient to describe the often intricate constellations that occur during
fracturing: Termination, splitting, and merging of crack fronts:

• A crack is terminated if the crack front has contracted to a
single point.

• Splitting occurs when a crack front penetrates through a sur-
face as shown in Figure 5 (a). We use the method proposed
in [Alexa and Adamson 2004] to estimate the signed distance
of a crack node to a surface sheet and initiate a splitting event
when a sign change occurs from one time step to the next. The
front is split at the edges that intersect the surface, discarding
all nodes that are outside the solid, except the ones that are
connected to an interior node. These nodes become new end
nodes by moving them to the intersection point with the sur-
face. As shown on the left of Figure 5 (a), a surface crack
is split into two new crack fronts that share the same crack
surfaces, i.e. independently add surfels to the same fracture
surface sheets during propagation. An interior crack becomes
a surface crack after splitting, as illustrated on the right.

• A merging event is triggered when two surface end nodes of
two crack fronts meet by creating the appropriate edge con-
nections (Figure 5 (b)). Two surface cracks are merged into
a single surface crack (left), while a circular front is created
if the two end nodes are from the same crack front (right).
Typically, when cracks merge, their fracture surfaces create a
sharp corner, so we maintain separate fracture surface sheets
that intersect to create a crease.

As can be seen in Figure 5, splitting and merging are dual to each
other. The former introduces two new end nodes, while the latter
decreases the number of end nodes by two. Similarly, crack initia-
tion and termination are dual topological operations. Note that the



(a)

(b)

Figure 5: Topological events during crack propagation. (a) Split-
ting, (b) merging. The top and bottom rows show a cutaway view
with one crack surface exposed. The sketches in the center rows
show this fracture surface in gray, end nodes of crack fronts are
indicated by white dots.

intersection of two crack fronts at interior nodes is handled auto-
matically by first splitting both fronts and then merging the newly
created end nodes.

Snapping. One technique that we found particularly useful to
improve the stability of the simulation is snapping. Snapping guar-
antees that problematic small features, such as tiny fragments or
thin slivers, do not arise. It works by forcing nodes very near other
nodes or very near surfaces to become coincident to ensure that
any features present are of size comparable to the local node spac-
ing. Similar methods have been proven to guarantee topological
consistency with the ideal geometry in other settings [Guibas and
Marimont 1995]. Specifically, when a front intersects a surface,
we project all crack nodes that are within snapping distance d to
the surface onto the surface. This avoids fragmenting the front into
small pieces that would be terminated anyway within a few time
steps. We merge fronts when the end nodes are within distance
d by moving both end nodes to their average position. This avoids
small slivers of material to be created, which would require a signif-
icant number of new simulation nodes to be added to the model (see
Section 4). Similarly, the intersection of two crack fronts can lead
to multiple splitting and merging events, which we combine into
a single event to avoid the overhead of creating and subsequently
deleting many small crack fronts. We also apply snapping to front
termination, where we delete a crack front when all its nodes are
within distance d from each other. We found the average local sur-
fel radius to be a good choice for d, as it relates directly to the
sampling resolution of the model surface.

4 Volumetric Sampling

One of the main advantages of meshless methods lies in the fact
that they support simple and efficient sampling schemes. To simu-
late the dynamics of a 3D object defined by a boundary surface S,
we first need to discretize the volume V bounded by S, i.e., compute
the set of simulation nodes {xi}. Similar to adaptive finite element
meshing, we want a higher node density close to the boundary sur-
face and fewer nodes towards the interior of the solid. We compute
the nodal sampling of V using a balanced octree hierarchy as shown
in Figure 6. Starting from the bounding box of S, a cell of the octree

(a) (b) (c) (d)

Figure 6: Volumetric sampling: (a) octree decomposition, (b) initial
adaptive octree sampling, (c) sampling after local repulsion, where
circles indicate 0.1 iso-value of weight function, (d) dynamic re-
sampling during fracturing.

is recursively refined, if it contains parts of S. The final number of
nodes is controlled by prescribing a maximum octree level at which
the recursive refinement is stopped. Given this adaptive decompo-
sition, we create a sample point at each octree cell center that lies
within V . To create a locally more uniform distribution, samples
are displaced within their octree cell by applying a few iterations
of point repulsion. We set the support radius hi of each node xi to
twice the maximum distance from xi to the samples in all adjacent
cells. This guarantees sufficient overlap of the nodal domains to
allow stable computation of the inverted moment matrix (see Sec-
tion 2). Similar to [Müller et al. 2004], each node is assigned a fixed
mass mi = 4/3πh3

i ρ , where ρ is the material density.

During simulation, we need to dynamically adjust the discretization
of the simulation domain. Without dynamic re-sampling, frequent
fracturing would quickly degrade the numerical stability of the sim-
ulation even for an initially adequately sampled model. New nodes
need to be inserted in the vicinity of the crack surfaces and in partic-
ular around the crack front. At the same time, strong deformations
of the model can lead to a poor spatial discretization of the sim-
ulation volume, which also requires a dynamic adaptation of the
sampling resolution. This is particularly important for highly plas-
tic materials, where the deformed shape can deviate significantly
from its original configuration.

We use a simple local criterion to determine under-sampling at a
node xi. Let Ωi = ∑ j ω ′

i (xi,x j)/ωi(xi,x j) be the normalized sum
of transparency weights (see Section 2.1). Without visibility con-
straints, Ωi is simply the number of simulation nodes in the support
of xi. During simulation Ωi decreases, if fewer neighboring nodes
are found due to strong deformations, or if the transparency weights
become smaller due to a crack front passing through the solid. If
Ωi drops below a threshold Ωmin (we use Ωmin = 10), new nodes
are inserted around xi, as shown in Figure 7. We insert dΩmin−Ωie
new samples within the support radius of xi, similar to [Desbrun
and Cani 1999]. The mass associated with xi is distributed evenly

original

configuration

re-sampled

configuration

re-sampled

configuration

crack

propagation

volume

deformation

x
i

Figure 7: Dynamic re-sampling at the simulation node xi due to
strong deformation (left) and fracturing (right).

among the new nodes and their support radius is adapted to keep
the overall material density constant. Note that mass will not be
strictly preserved locally in the sense that the mass distribution of
nodes after fracturing will not precisely match the correct distri-
bution according to the separated volumes created by the fracture
surface sheets. However, mass will be preserved globally and the
local deviations are sufficiently small to not affect the simulation



noticeably (cf. [Molino et al. 2004]).

To prevent excessive re-sampling for nodes very close to a fracture
boundary we restrict node splitting by prescribing a minimal node
support radius. Note that re-sampling due to fracturing is triggered
by the crack nodes passing through the solid, similar to adapting the
visibility weights (see Section 3). Performing these checks comes
essentially for free, since all the required spatial queries are already
carried out during visibility computation. Figures 6 (d) and 9 illus-
trate the dynamic adaptation of the sampling rates when fracturing.
The effect on the shape functions is shown in Figure 2 (d).

5 Implementation

Figure 8 shows a high-level overview of our simulation pipeline.
We detect and process collisions using the method proposed
in [Keiser et al. 2004]. Collision detection is based on the signed
distance function of the boundary surfaces [Alexa and Adamson
2004]. Interpenetrations are resolved by computing an approximate
contact surface that is consistent for both models. From the contact
surface we compute penalty forces similar to [O’Brien and Hodgins
1999]. After resolving collisions and contacts, strains and stresses
are computed as described in Section 2. Given the distribution of
stress, we initiate new crack fronts, propagate existing cracks, and
adapt the spatial sampling of the fracture surfaces (Section 3). This
stage is followed by the dynamic re-sampling of the simulation do-
main (Section 4), before we integrate the nodal forces using an ex-
plicit Leap-frog scheme to obtain the new displacements.

Fracture

Handling

Collision

Response

Strain/Stress

Computation

Time

Integration

Dynamic

Sampling

Figure 8: High-level overview of our meshless simulation pipeline.

Data Structures. For fracture simulation of elastic and mod-
erately plastic materials, most of the computations are performed
using a fixed reference system [Müller et al. 2004]. This means
that the coupling of adjacent nodes can be pre-computed at the be-
ginning of the simulation by examining the overlap of the corre-
sponding shape functions in material coordinate space. These nodal
relations are stored in a sparse neighborhood graph, where each
edge ei j in the graph indicates that node xi interacts with node x j .
During simulation the graph is then used to accelerate neighbor-
hood queries. To update the neighborhood relations, we need to
check if a passing crack front affects the visibility of neighboring
nodes in the vicinity of the front. This is a very localized search
that only requires a few ray-surface intersections and can thus be
performed very efficiently. Note that this graph data structure dif-
fers greatly from a FEM mesh, where edge-, face-, and element-
relations need to be kept consistent at all times. For highly plastic
materials, neighborhood information is computed dynamically, us-
ing the spatial hashing grid proposed in [Teschner et al. 2003]. This
data structure is also used to accelerate the collision queries, us-
ing an axis aligned bounding box hierarchy as discussed in [Keiser
et al. 2004].

Rendering. All images were created using the open-source ren-
derer POV-Ray (http://www.povray.org), which we extended to
handle ray intersections with surfels as proposed in [Alexa and
Adamson 2004]. As mentioned above, we avoid an explicit rep-
resentation of the intersection curve of two adjacent surface sheets
by deferring the surface-surface intersection problem to the render-
ing stage, where it can be solved efficiently. We adapt the CSG

Figure 9: Surfels are clipped to create sharp creases with dynami-
cally created fracture surfaces, whose visual roughness is controlled
using 3D noise functions for bump mapping. The sampling of the
simulation domain is shown on the right, where green spheres de-
note re-sampled nodes.

rendering technique for point-sampled surfaces proposed by Wicke
et al. [2004]. During fracturing, we maintain a list of all intersecting
surface sheets that form a sharp crease. With this minimal topologi-
cal structure all surface-surface intersections can be resolved by the
renderer during ray-casting (see Figure 9).

Control. Apart from specifying material properties to influence
the course of the simulation, we provide explicit mechanisms for
controlling fracture behavior. This is crucial in production envi-
ronments and interactive applications, where the visual effect is
often more important than physical accuracy. We exploit the ex-
plicit modeling of fracture surfaces and the dynamic adaptation of
shape functions and nodal sampling resolution to support precise
control of where and how a model fractures. To this end we have
implemented a simple painting interface that allows fast prototyp-
ing of fracture simulations by prescribing fracture patterns directly
on the object boundary. The user can paint arbitrary networks of
cracks on the surface and explicitly specify stress thresholds for
these cracks. Additionally, we provide a propagation history to con-
trol the propagation of cracks through the material. The adjusted
propagation vector at time t is computed as the weighted average
d̄t

i = γdt−∆t
i + (1− γ)dt

i , where γ ∈ [0,1] is the history factor. A
purely stress-based propagation is achieved for γ = 0, while γ = 1
yields purely geometric cracks and fracture surfaces. We also use
volumetric textures for adjusting the fracture thresholds within the
material. The pre-scoring technique of [Molino et al. 2004], where
the stress tensor is modified according to an embedded level set
function, can also be integrated easily.

6 Results and Discussion

Figure 1 shows brittle fracture of a stiff elastic object, computed at
an average of 22 seconds per frame. The initial model is sampled
with 4.3k simulation nodes and 249k surface samples. During frac-
turing the number of nodes increases to 6.5k, while 61k additional
surfels have been created to define the new fracture surfaces. Com-
pared to FEM-based approaches that use the faces of simulation ele-
ments to define the object surface, we achieve a significantly higher
level of surface detail without requiring a proportionally large num-
ber of simulation nodes. This de-coupling of the simulation domain
from the representation of the boundary surface leads to increased
performance and provides essential control in computer animation,
where visual quality is typically favored over physical accuracy.
On the other end of the spectrum of material properties that our
method can handle is the example of Figure 10. The highly plastic
bubble-gum is deformed beyond recognition before splitting along
a complex fracture surface. Figure 11 illustrates crack front merg-
ing events. Four of a total of 49 crack fronts merge in the center



Figure 10: Highly plastic deformations and ductile fracture. Ini-
tial/final sampling: 2.2k/3.3k simulation nodes, 134k/144k surfels,
2.4 sec/frame.

of the twisted bar to form a circular crack front. Figure 12 shows
how we can explicitly control fracture, using a combination of crack
painting, propagation history, and adaptive fracture thresholds.

Note that all models shown in this paper have been re-sampled sub-
stantially during the simulation to match the increased geometric
and topological complexity after fracturing. The simplicity of this
dynamic re-sampling of the simulation domain highlights one of
the main benefits of meshless methods for physics-based anima-
tion. Due to minimal consistency constraints between neighbor-
ing nodes, dynamic re-sampling is efficient and easy to implement,
as compared to the far more involved re-meshing methods used in
FEM simulations. A similar argument holds for our surface sam-
pling method. Instead of maintaining a consistent surface mesh and
dynamically cutting and re-meshing during simulation, our sam-
pling scheme simply inserts and moves surfels during crack prop-
agation. Surface-surface intersections are resolved at render time,
avoiding costly topological updates during simulation. In principal,
however, any surface representation that supports inside/outside
queries and ray intersections can be used in our system.

Another advantage of our meshless approach is the flexibility in
handling a wide range of different material properties, as shown in
the examples of Figures 1 and 10. However, extremely stiff ob-
jects require very small time steps to obtain an accurate distribution
of stress within the material. While this problem can be allevi-
ated using implicit or semi-implicit integration schemes, simpler
approaches such as [Smith et al. 2000] might be more appropri-
ate for materials that do not exhibit noticeable deformations before
fracturing. Coupling of deformable bodies with rigid bodies such
as the ground plane in Figure 10 requires enforcement of essen-
tial boundary conditions. Currently we resolve all collisions using
penalty forces on the simulation nodes, which does not guarantee
that the simulation is free of self-intersections at all times. More

Figure 11: Crack merging. Initial/final sampling: 2k/3k simulation
nodes, 29k/45k surfels, 10 sec/frame.

advanced methods such as Lagrange multipliers or the Nitsche
method [Fernandez-Mendez and Huerta 2004] could be integrated
into our system, but would lead to higher computational costs.

A general limitation of the meshless approach is that we require
even very small fragments to be sampled sufficiently dense in order
to obtain a stable evaluation of the shape functions. This inflates the
number of simulation nodes when an object is fractured excessively,
which slows down the computations. If performance is crucial, we
resort to modeling small pieces of material as rigid bodies, assum-
ing that the internal deformations are negligible. Fortunately, large
numbers of very small fragments are mainly created by stiff ob-
jects that experience brittle fracture, where such an approximation
is reasonable.

Figure 12: Controlled fracture. Initial/final sampling: 4.6k/5.8k
simulation nodes, 49k/72k surfels, 6 sec/frame.

7 Conclusion and Future Work

We have introduced a new system for animating deformable objects
that fracture. Instead of maintaining a consistent volumetric mesh
using continuous cutting and re-structuring of finite elements, we
dynamically adjust nodal shape functions based on simple visibil-
ity constraints. The space discretization is continuously adapted



using insertions of simulation nodes. Similarly, a point-based rep-
resentation is built for the boundary surface, which allows efficient
dynamic sampling of fracture surfaces, and facilitates explicit con-
trol of the object topology.

There are a number of interesting directions for future research.
Extending our method to a hierarchical scheme would allow more
efficient simulation of physical phenomena that occur at different
scales. We also believe that new data structures can improve the
tradeoff between local caching and dynamic re-computation, which
is at the core of our meshless animation system. In addition we plan
to extend our physical model to include more complex constitutive
models, allow the modeling of thin shells, and support coupling
between deformable bodies and fluids.

Acknowledgements. The authors wish to acknowledge support
from NSF grants CARGO-0138456, ITR-0205671, ARO grant
DAAD19-03-1-033, and NIH Simbios Center grant 1091129-1-
PABAE. Bart Adams is funded as a Research Assistant by the Fund
for Scientific Research - Flanders, Belgium (F.W.O.-Vlaanderen).
Thanks to Eitan Grinspun and the anonymous reviewers for helpful
comments.

References

ALEXA, M., AND ADAMSON, A. 2004. On normals and projection operators for
surfaces defined by point sets. In Proceedings of Eurographics Symposium on
Point-Based Graphics, 150–155.

ANDERSON, T. L. 1995. Fracture Mechanics. CRC Press.

BELYTSCHKO, T., LU, Y., AND GU, L. 1994. Element-free galerkin methods. Int. J.
Numer. Meth. Engng 37, 229–256.

BELYTSCHKO, T., KRONGAUZ, Y., ORGAN, D., FLEMING, M., AND KRYSL, P.
1996. Meshless methods: An overview and recent developments. Comp. Meth. in
Appl. Mech. Eng. 139, 3.

BELYTSCHKO, T., CHEN, H., XU, J., AND ZI, G. 2003. Dynamic crack propagation
based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer.
Meth. Engng 58, 1873–1905.

BIELSER, D., GLARDON, P., TESCHNER, M., AND GROSS, M. 2003. A state ma-
chine for real-time cutting of tetrahedral meshes. In Pacific Graphics, 377–386.

CARLSON, M., MUCHA, P., VAN HORN III, B., AND TURK, G. 2002. Melting and
flowing. In Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer
Animation.

CHANG, J., AND ZHANG, J. J. 2004. Mesh-free deformations. In Comp. Anim.
Virtual Worlds, 211–218.

CHUNG, T. J. 1996. Applied Continuum Mechanics. Cambridge Univ. Press, NY.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. 2001. Dynamic real-
time deformations using space & time adaptive sampling. In Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH 2001, 31–36.

DESBRUN, M., AND CANI, M.-P. 1995. Animating soft substances with implicit
surfaces. In Computer Graphics Proceedings, ACM SIGGRAPH, 287–290.

DESBRUN, M., AND CANI, M.-P. 1996. Smoothed particles: A new paradigm for
animating highly deformable bodies. In 6th Eurographics Workshop on Computer
Animation and Simulation ’96, 61–76.

DESBRUN, M., AND CANI, M.-P. 1999. Space-time adaptive simulation of highly
deformable substances. Tech. rep., INRIA Nr. 3829.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simulation of smoke.
In SIGGRAPH 2001, Computer Graphics Proceedings, ACM Press / ACM SIG-
GRAPH, E. Fiume, Ed., 15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND ARIKAN, O. 2003. Animating suspended
particle explosions. In Proceedings of ACM SIGGRAPH 2003, 708–715.

FERNANDEZ-MENDEZ, S., AND HUERTA, A. 2004. Imposing essential boundary
conditions in mesh-free methods. Computer Methods in Applied Mechanics and
Engineering 193, 1257–1275.

FRIES, T.-P., AND MATTHIES, H. G. 2003. Classification and overview of meshfree
methods. Tech. rep., TU Brunswick, Germany Nr. 2003-03.

GUIBAS, L. J., AND MARIMONT, D. H. 1995. Rounding arrangements dynamically.
In SCG ’95: Proceedings of the eleventh annual symposium on Computational
geometry, ACM Press, 190–199.

HIROTA, K., TANOUE, Y., AND KANEKO, T. 1998. Generation of crack patterns with
a physical model. Vis. Comput. 14, 126–137.

JAMES, D. L., AND PAI, D. K. 1999. Artdefo, accurate real time deformable objects.
In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH
99, 65–72.

KEISER, R., MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M.
2004. Contact handling for deformable point-based objects. In Proceedings of
VMV.

KRYSL, P., AND BELYTSCHKO, T. 1999. The element free galerkin method for
dynamic propagation of arbitrary 3-d cracks. Int. J. Numer. Meth. Engng 44, 767–
800.

LANCASTER, P., AND SALKAUSKAS, K. 1981. Surfaces generated by moving least
squares methods. Mathematics of Computation 87, 141–158.

LIU, G. R. 2002. Mesh-Free Methods. CRC Press.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node algorithm for changing
mesh topology during simulation. ACM Trans. Graph. 23, 3, 385–392.

MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials. In Proceedings of
the 2004 conference on Graphics interface, Canadian Human-Computer Commu-
nications Society, 239–246.

MÜLLER, M., MCMILLAN, L., DORSEY, J., AND JAGNOW, R. 2001. Real-time
simulation of deformation and fracture of stiff materials. EUROGRAPHICS 2001
Computer Animation and Simulation Workshop, 27–34.

MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS, M., AND ALEXA, M.
2004. Point based animation of elastic, plastic and melting objects. Proceedings of
2004 ACM SIGGRAPH Symposium on Computer Animation, 141–151.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Physically based modeling
and animation of fire. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, 721–728.

O’BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical modeling and animation of
brittle fracture. In Proceedings of SIGGRAPH 1999, 287–296.

O’BRIEN, J. F., BARGTEIL, A. W., AND HODGINS, J. K. 2002. Graphical modeling
and animation of ductile fracture. In Proceedings of SIGGRAPH 2002, 291–294.

ORGAN, D., FLEMING, M., TERRY, T., AND BELYTSCHKO, T. 1996. Continuous
meshless approximations for nonconvex bodies by diffraction and transparency.
Computational Mechanics 18, 1–11.

ORTIZ, M., AND PANDOLFI, A. 1999. Finite-deformation irreversible cohesive el-
ements for three-dimensional crack-propagation analysis. Int. J. Num. Meth. Eng.
44, 1267–1282.

PAULY, M., KEISER, R., KOBBELT, L. P., AND GROSS, M. 2003. Shape modeling
with point-sampled geometry. ACM Trans. Graph. 22, 3, 641–650.

SMITH, J., WITKIN, A., AND BARAFF, D. 2000. Fast and controllable simulation of
the shattering of brittle objects. In Graphics Interface, 27–34.

SUKUMAR, N., MOS, N., MORAN, B., AND BELYTSCHKO, T. 2000. Extended finite
element method for three-dimensional crack modeling. International Journal for
Numerical Methods in Engineering 48, 11, 1549–1570.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling inelastic deformation:
viscolelasticity, plasticity, fracture. In Proceedings of the 15th annual conference
on Computer graphics and interactive techniques, ACM Press, 269–278.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987. Elastically de-
formable models. In Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH 87, 205–214.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., POMERANETS, D., AND

GROSS, M. 2003. Optimized spatial hashing for collision detection of deformable
objects. In Proc. Vision, Modeling, Visualization VMV, 47–54.

VENTURA, G., XU, J., AND BELYTSCHKO, T. 2002. A vector level set method and
new discontinuity approximations for crack growth by efg. International Journal
for Numerical Methods in Engineering 54, 923–944.

WICKE, M., TESCHNER, M., AND GROSS, M. 2004. Csg tree rendering of point-
sampled objects. In Proceedings of Pacific Graphics 2004.

ZHANG, X., LIU, X.-H., SONG, K.-Z., AND LU, M.-W. 2001. Least-squares collo-
cation meshless method. Int. J. Numer. Meth. Engng 51, 1089–1100.


