
Optimized Bounding Polyhedra For
GPU-Based Distance Transform

Ronald Peikert and Christian Sigg

Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
peikert@inf.ethz.ch, sigg@inf.ethz.ch

Many problems in areas such as computer graphics, scientific visualization,
computational geometry, or image processing require the computation of a
distance field. The distance field indicates at each point in space the shortest
distance to a given object. Depending on the problem setting, the object
is described either by a voxel attribute within a volume data set or by a
surface representation such as a triangle mesh. The two cases require separate
approaches, and only the case of the triangle mesh is studied in this paper.
Often, the distance field is needed as a regular grid of samples. The samples
can be computed either in image space or object space, referring to the outer
loop of the algorithm, which iterates over all samples or all triangles of the
mesh, respectively. Object space methods can be competitive, especially for
higher resolutions. An ideal object space method would compute a generalized
Voronoi diagram (GVD) of the mesh and then scan convert its cells. At each
sample location, the distance to the Voronoi site associated with the cell would
yield the field value. A practical method however, avoids the expensive GVD
computation and instead works with bounding polyhedra for the Voronoi cells.
In this paper, we propose a new type of bounding polyhedra. This reduces
the number of polyhedra and simplifies their geometry. The choice of these
bounding polyhedra pays off especially if scan conversion is run on graphics
hardware.

1 Introduction

For any set S of points in Rn, the distance field u is a unique scalar function
defined in Rn. At each point, u equals the distance to the closest point on S. If
S is a closed and orientable manifold of dimension n− 1, the space is divided
into inner and outer parts. Therefore, a signed distance field can be defined.
A positive sign is chosen outside the surface and a negative sign inside. Thus,
the gradient of the distance field on the surface is equivalent to the surface
normal.

2 Ronald Peikert and Christian Sigg

The type of distance metric which is chosen depends on the application.
Common choices are chessboard, chamfer and Euclidean distance [RP68]. We
will restrict ourselves to the Euclidean distance, which is probably the most
meaningful, but it is also the most expensive to compute.

The signed distance field u is the solution to the Eikonal equation |∇u| = 1
with boundary condition u|S = 0. The boundary condition shows that the
definition of S as a subset of Rn and the signed distance function are equivalent
descriptions. The manifold corresponds to the zero-set of the signed distance
function: S = {x|u(x) = 0}. Therefore, the signed distance transform converts
an explicit surface representation to an implicit one.

Signed or unsigned distance fields have many applications in computer
graphics, scientific visualization and related areas, such as implicit surface
representation [FPRJ00] [Gib98], object metamorphosis [CSL98], collision de-
tection and robotics [FPRJ00], skeletonization [BKS01] [WDK01], acceler-
ated volume raytracing [SK00], camera path planning and image registration
[Cui99]. Depending on the application, the distance field is required on a full
pixel or voxel grid or only within a band of width d around the objects.

2 Related Work

The problem of computing a 3D Euclidean distance transform exists in two
varieties, distinguished by the type of object representation. The object can
either be given as data on a voxel grid or in vector representation. The latter
is typically a triangle mesh in the case where the object is a surface. Both
problems have been studied extensively and fast methods have been developed
for both of them. It is reasonable to treat the two problems separately. If the
goal is to sample the exact distance to a triangle mesh, the problem cannot
be stated in voxel space. Likewise, there is usually no advantage to transform
the problem from voxel representation to vector representation. For triangle
meshes, time complexity must depend on the number M of surface primitives
(faces, edges, and vertices). Therefore, algorithms for the two different problem
settings cannot be directly compared.

A method [MQR03] which has been recently presented, finds the distance
transform in voxel data in O(N) time, where N is the number of voxels. In the
same paper, a good overview of earlier methods is given. Essentially, methods
fall into two categories, propagation methods and methods based on Voronoi
diagrams.

In propagation methods, the distance information is carried over to neigh-
bor voxels, either by sweeping in all grid dimensions, or by propagating a con-
tour. A well-known example of the latter is the Fast Marching Method (FMM)
[Set96], an upwind scheme which can solve the Eikonal Equation |∇u| = 1/f
in a single iteration and in O(N log N) operations. A signed distance field is
obtained by using a constant propagation function f . However, due to the
finite difference scheme, FMM is not an exact method.

Optimized Bounding Polyhedra For GPU-Based Distance Transform 3

Besides the distance, additional information can be stored in the distance
field. Such information can be the vector pointing to the nearest object point,
known as the vector distance transform [Mul92]. Alternatively, the index of the
nearest surface primitive can be attributed to each point, the resulting field is
called a complete distance field representation [HLC+01]. By propagating this
type of additional information, FMM and similar propagation methods can be
turned into exact distance transform algorithms [BMW00] [Egg98] [Tsa00].

For the second type of problem setting where the distance field of a poly-
line or triangle mesh is sought, a brute force algorithm would compute the
distance of each grid point to each primitive. If the triangle mesh consists
of a large number of triangles and the sampling grid is large, this approach
is impractical. For an efficient algorithm, one needs to reduce the number of
distances calculated per grid point or alternatively, per primitive.

To achieve this goal, a spatial data structure such as a BSP tree can
be used for storing the primitives. When computing the distance field value
for a given sample, a primitive can be excluded from the calculation if it is
known that a closer primitive exists. By using this data structure, one can
quickly find the closest primitive to a point: While the tree is scanned for
the closest primitive, one can give an upper limit of the final distance. At the
same time, a lower bound of the distance can be computed for any subtree.
If the lower bound of a subtree is larger than the current upper bound of the
final distance, the subtree can be excluded from the search. This leads to an
algorithm logarithmic in the number of primitives of the input mesh.

An alternative to such an image space approach are object space methods,
i.e. methods based on scan conversion. Here, the distance field is obtained by
scan converting a number of polyhedra related to the triangle mesh and by
conditionally overwriting the computed voxel values. The advantage of object
space methods is their sub-pixel accuracy. However, it is obvious that the
relative performance degrades if the average size of the polyhedra shrinks to
the size of a single voxel. It has been shown that for distance fields of triangle
meshes, methods based on scan conversion are competitive.

Optimally, only distances to grid points contained in the Voronoi cell of
the corresponding primitive are calculated. If the primitives are not restricted
to points, but include edges and triangles, a generalized Voronoi diagramm
(GVD) is required. Once a GVD is computed, the distance field can easily
be caluclated as the distance to the respective site. However, the computa-
tion of Voronoi diagrams is not easier than the computation of distance fields.
The time for generating a diagram with M sites is O(M log M). Generalized
Voronoi diagrams can be computed on graphics hardware [HCK+99] by ren-
dering local distance fields as n+1-dimensional function graphs and using the
z-buffer for minimization. A disadvantage of this method is that it requires
accurate rendering of curved surfaces, requiring tesselations in the order of
100 triangles for a cone. The 3D version even requires doubly curved surfaces
which strongly limits the number of primitives that can be handled.

4 Ronald Peikert and Christian Sigg

Nevertheless, if a point is known to lie outside of a Voronoi cell, the dis-
tance to its base primitive does not need to be calculated. This led to the
idea of using polyhedra bounding a Voronoi cell instead of the Voronoi cells
themselves. The first such algorithm was presented by Mauch [Mau03]. It will
be shortly explained in Section 3.3. It is possible to run the scan conversion
part of that algorithm on graphics hardware. Although the scan conversion
runs faster on the graphics hardware, the overall speed up gained is minimal
because of the large amount of geometry that has to be send to the graph-
ics card. In Section 3.4, we present an optimized type of polyhedra [SPG03]
giving significantly better performance on the graphics hardware.

3 Distance field methods for triangle meshes

For the rest of the paper, we focus our attention to the distance field compu-
tation for a triangle mesh. We shortly describe the more theoretical method
based on scan conversion of the generalized Voronoi cells. We also outline
Mauch’s method of using bounding polyhedra. In Section 3.4, we describe
how the method can be made more suited to be run on a programmable
graphics card by using an optimized type of bounding polyhedron.

3.1 Vertex classification

The vertices of a closed and oriented triangle mesh can be classified into
convex, concave and saddle vertices, depending on their incident edges. If all
of them are convex (concave), the vertex is convex (concave), if both types
occur, it is a saddle. Because convex edges become concave and vice-versa
when we flip the orientation of the surface, we only distinguish convex/concave
vertices and saddle vertices.

Besides the topological consistency, we assume also a geometric regularity
requirement for mesh: At saddle points, all incident faces must keep their
orientation when viewed from the normal direction. The normal direction in a
vertex is defined simply by averaging all incident face normals. Failure of this
assumption would indicate a poor triangulation. It can be fixed by subdividing
triangles.

3.2 Voronoi diagrams of triangle meshes

The Voronoi diagram of a finite set of points is a partitioning of space into
cells. Each site (i.e. point) is associated with a cell containing all points for
which this site is the nearest one. Points on cell boundaries have more than
one nearest site.

A straightforward extension is to allow sites to be manifolds than just
points, leading to generalized Voronoi diagrams. For our purpose, sites will

Optimized Bounding Polyhedra For GPU-Based Distance Transform 5

be restricted to the points, edges and faces of a closed and oriented triangle
mesh.

If the GVD of such a mesh was known, it would be a simple task to compute
the distance field. For a given sample point, one would first identify the cell
in which it is contained and then calculate the distance to the associated site.
If a full grid of samples is needed, one would use an object-space approach,
i.e. loop over the cells, which is known as scan conversion.

In computer graphics, scan conversion is a key operation in the rendering
pipeline and is efficiently performed by standard graphics cards. By reading
back the frame buffer data, the computing power of graphics cards becomes
available for more purposes than just rendering. In recent years, the program-
mability of graphics cards made it possible to adapt the scan conversion op-
eration. In particular, nonlinear interpolation functions can be programmed.

3.3 GVD-based bounding polyhedra

To actually compute a GVD is not only expensive, it can also produce arbi-
trarily complex polyhedra. Therefore, Mauch [Mau03] replaced the cells by
bounding volumes. As bounding volumes he used polyhedra which are possi-
bly larger but of simpler geometric shape than the cells. The distance field can
again be calculated by looping over the polyhedra. To correctly treat regions
where two or more polyhedra overlap it is sufficient to take the minimum of
all computed values.

For reasons of efficiency, only local information is used for constructing
bounding polyhedra. This requires the introduction of a maximal distance d
up to which the distance field is computed on either side of the surface. The
following types of bounding polyhedra are used, depending on the type of site

• three-sided orthogonal prism for faces (“tower” of height 2d extruded from
the triangle in both directions),

• three-sided orthogonal prism for edges (“wedge” of height d, filling the
space between towers)

• n-sided pyramid for convex/concave vertices of degree n (of height d, filling
the space left by towers and wedges, see Fig. 1).

The case of the saddle vertex is not mentioned in [Mau03]. However, a
possible solution would be to construct an n-sided pyramid in the same way
as for a convex/concave vertex, but on both sides of the surface, and then
taking the convex hull of each pyramid.

3.4 Optimized bounding polyhedra

While these bounding polyhedra work well for scan conversion done purely
in software, the large number of polyhedra is not ideal for a hardware-based
scan conversion method. The reason is that the overhead per polyhedron is

6 Ronald Peikert and Christian Sigg

Fig. 1. Polyhedra constructed on one side of a (yellow) one-ring of the mesh: (cyan)
towers, (blue) wedges, and a (red) cone. The polyhedra are moved away from the
surface for better visibility.

larger for the hardware-based method because the geometry data has to be
sent to the graphics card.

In order to reduce the number of polyhedra, our approach uses a different
type of bounding polyhedra for the faces, such that their union completely
covers space. This eliminates the need for wedges and pyramids. The price to
pay is a slightly more complicated distance field computation: Each polyhe-
dron no more represents a single site, but seven sites, namely a face, its three
boundary edges, and its three vertices. In principle, the minimum of the dis-
tances to the seven sites must be calculated. However, we showed in [SPG03]
that this can be done quite efficiently, requiring little more operations than
for a single distance calculation.

Now, in order to construct the new bounding polyhedra, we must divide
wedges and pyramids among the neighbor polyhedra. Two observations can
be made:

• Any way of splitting a wedge is allowed because the Voronoi site which it
represents is also represented by the new polyhedra.

• On the convex side of the surface, i.e. opposite the wedge, the original
towers overlap. This overlap can be eliminated by using the bisector plane
of the dihedral angle as a divider. This is exactly where the two Voronoi
cells meet.

Taking both observations into account, we can now use the angle bisector
planes as the three lateral boundaries of the new polyhedron. Adding two
planes parallel to the face at distances ±d (the limiting distance used for
the distance field computation), a three-sided pyramid frustum is obtained
(see Fig. 2). This bounding polyhedron has the advantage of having a single
topological type and only five faces, all of them planar.

While the bounding polyhedra match along the edges of the mesh, this is
not true near the mesh vertices in general. Near mesh vertices, the polyhedra

Optimized Bounding Polyhedra For GPU-Based Distance Transform 7

Fig. 2. Optimized bounding polyhedra for a one-ring of the mesh. The polyhedra
extend to the other side of the surface, too, which is not shown in this figure. Some
non-adajacent pairs of polyhedra are seen to overlap.

can overlap. This is not a problem, it just leads to repeated distance calcula-
tions. But the polyhedra can also leave a gap. An example is shown in Fig.
3. In such cases, the gap must be closed by making some of the polyhedra
slightly larger. We show in the appendix, that gaps can occur only for saddle
vertices.

Fig. 3. Example of a saddle vertex with eight incident triangles. Bounding polyhedra
are outlined (left) and filled (right). A gap in the shape of an eight-sided double-
pyramid is visible in the center.

In order to study the situation near a mesh vertex, we introduce a few no-
tations, see Fig. 4. Let c denote the vertex, x0, · · · , xn−1 its neighbor vertices,
Fi =< c, xi, xi+1 > the incident faces (all indices are meant modulo n), and
Pi the polyhedron constructed for the face Fi. That means that Pi−1 and Pi

are separated by the angle bisector plane of Fi−1 and Fi which we denote by
Ai. We denote by F the union of the Fi and by P the union of the Pi (for
i = 0, · · · , n− 1).

If P completely covers a neighborhood of c, this means that any test point
y near c is contained in at least one of the Pi. The point y is contained in Pi if

8 Ronald Peikert and Christian Sigg

Fig. 4. A vertex c with neighbor vertices xi, faces Fi, angle bisector planes Ai, and
polyhedra Pi.

it lies on the right hand side of Ai and on the left hand side of Ai+1. We also
observe that in the reverse case (i.e. left of Ai and right of Ai+1), the antipodal
point 2c−y is contained in Pi. Because in the cycle A0, A1, · · · , An = A0 there
are as many left-right transitions as right left transition, it follows, perhaps
surprisingly, that the covering is point-symmetric w.r.t. the center c. The
point symmetry holds for the multiplicity of the covering, not for each single
polyhedron.

Therefore, if we can verify, that y lies neither on the left hand side of all
Ai nor on the right hand side of all Ai, it follows that both y and its antipodal
point are covered by P . For the practical test, it is sufficient to use one point
on each intersection line Ai ∩Ai+1. Each test point must lie on the left of at
least one Aj with j 6= i and on the right of at least one such. Points lying
exactly on a plane should pass the test, too. Also, it has to be noted that
full planes can be used for the test, thus there is no need to bother with
half-planes.

If the test fails for some of the test points, this means that the correspond-
ing polyhedra must be made larger to avoid a gap. A possible way to do this
is to take the centroid of the test points. Polyhedra must be enlarged just as
much that they contain this centroid and its antipodal point. We want the
polyhedra to remain pyramid frusta, therefore we restrict the modifications
to parallel shifts of edges.

4 Results

In Section 4.1, the amount of vertices where the bounding polyhedra leave
holes is analysed. In Section 4.2, the performance results of out algorithm are
presented.

4.1 Saddle vertices and gaps

By looking at a few typical triangle meshes, it can be noticed that there are
often more saddle vertices than convex/concave vertices. This can be caused

Optimized Bounding Polyhedra For GPU-Based Distance Transform 9

by the geometry itself, but also by the triangulation. Especially, if a quadri-
lateral mesh is subdivided to atriangle mesh, the diagonals can turn a convex
vertex into a saddle vertex. This is why the torus mesh has more than the
expected 50 % of saddle vertices.

Fig. 5. Datasets used for experiment.

As mentioned, saddle vertices can lead to gaps between the bounding poly-
hedra and the extra effort to fill them. However, our experiment showed that
gaps occur only for some of the saddle vertices. Depending on the mesh char-
acteristics, the percentage of saddle vertices leading to gaps can be quite small
(see Table 1).

Table 1. Number of vertices, saddle vertices and vertices with incomplete covering
by the unmodified bounding polyhedra.

mesh vertices saddles gaps

sphere6 16386 0 0
torus 3000 1788 0
knot 1440 1378 674
seashell 915 843 148
bunny 34834 30561 516

4.2 Performance of the hardware-based distance transform

The way to make use of the GPU’s computing power is to work on layers
of sample locations. Each layer defines a slicing plane which is intersected
with the bounding polyhedra. A list of active edges is used to avoid empty
intersections. The resulting slices are sent to the GPU for scan conversion,
where a fragment program is used to compute the local distance field. The
local distance field is the distance field of only the seven sites (one triangle,
three edges, three vertices) associated with the bounding polyhedron. The
final distance field is obtained at each fragment by taking the minimum of the
computed local distance field values. An outline of the fragment program can
be found in [SPG03].

10 Ronald Peikert and Christian Sigg

Fig. 6. Slices of the distance fields of bunny and knot data set, computed by the
HW-based algorithm.

As a basis for comparison of performance, we used the software scan con-
version algorithm, which we downloaded from the URL [Mau00]. We then
re-implemented this algorithm such that the scanconversion part was done on
the GPU. The machine at our disposition was a 2.4 GHz Pentium 4 equipped
with 2 GB of RAM and an ATI Radeon 9700 PRO graphics card. It turned
out only a negligible speedup could be obtained by this hardware-based pro-
gram. In addition, the range of parameters (resolution, width of computational
band) where a speedup could be measured, was rather narrow. This perfor-
mance problem could be tracked down to the overhead caused by rendering
too many small polygons.

When using our optimized bounding polyhedra, the speedup delivered on
the same machine was significant for a wide range of resolutions and widths.
When choosing a band of 10 % of the model extent and a resolution of 2563

samples, we measured an average speedup close to 5 for the sphere6, knot and
bunny models. For higher resolution as well as for wider bands, the speedup
improved. But also for extremely low sample grid resolutions, the hardware-
assisted program performed well. For instance, in the case of a mesh with
131072 triangles of average area less then 2 on the voxel scale, we measured a
speedup of 3.30. However, it is obvious that the the scan conversion approach,
with or without hardware support, is no more an efficient strategy if sampling
density is further decreased. For such problems, an image space method com-
bined with a spatial data hierarchy would obviously be more adequate.

The advantage of the scan conversion approach also degrades when the
narrow band is large in comparison to the volume the surface encloses. Because
the bounding polyhedra for one triangle is computed using its neighboring
triangles only, the bounding volumes tend to overlap on the convex side of
the surface. The amount of overlap grows superlinearly with the thickness
of the narrow band. In order to compute the distance transform in a dense
volume around the surface, the fastest solution would be a combination the
CSC and the FMM approach. While the CSC algorithm is faster in computing
the distance in the narrow band, the FMM algorithm can then be used to
compute the distance in regions further away from the surface.

Optimized Bounding Polyhedra For GPU-Based Distance Transform 11

5 Conclusion

We have shown that today’s graphics hardware is suitable for supporting the
signed distance field computation. A GPU implementation has a larger over-
head per polyhedron while sampling the distance field using scan conversion
is faster. By reducing the amount of polyhedra to approximatley one third, we
were able to get a significant speed up in comparison to the CPU implementa-
tion. It was proven that the polyhedra cover the area around triangles, edges
and convex or concave vertices up to a user definable distance. However, the
polyhedra can leave a hole in special configurations at saddle vertices. These
holes are filled by shifting the sides of the polyhedra outward until they cover
the normal of the saddle vertex. This procedure increases the amount of over-
lap and therefore introduces a certain overhead. But it was shown that gaps
don’t appear very often for common meshes. For an implementation using
graphics hardware, the speed up gained by the reduced amount of geometry
outweighs the extra cost of additional distance samples.

Acknowledgment

This work was partially funded by Schlumberger Cambridge Research.

References

[BKS01] Ingmar Bitter, Arie E. Kaufman, and Mie Sato. Penalized-distance vol-
umetric skeleton algorithm. IEEE Transactions on Visualization and
Computer Graphics, 7(3):195–206, 2001.

[BMW00] D. Breen, S. Mauch, and R. Whitaker. 3D scan conversion of csg mod-
els into distance, closest-point and colour volumes. In M. Chen, A.E.
Kaufman, and R. Yagel, editors, Volume Graphics, pages 135–158, 2000.

[CSL98] Daniel Cohen-Or, Amira Solomovici, and Levin Levin. Three-dimensional
distance field metamorphosis. ACM Transactions on Graphics, 17(2):116–
141, April 1998. ISSN 0730-0301.

[Cui99] Olivier Cuisenaire. Distance Transformations: Fast Algorithms and Ap-
plications to Medical Image Processing. PhD thesis, Université Catholique
de Louvain, Louvain-La-Neuve, Belgium, January 1999.

[Egg98] Hinnik Eggers. Two fast Euclidean distance transformations in Z2 based
on sufficient propagation. Computer Vision and Image Understanding:
CVIU, 69(1):106–116, January 1998.

[FPRJ00] Sarah F. Frisken, Ronald N. Perry, Alyn Rockwood, and Thouis R. Jones.
Adaptively sampled distance fields: A general representation of shape for
computer graphics. In Kurt Akeley, editor, Siggraph 2000 Proceedings,
pages 249–254. ACM SIGGRAPH, 2000.

[Gib98] Sarah F. F. Gibson. Using distance maps for accurate surface reconstruc-
tion in sampled volumes. In Proceedings of the 1998 Symposium on Vol-
ume Visualization (VOLVIS-98), pages 23–30, New York, October 19–20
1998. ACM Press.

12 Ronald Peikert and Christian Sigg

[HCK+99] Kenneth Hoff, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha.
Fast computation of generalized voronoi diagrams using graphics hard-
ware. In Alyn Rockwood, editor, Siggraph 99 Proceedings, pages 277–286,
N.Y., August8–13 1999. ACM SIGGRAPH.

[HLC+01] Jian Huang, Yan Li, Roger Crawfis, S.C. Lu, and Shu Liou. A complete
distance field representation. In Thomas Ertl, Ken Joy, and Amitabh
Varshney, editors, Proceedings Visualization 2001, pages 247–254. IEEE
Computer Society Technical Committee on Visualization and Graphics
Executive Committee, 2001.

[Mau00] Sean Mauch. A fast algorithm for computing the closest point and dis-
tance transform, 2000.
http://www.acm.caltech.edu/∼seanm/projects/cpt/cpt.html.

[Mau03] Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi
Equations. PhD thesis, Caltech, Pasadena CA, April 2003.

[MQR03] Calvin R. Maurer, Jr., Rensheng Qi, and Vijay Raghavan. A linear time
algorithm for computing exact euclidean distance transforms of binary
images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell.,
25(2):265–270, 2003.

[Mul92] James C. Mullikin. The vector distance transform in two and three di-
mensions. Computer Vision, Graphics, and Image Processing. Graphical
Models and Image Processing, 54(6):526–535, November 1992.

[RP68] A. Rosenfeld and J. L. Pfalz. Distance functions on digital pictures.
Pattern Recognition, 1:33–61, 1968.

[Set96] J. A. Sethian. A fast marching level set method for monotonically ad-
vancing fronts. Proc. Nat. Acad. Sci., 94:1591–1595, 1996.

[SK00] M. Sramek and A. Kaufman. Fast ray-tracing of rectilinear volume data
using distance transforms. In Hans Hagen, editor, IEEE Transactions
on Visualization and Computer Graphics, volume 6 (3), pages 236–252.
IEEE Computer Society, 2000.

[SPG03] Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance trans-
form using graphics hardware. In R. Moorhead, G. Turk, and J. van Wijk,
editors, Proceedings of IEEE Visualization ’03, pages 83–90. IEEE Com-
puter Society Press, October 2003.

[Tsa00] Yen-hsi Richard Tsai. Rapid and accurate computation of the distance
function using grids. Technical report, Dept. of Mathematics, University
of California, Los Angeles, 2000.

[WDK01] Ming Wan, Frank Dachille, and Arie Kaufman. Distance-field based skele-
tons for virtual navigation. In Thomas Ertl, Ken Joy, and Amitabh
Varshney, editors, Proceedings of the Conference on Visualization 2001
(VIS-01), pages 239–246, Piscataway, NJ, October 21–26 2001. IEEE
Computer Society.

Optimized Bounding Polyhedra For GPU-Based Distance Transform 13

Appendix: Proof for complete covering around
convex/concave vertices

Let c be a convex/concave vertex of a closed and oriented triangle mesh. Using
the notation of Section 3.4, we want to show that a small neighborhood of c
is completely covered by the union P of polyhedra. This can be seen best by
taking intersections with a small sphere S centered at c (see Fig. 7). We use
the overbar symbol to denote the intersection with S. It follows that F̄i are
great circles, and their union F̄ is a convex spherical polygon. Also the Āi

are great circles, which can be oriented consistently towards the interior of F̄ .
Finally, P̄i are spherical lunes, because we can assume that the diameter of S
is smaller than all edges.

Fig. 7. Intersections of faces and angle bisector planes with the sphere.

The conjecture is now that S is completely covered by P̄ , the union of the
lunes. By the argument given in Section 3.4, it is sufficient to show that the
northern hemisphere is covered.

Let y be a test point on S and on the convex side of the surface, i.e. an
interior point of F̄ . We choose coordinates in such a way that y is the north
pole of the sphere. By connecting the vertices of the spherical polygon with
the north pole, we get n spherical triangles which add up to a full 2π angle
at the north pole. For the i-th triangle, let γi be the angle at the north pole,
and αi and βi the angles to the meridians (see Fig. 8).

Let us now assume that the north pole lies on the left of all Āi which can
be expressed as

αi+1 > βi (1)

Convexity implies that

14 Ronald Peikert and Christian Sigg

Fig. 8. Spherical triangles above mesh triangles.

αi+1 + βi ≤ π (2)

From Eq. 1, Eq. 2 and 0 < αi+1, βi < π follows that

0 <
sin βi

sin αi+1
< 1 (3)

Taking the product yields

n−1∏

i=0

sin βi

sin αi
=

n−1∏

i=0

sin βi+1

sin αi
< 1 (4)

On the other hand, we can derive

n−1∏

i=0

sin βi

sin αi
=

n−1∏

i=0

sin bi

sin ai
=

n−1∏

i=0

sin bi

sin bi+1
= 1 (5)

making use of the spherical law of sines, the fact that ai = bi+1 because
triangles fit together, and finally bn = b0.

From this contradiction follows that the test point is covered by P̄ , and so
the interior of the spherical polygon F̄ .

Because of convexity, it is possible to choose an interior point of F̄ as the
north pole such that all of F̄ lies in the northern hemisphere. It remains to
show that P̄ not only covers F̄ but the whole hemisphere. Any spherical lune
must have one of its end points below the equator, and because of convexity,
this is the one on the concave side. But this means that along the equator,
the sequence of lunes P̄0, · · · , ¯Pn−1, P̄0 can’t have any gaps, and therefore the
hemisphere is completely covered, which was the conjecture.

