
Generation and Fracturing of Thick Shells

Denis Steinemann∗

Computer Graphics Laboratory
ETH Zurich
Switzerland

Abstract

In this paper we present methods to generate and animate
shells with a pre-defined thickness. Given a polygonal sur-
face mesh, a thick shell is constructed by computing a sec-
ond, extruded polygonal surface. We introduce methods to
simulate deformation and fracture of thick shells in real-
time. Mass-spring models are used in this context. A
novel simulation framework to generate, animate and in-
teract with shells in real-time has been created. The en-
tire pipeline of shell animation may be handled, starting at
the generation of shell, continuing on to deformation and
fracture and ending with rigid body simulation of fractured
shell fragments.

Keywords: Animation, Computer Graphics, Shells, Frac-
ture, Physically-Based Modelling

1 Introduction

For the last decade, real-time computer graphics has been a
very rapidly growing and active research field. With ever-
increasing clock rates and more powerful graphics hard-
ware, more and more realistic applications such as com-
puter games and medical-, car- and flight simulators have
become possible. The gaming industry, has become a
larger market than the movie industry, indicating a huge
demand for realistic and real-time 3D-graphics animations
now and in the years to come. In early approaches, prede-
fined animations were used to avoid time consuming com-
putations that made it impossible to simulate in real-time.
However, this is not enough, since realism not only de-
pends on how things look but also how they act and how
a user can interact with them. An important aspect is the
physically plausible behavior of objects. This behavior is
different for different types of materials and objects, which
physically-based simulation must take into account. Real-
time simulation of physically correct environments is still
only in its early stages. Fields such as real-time rigid body
physics and deformable objects have been extensively in-
vestigated in the last few years. Fracture and plastic defor-
mation can be simulated in real-time using finite elements
(FEM) . However, these methods become slow when an-
imating stiff and brittle materials such as metal or stone,
which are very common in virtual environments such as
computer games.

∗deniss@inf.ethz.ch

Objects in existing computer graphics applications such
as simulators and games are usually represented by polyg-
onal surfaces. However, physically-based simulations of
deformation and fracture effects require volumetric repre-
sentations such as tetrahedral meshes of the whole volume.
Therefore, it is necessary to create a volumetric represen-
tation from a polygonal surface first [8]. However, in many
applications objects such as cars, airplanes, bottles, etc. are
actually hollow and therefore it is not efficient in terms of
memory and time to simulate physics over the whole 3-D
volume. A 2.5-D shell representation is enough.

1.1 Our contribution

We present a new iterative method to construct shells with
a user-defined thickness, given a polygonal surface mesh.
We then deform and fracture these shells using a fast and
real-time approach based on a mass-spring-model. Finally,
small fractured shell fragments are simulated as rigid bod-
ies. We have implemented a framework to handle the entire
pipeline of shell animation, consisting of generation, de-
formation, fracture and rigid body simulation. Our method
features realistically looking results for brittle as well as
ductile fracture of different types of materials.

2 Related Work

Shells have been analyzed using finite element methods
[7, 10, 2] and membrane&flexural energies [13, 6]. [3]
investigates how a triangle mesh can be simplified using
so-called enveloping surfaces as error boundaries. An in-
ner and an outer surface some user-defined distanceε from
the original surface are constructed. Mesh simplification
will then guarantee that the new surface lies between these
two enveloping surfaces. We can use this approach by tak-
ing ε as the desired depth of our shell and using only one
such surface, the inner one. In this paper, two algorithms
to compute such surfaces are introduced, one of numerical
and the other of more analytical nature. One of our meth-
ods is based on the first one. [1] uses the term ”fat surface”
in connection with shells. They are constructed by the con-
tours of trivariate function defined on prism scaffolds, for
which two matched triangulation surfaces are needed. We
will show methods how to obtain the second surface. In
order to compute this second surface, collisions between
polygonal surfaces must be detected. This problem is well

known in cloth-simulation [16] or in rigid-body dynamics
[11].

Extensive research has been done in the field of frac-
turing. Müller [7] uses a static finite-element approach
where an object is subdivided into volume elements called
wedges. Strain and stress tensors can be computed from the
deformation of these wedges, and when they become larger
than some threshold, the object is fractured. O’Brien [10]
uses an explicit dynamic FEM approach. This approach
features extremely realistic results by simulating correctly
the exact physics of a material. Unfortunately, it is compu-
tationally also very expensive and therefore not practical
for our uses. Eberle et al. [4] present a procedural ap-
proach to modelling impact damage. They use very simple
fracturing criteria, which makes the method very fast but
also seems limited to a few cases. Deformation and frac-
ture is only computed in some local region, and is based on
lengths and strengths of edges in a triangle mesh. This ap-
proach seemed promising to us in the sense of being easy
and fast. It is not physically correct, however. Rigid body
dynamics have also been extensively investigated. There
exist software development kits to simulate rigid bodies.

3 Shell Generation

3.1 Overview

Our goal is to create a shell with a user-defined thickness
from a given triangle mesh surface. Our definition of a
shell is a polygonal surfaceS, consisting of vertices and
edges, which encloses a second, inner surfaceS′. S′ does
not intersectS nor itself, and is some distanceε from the
original surface. Each vertex contains information about
the thickness of the shell at that position (vertex depthd).
In [1, 3] a shell is generated by starting at a vertexv, mov-
ing in the opposite direction of the vertex normal and after
some distance creating another vertexv′, resulting in a pair
(v, v′) which is called a shell vertex. When this is done for
every vertex, a new inner surfaceS′ is created.S′ has the
same topology as the original surface mesh. A shell ele-
ment is a ”thick triangle” consisting of three shell vertices
connected by 3 pairs of edges. The two trianglest andt′

are part ofS andS′, respectively. When we refer to an
edgee, we usually mean a side of a shell element.

If the thickness is small enough, the described method
works fine. A problem arises when the original object is
too thin in some places so thatS′ intersects with itself or
even withS. See 1(c). Intersections are visually unappeal-
ing and will cause problems later when computing colli-
sion responses. In such a case, corresponding shell ver-
tices cannot have the desired shell thickness and must be
shortened to avoid any intersections. On the other hand,
the shell should still have maximum possible thickness in
these places. Simply setting the vertex depth to zero for
these vertices is not a good solution, because one would
create degenerate shell elements.

A degenerate shell element has a shell vertex with depth
d = 0 and/or vertex normals that point in akward direc-

tions, such that the two trianglest andt′ of the element in-
tersect. If vertex normals are not consistently oriented out-
ward in the original surface mesh, it is impossible to make
the depth of vertexv anything other than zero, because oth-
erwiset andt′ of the corresponding shell element(s) will
intersect, which should be avoided in any case. Unevenly
distributed shell thickness will influence the stability of the
shell later when doing deformation and fracturing. Degen-
erate elements should be avoided if possible for later sim-
ulation of deformation or fracture.

3.2 Shell Generation Algorithms

We have implemented two algorithms that are based on the
approach that we have described above. They are both of
iterative nature in the sense that they try to build a shell in
small steps, starting with low vertex depths and then grow-
ing it towards the desired thickness. When the step size per
iteration is small enough, both algorithms produce a shell
in a consistent state.

3.2.1 Requirements

There are several requirements that a shell construction al-
gorithm working on a well-defined surface should fulfill.
A well-definedtriangle mesh surface in our context has no
self intersections, is non-manifold, and has well defined
vertex and triangle normals pointing outward (i.e. in con-
sistent direction). It may have holes (it does not have to
be a closed surface). Thus, a shell construction algorithm
should

• guarantee that for a well-defined surfaceS, an ex-
truded surfaceS′ is created so that no degenerate
shell elements are created. Then the shell is in a
consistentstate.

• maximize average shell thickness. It is undesirable
to have a shell with maximal thickness in some
places and a thickness close to zero in others.
If possible, thickness should be distributed more
evenly, so that we get as similar shell elements as
possible.

A shell generation algorithm must do collision detection
for the shell to be in a consistent state at all times during
the algorithm. A good collision detection approach such
as spatial hashing [15] is crucial in terms of computation
time.

3.2.2 Single Vertex Propagation

The first algorithm is based on a numerical algorithm from
[3]. Here, all shell vertices have some initial step sizeεi,
some fraction of the desired shell thicknessε. Initially,
v′i = vi for all vertices (and thereforet = t′ for all shell
elements). One single vertexv′i per step is extruded by its
step size along its opposite normal to create a new vertex
v′i. Then, all trianglest′ of the shell elements that contain
(vi, v

′
i) are tested for collision with the trianglest and t′

of shell elements in some local neighborhood. If there is

no collision, the move is accepted and the algorithm moves
on to the next vertexv′i+1. If there is a collision, however,
the newv′i would put the shell into an inconsistent state.
Therefore, the new vertex cannot be accepted and we must
go back to the last position ofv′i and try to move it again
with a smaller step size. In our implementation, the new
εi is set to half the old step size. Once again, all elements
containing (vi, v

′
i) are tested for collision with neighboring

shell elements. If no collisions are detected, the move is
committed, otherwise we must half the step size once more
and try again until the new shell is in a consistent state. If
εi becomes smaller than someεmin, we know thatv′i is
already very close to another part of the shell, so we stop
trying to move it further. Then we can move on tov′i+1.
This is continued until each vertex has movedk steps (k a
user-defined value) or its step size has become too small.

3.2.3 Front Propagation

The main drawback of the single-vertex propagation algo-
rithm is the high number of collision detections that must
be made. Since most of the time is used by collision detec-
tion, we have worked out and implemented a second algo-
rithm that constructs a consistent shell while doing much
less collision detection. Instead of moving only one vertex
at a time, all vertices (or in other words, the wholeshell
front) at once are extruded by theirεi. Then all shell ele-
ments are tested for collision against each other. Two shell
elementse1 ande2 intersect, if one ofe1’s trianglest1 or
t′1 intersectst2 or t′2. If there is a collision, all six extruded
verticesv′ of the two elements are set back to their last po-
sition and their step sizes are halved. Unlike in the single-
vertex propagation algorithm we do not try to move these
vertices again right away. In the next step, all verticesv′

are once again moved by theirεi. See Figure 1 for a graph-
ical explanation of the algorithm. As in the single-vertex
propagation algorithm, one possibility is to set the initial
step sizes toεi = ε/k. The main advantage of the front
propagation algorithm is that it does less collision detec-
tion and is therefore faster. Per iteration over the whole
shell, each shell element is tested exactly once against other
shell elements. For single-vertex propagation, this is done
three times for each shell element, once for each of its ver-
tices. Per rejected move, all adjacent shell elements must
be tested additionally.

However, the front propagation algorithm will more
likely miss collisions, because whole fronts may overlap
in one iteration. Thus, step sizes must be smaller, and so
the speed gained by this new approach is partially lost.

3.2.4 Step sizes

We have done some simple improvements to speed up shell
computation and enhance shell quality. In single-vertex
propagation, time performance strongly depends on the
number of times a vertex move is rejected, which is a di-
rect consequence of a step size which is too large. For
front propagation, correctness depends on the step size -
if it is too large, the algorithm may not detect overlapping

shell elements. It is therefore a good idea to pre-compute
the initial step sizes for each vertex instead of using the
same step sizeεi = ε/k throughout the shell. To do this,
we define a line segmentsi, starting at original vertexvi

and pointing in the opposite direction of the vertex normal
(i.e. the direction of vertex extrusion). The length ofsi

is di = 2ε. Using a regular grid or spatial hashing [15]
data structure, we compute collision points ofsi with the
trianglest = t′ of neighboring shell elements. If there are
collisions, letc0 be the closest collision point fromvi with
an elemente0 anddi = ‖c0 − vi‖. Dividing di by 2 will
then be the maximum extrusion distance for vertexvi. This
way, the elemente0 will have a chance to extrude its ver-
tices also as far as possible, thus evenly distributing shell
thickness. Step size is then simplydi/2k. If there are no
collisions, step size is2ε/2k = ε/k, which is what we had
without initial step size computation and which will give
maximum extrusionε. When initially computing the step
sizes, we can avoid most collisions during the propagation
algorithms.

Instead of reducing step sizes, a different approach could
be to use a continuous collision detection scheme [11].
This would allow us to use larger step sizes without de-
creasing them according to the surface geometry. In addi-
tion, problems in the front propagation algorithm, where
whole fronts overlap at once and thus no collision is de-
tected, could be better avoided with this approach.

4 Deformation and Fracture

In a first part, we will describe our physical model to simu-
late deformation and fracture of a thick shell. In the second
part, we will illustrate the different types of fracture that
can be simulated with this model.

4.1 Physical Model

We have chosen mass-spring systems as our physical
model to animate a thick shell. The reason for this choice
is its simplicity: mass-spring models are both easy to im-
plement and implicitly feature an easy fracture criterion:
spring length. In a shellS, the shell verticesvi andv′i serve
as points, while the edgesei of the shell elements represent
the springs.

For a mass-spring-model to be stable, however, having
springs just on the object surface is not enough. There
must be springs throughout the whole volume of the ob-
ject. Since we basically use mass-spring models only to
have some fracturing criteria, it is not a problem to use
only one or two layers of springs on the object surface.
If we used springs that span the whole volume, we would
once again be simulating physics over the whole object,
which is unappropriate when the object is hollow and does
not have a volume. If the mass-spring dynamics cause a
spring to become too long or too short (compared to some
threshold percentages of the initial length), the shell sur-
face mesh must be fractured. No stress or strain tensors
must be computed. The spring lengths are implicitly given

(a) A collision is detected between elements
e1, e2 ande3.

(b) All verticesv′ of these elements are moved
back to their last position and their step sizes
are halved.

(c) In the next iteration, the whole front is
moved again with the newε, creating a con-
sistent shell without intersections.

Figure 1: Graphical explanation of the front propagation algorithm.

by the dynamics. We have implemented two approaches
on how to use the mass-spring model.

One possibility is to use just one layer of springs on
the surface. The advantage of this approach is its speed,
and it is enough to simulate brittle fracture. However, it
is not suitable to simulate deformation, because there are
no springs or other extrinsic energy terms [6] that take sur-
face bending into account. In addition, shell thickness is
not considered at all in the physics. It is only needed for
rendering.

For these reasons, it is necessary to use two layers of
springs, one on surfaceS of the shell and one on the in-
ner surfaceS′, which are then connected to each other by
additional springs (internal springs). See Figure 2. This
approach is slower, because more springs must be simu-
lated. However, in addition to distance-preserving forces,
we can use surface area and volume preserving forces [14]
to make our model more stable. Although surface area and
volume preservation work well and are an important part of
shell dynamics, they have one drawback: if a shell element
(and thus the three tetrahedra it can be subdivided into)
are too thin, volume preservation will not work. Having

Figure 2: A two-layer Mass-Spring-Model must have
cross-springs and internal springs to increase the stability.

shell elements of some minimal thickness is an unaccept-
able constraint, because our goal is to simulate stable shells
independent of thickness. For best results, the length of an
internal spring betweenv andv′ of a shell vertex should
have approximately the same length as the adjacent springs
of the vertex. Such a shell element is thick enough for vol-
ume and area preserving forces to have the desired effects.
We introduce a so-calledextrusion length factorf . It al-
lows the user to make the thickness of a shell vertexf times
as large as the original vertex depth. The two-layer mass-
spring model is based on these new vertex depths. This will
be used behind the scenes just for computation of the dy-

Figure 3: A thin shell is more easily fractured than a thick
shell.

namics, it is not rendered, so that user sees the same shell
with the same thickness as before, the only difference be-
ing a shell that is more stable.

It is desirable to have some kind of relationship between
shell strength and shell thickness. A thick shell should
be harder to fracture than a thin shell. One possibility to
model this behavior is to use the spring constantsk by
makingk proportional to the vertex depths. The thicker
a shell is, the stiffer all the springs are. In order to cause a
fracture, the length of a springs on the shell surface must
exceed some threshold. The same forceF will move a ver-
tex connected to softer springs more than a vertex attached
to stiff springs, increasing the probability that the fracture
threshold is exceeded. In Figure 3, a massive object has
been thrown at a wall. The thin wall breaks more easily
than the thick one.

4.2 Fracturing

4.2.1 Mesh Operations

The basic fracture criterion in our model is spring length.
When the length of a spring on surfaceS exceeds a thresh-
old, a crack is initiated by splitting one of the spring’s end-
pointsv or v2. A crack propagates by repeated use of an
elementary operation calledvertex split[7].

There are two ways to choose this vertex, either select it
randomly or depending on so-called crack tips [7]. Crack

tips state if a vertex is at the end of an existing crack or not.
Vertices with a crack tip are preferably chosen to increase
the probability that an existing crack is extended and not a
new, small crack is created. This models realistic behavior
where the material near a crack is weaker. In our model,
the physics itself does not always guarantee this behavior.
If both or none of the endpoints have crack tips, the point
to be split must be chosen randomly.

Let us assume that vertexv has been chosen. Asplitting
planeE is defined.E contains vertexv and its normal is
the vector(v2 − v)/||v2 − v||. Now, dividev’s adjacent
shell elements into two disjoint setsE+ andE−. All el-
ements inE+ get the new vertex. Thus, when the vertex
split operation is finished, springs will return to its initial
length, which creates a gap or a small crack in the shell.

Since we do not create new shell elements, it is neces-
sary that the initial triangle mesh has some minimal resolu-
tion. If this is not the case in some parts (often this happens
in planar regions), large edges are subdivided and new tri-
angles are created in a preprocessing step [8].

4.2.2 Fracture Types

We simulate three types of fracture by controlling crack
propagation and vertex splits.

Fine-grainedfracture produces many small fragments.
Modelling this behavior is quite easy, because unless the
simulation time step is made very small, a mass-spring
model is quite inert with respect to movements of shell
vertices. Springs can be stretched strongly before forces
take effect and bring the model back to its original shape.
It is thus not just a few springs whose lengths exceed the
threshold, it is actually most springs in some region of im-
pact. Simply passing over all springs with no constraints
will result in many vertex splits and thus many small shell
fragments. See Figure 4 for an example of fine-grained
fracture. Incoarse-grainedfracture, larger fragments are
created by artificially keeping vertices together. The idea
is to have a flag for each spring which determines if it can
initiate a crack. The flag is set to true by default. When a
vertexv is split, all its adjacent springs have their flag set to
false. The same is done for the adjacent springs of all adja-
cent vertices ofv, except the ones at the ends of the crack,
which get crack tips. Again, leaving vertices at the end
of the cracks separable forces longer cracks to appear and
tends to suppress the creation of small and short cracks.

With fine-grained and coarse-grained fracture as de-
scribed above, it is not possible to simulatelarge-fragment
fracture. Large-fragment fracture is characterized by a
shell being broken into a few large pieces. This is often the
case in reality. For example, a vase or glass usually do not
break apart into many small pieces when they fall down on
the ground. Rather, a few large shards together with some
smaller ones are created. This is because for hard materi-
als such as porcellan or glass, once a crack has turned up,
it propagates extremely quickly through the whole object
or at least some part of it. The reason for this is that in
the region of a crack, the material has weakened and so

the probability that it breaks again is higher in regions of
cracks than in other places. Because of the inert nature of
mass spring models (and FEM models as well), it is not
possible to simulate this kind of crack propagation. It is
therefore necessary to artificially extend cracks along the
splitting plane. Another possibility is to control crack fre-
quency, i.e. limit the number of vertices that can be split
in one time step. As a nice side effect, a small crack fre-
quency will also speed up the simulation, since there are
less new vertices or springs that pose an additional compu-
tational burden.

4.2.3 Crack Handling

For large-fragment fracture, cracks are artificially extended
along the splitting planeE for some user-defined distance
r, independent of any fracture criteria that must be satis-
fied. This way, long cracks and thus larger shards are cre-
ated. Our implementation is based on [7].

The smoothness of cracks artificially extended depends
strongly on the tessellation of the original shell mesh. Of-
ten, cracks look very jagged, which may be a desired ef-
fect, but often the tessellation of the shell has some pattern,
making this jaggedness look regular and therefore unreal-
istic. To create smoother cracks, we have implemented a
method that locally subdivides shell elements. The idea
to this approach is from [10]. We insert new vertices and
split shell elements that are cut by the splitting plane into
two new elements before actually splitting the vertex. The
crack near this vertex is then a straight instead of a jagged
line. In addition, when propagating a crack along the split-
ting plane, the direction of the plane can be altered slightly
at each new vertex to create bumpy, but not jagged cracks.
Refer to Figure 5. The implementation of this local re-
meshing scheme is quite tedious, because the local neigh-
borhoods must be kept consistent at all times. Nonetheless,
it greatly improves the appearance of fracture. The pro-
cedure may create many very slim new elements, which
slows down the simulation and may cause problems with
volume preservation. Therefore, shell elements are only
split if the new elements are well-shaped enough. With a
reasonable threshold, local re-meshing is still quite fast and
features realistic results.

Figure 5: Local Re-Meshing: Instead of splitting shell el-
ements along existing edges, new vertices and edges are
created, forming straighter cracks.

4.2.4 Brittle vs. Ductile Fracture

Brittle fracture is characterized by stiff materials breaking
up into inelastic parts. An example would be throwing a

Figure 4: An example of fine-grained fracture.

massive object at a brick wall, causing it to collapse. See
the images in the previous sections. These were all created
using brittle fracture. Mass-spring-models are well suited
to simulate deformation and fracture of objects. Some ma-
terials, however, are not really deformed at all because they
are very inelastic and stiff. For such a material, porcellan
for example, the deformation of the shell is an unwanted
feature. We therefore render only the movement of shell
fragments (which are treated as rigid bodies). The dynam-
ics of the mass-spring model must be computed for the
fracturing process. However, this deformation is only sim-
ulated behind the scenes and is not rendered. Even though
this is a simple approach, it yields very good results.

To simulate ductile fracture [9], shell vertices are di-
rectly matched to the dynamics of the mass-spring model.
However, this requires a stable mass-spring model. It must
therefore be noted that for the above reasons and because
we do not model plasticity, we get much better results do-
ing only brittle fracture. See Figure 6 for an example of
ductile fracture.

Figure 6: Ductile fracture: a piece of soft material is frac-
tured.

4.3 Rigid Bodies

For a fracturing simulation to be complete, one proba-
bly cannot omit the concept of rigid bodies. To achieve
most realistic results, new fragments should be treated as
rigid bodies. There exist robust software development kits

which handle rigid body movement as well as collision de-
tection between the bodies, making it relatively little work
to implement this feature. We use the commercial rigid
body engine by NovodeX AG.

To detect new fragments, connectivity components in
the shell must be computed first. This can be done in linear
timeO(n), wheren is the number of shell elements. In or-
der to speed up the rigid body simulation, we approximate
shell fragments by object-oriented bounding boxes (OBB).
Positions of fragment vertices are updated according to the
OBBs local coordinate system. To compute a fragment’s
minimal OBB, we use Principal Component Analysis [5],
because it features satisfactory results and is easy to imple-
ment.

Initial values such as mass, linear velocity, angular ve-
locity and the inertia tensor of a rigid body can be com-
puted from the shell vertices contained by the body.

5 Results

5.1 Shell Generation

We have developed a new iterative algorithm to generate
a thick shell from a triangle mesh surface. Single-vertex
propagation produces consistent shells with only a few iter-
ations. Our faster front propagation algorithm yields good
results, although one must use more iterations. When step
sizes are initially pre-computed, however, the quality of
the generated shells is comparable for both algorithms at
the same number of iterations. Table 1 shows computa-
tion times for two shell models. Shells were generated
with initial step size computation. Note the lower num-
ber of shell element collisions for front propagation. The
front propagation algorithm is about 3-4 times faster than
single-vertex propagation. Nonetheless, quality (i.e. num-
ber of degenerated shell elements) of the shells is very
good for both algorithms. Thus, the front propagation algo-
rithm is to be used preferably if computation time is impor-
tant. For our performance measurements, the pig (Figure
7) has 3500 vertices and 4000 triangles, while the castle
(Figure 9) model consists of 6500 vertices and 12000 tri-
angles. Tests were made on a standard PentiumIV 3GHz
PC. For reasonable shell thickness a non-intersecting thick
surface is generated. Using initial step size computation,

Figure 7: Shell model of a pig. The red surface is the inner surfaceS′, while the white
mesh is the original surfaceS. At the tail and the legs, shell thickness could not be
made maximal. Nonetheless, there are no intersections betweenS andS′.

Figure 8: The horn and ear of a cow.
Even in complex models, our shell
generation algorithm produces good
results.

Model ε 1-Vertex Propagation Front Prop.
[s] # of collisions [s] # coll.

Pig 0.01 4.0 8196 1.1 696
0.05 5.2 22106 1.4 1615
0.1 6.4 28498 2.0 2310

Castle 0.01 6.4 31439 2.6 7314
0.02 7.2 41147 3.1 7983
0.05 8.4 47005 4.6 8416

Table 1: Shell generation computation times in seconds for
different models and with various thicknesses. Number of
iterations k=5.

desired shell thickness does not affect the correctness of
either of the two algorithms much, because oversized ver-
tex moves are already caught during pre-computation of
the step sizes. See Fig. 7 for an example of a shells. The
red surface represents the inner surfaceS′, while the white
mesh is the original surfaceS of the shell. For the pig, no-
tice the very thin shell at the tail, while near the center of
the body the actual thickness could be made close or equal
to the desired thickness. Also notice the horn and ear of a
cow, where the new inner surface fits nicely to the original
surface.

5.2 Deformation and Fracturing

We have developed three different types of fracture con-
taining many user-defined parameters that can be used to
simulate different materials. Shell fragments are treated
as rigid bodies, enhancing the realism of our simulation
greatly. On a standard Pentium IV 3GHz PC with ATI
RADEON X800 graphics hardware, the simulation is real-
time for models up to 10000 vertices, such as the cow or the
castle (11000 vertices, 22000 triangles) (Figures 9 and 10).
Due to the approximation of shell fragments with bound-
ing boxes, the rigid body simulation is fast, leaving the bulk
of computation time with mass-spring dynamics. See Ta-
ble 2 for a comparison of computation times for different
fracture types for the models below (for brick walls refer
to Figure 4). It must be noted that simulation of the rigid

bodies accounts for about 20% of total computation time.
Large-fragment fracture without local re-meshing gener-
ally features the lowest computation times because for low
crack frequency, only a small part of the springs will be it-
erated over at all. The same may be said for coarse-grained
fracture. When a spring is already split, it is omitted and no
forces must be computed, resulting in a faster simulation.
Only one layer of springs is simulated. To speed up the
simulations, only the dynamics of springs in some impact
neighborhood are simulated. This is a valid assumption be-
cause one would expect an object to fracture in a region of
impact.

Model # vertices/4s Frame Rate [fps]
Fine Coarse Large-Frag.

Walls 600/1200 100 160 70
Cow 3000/5700 32 40 30
Castle 11000/22000 10 11 9

Table 2: Frame rates for different fracture types and mod-
els. Only one layer of springs is simulated.

Figure 9: The Disney Castle fractured in real-time.

Figure 10: A fractured shell cow. Due to local re-meshing,
cracks appear smooth.

6 Conclusions and Future Work

We have presented a fast and easy method to model realis-
tic fracture of shells. We have shown methods to construct
a shell with a user-defined thickness, given a polygonal sur-
face mesh. We have implemented a framework to handle
the entire pipeline of shell animation, consisting of gener-
ation, deformation, fracture and rigid body simulation.

While our approach is simple and fast, it is not really
physical. Instead of using mass-spring models, we could
also use finite elements to compute the deformations and
fractures. This could easily be implemented in our frame-
work. However, the simulation will become substantially
slower. To make deformation more stable, bending ener-
gies could be additionally included in the physical model.

The real-time but somewhat non-physical nature of our
approach makes it interesting for applications where a high
frame-rate is crucial, for example computer games.

7 Acknowledgements

This research is part of a Diploma Thesis [12] submitted
to ETH Zürich in 2004. The author would like to thank
Dr. Matthias M̈uller and Prof. Dr. Markus Gross for their
support in this work.

References

[1] C. Bajaj, G. Xu, R. Holt, and A. Netravali.Hierarchi-
cal Multiresolution Reconstruction of Shell Surfaces.
Computer Aided Geometric Design, 2002. Volume
19. No. 2 Pages 89- 112.

[2] M. Bernadou and J.M. Boisserie.The Finite Element
Method in Thin Shell Theory: Application to Arch
Dam Simulations. Birkhäuser, 1982.

[3] J. Cohen, A. Varshney, D. Manocha, G. Turk,
H. Weber, P. Agarwal, F.P. Brooks Jr., and W.V.
Wright. Simplification Envelopes. Proceedings of
SIGGRAPH ’96 (New Orleans, LA), August 4-9,
1996.

[4] D. Eberle, O. Strunk, and R. O’Sullivan.A Simple
Hack for Breaking Stuff. ACM SIGGRAPH Sketch,
2003.

[5] S. Gottschalk, M.C. Lin, and D. Manocha.OBB-
Tree: A Hierarchical Structure for Rapid Interference
Detection. Proc. of ACM Siggraph, Pages 171-180,
1996.

[6] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun,
and Peter Schröder. Discrete Shells. Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer animation, July 26-27, 2003, San
Diego, California.

[7] M. Müller and M. Gross.Interactive Virtual Materi-
als. Submitted to Graphics Interface (GI), 2004.

[8] M. Müller, M. Teschner, and M. Gross.Physically-
Based Simulation of Objects Represented by Surface
Meshes. Computer Graphics International (CGI),
Crete, Greece, Jun 16-19 2004.

[9] J. O’Brien, A. Bargteil, and J. Hodgins.Gaphical
Modelling and Animation of Ductile Fracture. Pro-
ceedings of SIGGRAPH’02, San Antonio, Texas, pp.
291-294, 2002.

[10] James F. O’Brien and Jessica K. Hodgins.Graphical
modeling and animation of brittle fracture. Proceed-
ings of SIGGRAPH 99, pages 137-146, 1999.

[11] S. Redon, A. Kheddar, and S. Coquillart.Fast contin-
uous collision detection between rigid bodies. CGFo-
rum 21, 3, pp. 279-288, 2002.

[12] D. Steinemann, M. M̈uller, and M. Gross.Genera-
tion and Animation of Shells. Diploma Thesis, ETH
Zürich, 2004.

[13] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer.Elastically Deformable Models. Proceed-
ings of SIGGRAPH, pages 205-214, 1987.

[14] M. Teschner, B. Heidelberger, M. M̈uller, and
M. Gross. A Versatile and Robust Model for Geo-
metrically Complex Deformable Solids. Computer
Graphics International (CGI), Crete, Greece, Jun 16-
19 2004.

[15] M. Teschner, B. Heidelberger, M. M̈uller, D. Pomer-
anets, and M. Gross.Optimized Spatial Hashing for
Collision Detection of Deformable Objects. Proceed-
ings of Vision, Modeling, and Visualization 2003, pp.
47-54.

[16] P. Volino and N. Magnenat-Thalmann.Accurate Col-
lision Response on Polygonal Meshes. Proceedings of
the 2000 Conference on Computer Animation, p.154,
May 03-05, 2000.

