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Abstract

We present a novel framework for the efficient simulation and animation of discrete thin shells. Our method takes
a point sampled surface as input and performs all necessary computations without intermediate triangulation.
We discretize the thin shell functional using so-called fibers. Such fibers are locally embedded parametric curves
crisscrossing individual point samples. In combination, they create a dense mesh representing the surface structure
and connectivity for the shell computations. In particular, we utilize the fibers to approximate the differential
surface operators of the thin shell functional. The polynomials underlying the fiber representation allow for a
robust and fast simulation of thin shell behavior. Our method supports both elastic and plastic deformations
as well as fracturing and tearing of the material. To compute surfaces with rich surface detail, we designed a
multiresolution representation which maps a high-resolution surface onto a fiber network of lower resolution.
This makes it possible to animate densely sampled models of very high surface complexity. While being tuned for
point sampled objects, the presented framework is versatile and can also take triangle meshes or triangle soups
as input.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

Physically based modeling 1.6.8 [Simulation and Modeling]: Types of Simulation—-Animation

1. Introduction

The efficient simulation of physical material behavior has
become a very important area of computer graphics. Its wide
spectrum of applications ranges from the medical simula-
tion to games and entertainment. Examples include the sim-
ulation of cloth [BFA02, BMF03], human tissue [KGC*96],
fracturing materials [OH99], and others. In many cases, ro-
bustness, high visual accuracy, and speed are the predomi-
nant design criteria, whereas numerical precision or the cor-
rect reproduction of the underlying physics are considered
less important. The design of such methods tailored towards
Computer Graphics’ needs has a long tradition. Since its in-
ception by the milestone work of [TPBF87], various simula-
tion techniques from mass-spring systems to finite element
(FE) methods have been explored. FE methods for three-
dimensional deformation physics are highly complex and
require the solution of partial differential equations. In re-
cent years, substantial improvements have been made with
regard to material properties [GBOO04] and computational ef-
ficiency [MGO4].

A large class of interesting real world objects is thin-
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walled. When applied to very thin, almost two-dimensional
objects, the models derived from three-dimensional contin-
uum mechanics degenerate to thin shell functionals. Such
thin shells are three-dimensional bodies with one geomet-
ric dimension significantly smaller than the other two. They
have a non-planar rest shape, which distinguishes them from
thin plates.

The fundamental theory underlying thin shells is based on
the Kirchhoff theory of thin plates and the Kirchhoff Love
theory of thin shells [GZ68]. The thin shell functional de-
pends on surface curvature and, thus, contains second or-
der derivatives of the displacement function. FE solutions
for thin shells are more demanding than for conventional 3D
continuum mechanics [Bat95]. The thin shell energy is typi-
cally broken down into a stretching (or membrane) term and
a bending (or flexural) term. While the former depends on
a first order differential operator, the latter one includes a
second order term. In addition, the full formulation includes
nonlinear geometric differentials, such as curvature, which
are very often linearized to become numerically tractable.

In this paper we introduce a novel framework to efficiently
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simulate thin shells on unstructured, point sampled input sur-
faces. Our contributions are summarized as follows:

Unlike earlier approaches [GHDS03, CG91] our method
does not require a consistent triangulation of the underly-
ing object, nor do we need a global surface parametrization.
Instead, we introduce the concept of so-called fibers, a set
of locally interpolating polynomial curves crisscrossing the
point set. The entirety of fibers constitutes a dense network
which represents the surface structure and the connectivity
needed for simulation. The polynomial nature of the fibers
allows us to conveniently discretize the first and second or-
der terms of the thin shell functional per surface sample and
in discrete angular directions. As we will show, the stretch-
ing component can be evaluated by sampling the changes
in arc length of all fibers crossing through a sample. Like-
wise, the second order component is computed by averag-
ing over the normal curvatures of all such fibers. Our frame-
work lends itself well to the simulation of elasticity, plastic-
ity, tearing, and fracture. In case of fracture, the point sam-
pled representation permits efficient restructuring of the sur-
face without the burden of maintaining a consistent triangu-
lation. Our multiresolution setting combines a high resolu-
tion object with a coarsely sampled set of simulation nodes,
enabling the simulation of very densely sampled input sur-
faces.

While the presented implementation is tailored towards
point samples, our approach is versatile and works for a va-
riety of surface representations including triangle meshes or
polygon soup. We only assume a sufficiently dense sampling
of the underlying surface.

2. Related Work

Thin shells have been introduced to Computer Graphics as
early as 1987 in the framework of [TPBF87], who described
the thin shell energy in terms of first and second order metric
tensors. The efficient numerical solution of these function-
als, however, remained a major challenge largely prohibiting
the use of thin shells for animation. In contrast, plate based
membranes have been used widely to simulate cloth dynam-
ics in graphics. Examples from the rich body of literature in-
clude [BW98, BMF03], who present methods for cloth sim-
ulation. Others [BFA02, THMGO04] employed mass spring
systems for a fast approximation of elastic behaviour.

[CG91] proposed an FE based modeling system utilizing
both stretching and bending energies for physics based sur-
face deformation. To make the formulation computationally
tractable, the first and second order tensors were linearized.
Subsequently, [KGC*96] presented a framework for surgical
simulation which employed a similar shell representation.

Later, [COSO00] investigated the utility of subdivision sur-
faces to efficiently simulate thin shells. They demonstrated
that the multiresolution nature of subdivision surfaces makes
complex shell simulations more efficient. This method was
adopted by [GTS02]. While being computationally elegant,

local topological changes, such as occurring during fracture
or tearing, pose a great challenge. The issue of adaptivity
for graphics simulation has been addressed by the versatile
simulation framework of [GKS02]. The authors presented an
adaptive, hierarchical refinement method for FE simulation
supporting 3D continuum mechanics and thin shells. Tearing
and fracture, however, have not been addressed. Recently,
[MBFO04] presented a virtual node algorithm for the fast an-
imation of fracturing materials with an emphasis on thin
shells. This method retains a consistent connectivity upon
the topological changes occurring during material fracture.

The research closest to ours is the discrete shell frame-
work of [GHDSO03]. The authors discretize both stretching
and bending components of the thin shell functional on the
underlying triangle mesh: In particular, bending energy is
represented by a discrete curvature operator [MDSB02], and
stretching energy is approximated by triangle edge lengths
and areas. Compared to our work, these discretizations draw
upon the triangle as a fundamental building block and thus
require a consistent mesh at all times. Topological changes
during fracture demand mesh restructuring and become dif-
ficult to handle.

Conversely, our discretizations are based on a one-
dimensional, higher-order polynomial primitive, the so-
called fiber. Our fiber network is generated from an unstruc-
tured point sampled input surface and locally connects ad-
jacent points without requiring a globally consistent connec-
tivity. Topological changes, as introduced by fracture or tear-
ing, are handled gracefully.

Our research was inspired by recent progress in the field
of point based representations. Early work of Szelisky and
Tonnesen [ST92] presented a framework for physics based
surface modeling based on particle sampling. Recently,
[PKKGO3] presented methods to deform high resolution sur-
faces in real-time and [MKN*04] introduced a framework
for meshless FE based on point sampled input geometry.

The remainder of the paper is organized as follows: In
Section 3, we briefly review the mechanics of thin shells and
derive our discretization of stretching and bending energies
using fibers. Section 4 addresses the dynamic simulation of
the discrete thin shell. In Sections 5 and 6 we discuss the cre-
ation of the fiber network from an unstructured input point
model and present our multiresolution setting. Some more
advanced issues, including plasticity and fracture, are dis-
cussed in Section 7. Finally, various examples demonstrate
the performance and versatility of our approach.

3. Mechanicsof Thin Shells

In the remainder of this paper, vectors and matrices will al-
ways be denoted by bold letters, while scalar values are set
in italics.

To derive the behaviour of a thin shell undergoing defor-
mation, we start from the potential elastic energy. The thin
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Figure 1. (a) Sampling the surface with fibers. The fibers
passing through the point p measure arc length and curva-
ture along their path. (b) Area approximation using two arc
length samples from the fibers f; and f,. Each fiber esti-
mates the area of the sample according to its own length
only. The area represented by p is the average of the fiber
areas.

shell we want to animate is given by a surface Q, with first
fundamental tensor R and shape operator S. We will follow
[TPBF87], and define the potential energy as

Epot = Es+Ep = /Q Us+Up dQ, o

where Es and Ey are bending and stretching energies and
Uyp and Us are the respective energy densities. For any point
p € Q, the energy densities are defined in terms of first fun-
damental tensor R and shape operator S:

Us

K 02
> |IRp = Rpllp, @

s - SR, ©

Here, the superscript 0 denotes the undeformed (rest) value.
To measure difference in shape, we use a pseudo-norm || - || p.
The parameters K, and Ks are stiffness constants for bend-
ing and stretching deformations respectively. The first funda-
mental tensor R measures differential area, while Smeasures
curvature.

Up

In (1), we have split the potential energy into two distinct
components. This effectively denies the existence of mixed
bending/stretching modes, which is a common and reason-
able assumption [TPBF87, GHDS03].

The core idea of our method is to sample the surface at
distinct points and directions. First, we discretize (2) and (3)
on a set P C X of simulation nodes on the surface. At each
sample location, a set of parametric curves is fitted to the sur-
face. These fibers measure curvature and arc length in their
respective directions. Figure 1 (a) illustrates the sampling.

3.1. Stretching Energy

The stretching term of the potential energy, Es, measures
changes in surface area. In the discrete model, the point p
represents a small surface patch.

We use the fibers through p to approximate a surface

(© The Eurographics Association and Blackwell Publishing 2005.

area for p. For each fiber, we assume that the surface patch
around p is circular. A fiber fy thus measures an area of
Ay = Ti/4-1( )%, where I(fy) is the arc length of the fiber.
The area Ap of the point p is defined as the average of these
area measurements.

1 T

Ap = Akzm

Tnp

ZI(fk)z, 4)

where all fibres fy pass through p, and np is the number of
fibers intersecting in p. See Figure 1 (b) for an illustration.

Note that area approximations for all sample points do not
necessarily add up to the total area of the surface Q. This is
not a problem during the simulation. Discretisation effects
are discussed in detail in section 8.

We define the stretching energy such that it becomes
nonzero when either the total area Ap or the individual fi-
bre areas Ax change. This amounts to preserving the area
represented by each point, as well as the shape of the area
element.

(Ao —2) "+ . ) (Ak—AE)Z] G

3.2. Bending Energy

The shape operator measures curvature: Tr(S) = 2H, where
H denotes the mean curvature and Tr(-) is the matrix trace.
Noting that the trace is a pseudo-norm as well as a linear
operator, we can write

~ K 2

Gy = =2 (H-H°)". (6)

For a sample point p, we approximate Hp using the direc-

tional curvature samples given by the fibers through p. We
can express Hp in terms of the normal curvature K(fy) for
each fiber fy:

1
Hp = . K(fk). (7)
p
To obtain the bending energy, we integrate the energy den-
sity over the surface element represented by a sample point.
Assuming that the energy density is constant over the surface
element, the bending energy becomes

Ep(p) = UppAp 8)

3.3. Curvature and Arc Length M easurement

In order to evaluate (4) and (7), we need to compute I( f) and
K(f). In our implementation, fibers are natural cubic splines
through three points on the surface.

Computing the arc length of a cubic spline involves solv-
ing an elliptic integral [BJ99]. Therefore, we use numeric in-
tegration to approximate the arc length, yielding a function
[( f). The approximation is sufficiently accurate even with a
very small number of sample points. It is described in detail

in Appendix A.
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As a measure for curvature, we use the angle 6 between
the tangents at the start and end point of the fiber. In order
to avoid flipping problems, we use a directed angle, which
is oriented according to the surface normal N in the center
point of the fiber. Please refer to Appendix A for details.

4. Dynamic Behaviour

We now have all prerequisites to analyze the dynamic be-
havior of a model sampled with fibers. In order to animate
the thin shell, we need to compute forces for the simulation
nodes. For one simulation node, the force is given by the
negative gradient of the potential energy:

Fi = —Vp (Es+Ep) 9)

In our discrete setting, the force on simulation node i can
be written as a sum over the contributions of all simulation
nodes.

Fi= szi = —Z(Vpi Es(pj)+Vp En(pj))  (10)

Substituting (5) and (8) into (10) and evaluating the gradi-
ents, we obtain

Ks

o Ks A0\ o
Fii = (Ak Ak) Vi Ax (11)

—Ks (Apj - Agj) Vi Aj
—ASKs (Hj = HP) Vi Hj

Noting that both Vp, Ap; and Vp; Hj are sums over the same
fibers, we can split the force Fj; into components induced by
individual fibers fy.

Fii = ZFki (12)
Fi = —§(Ap-+Ak—AO.—A8> Vi Ax
Np i Pj i
K
—A=2 (Hj = H ) Vo k() (13)
P

Fy is the force that the fiber k, running through the point
pj exerts on the point p;. The gradient of one fiber’s area
estimate A is given by
T~ ~

Vo Ax = EI(fk)Vpi (). (14)
Expressions for the gradients of I( ) and k(f) are stated in
Appendix A. Taking all surface elements into consideration,
the resulting forces add up to zero.

\We compute forces in two passes. In a first pass, we iterate

over all fibers to compute I(f) and k( f) and their respective
gradients. In a second pass over all simulation nodes, we can
evaluate (13) and sum the force contributions to obtain F;.

The governing equation for our system is
F = —VxEpot = MX+NX+ Fext (15)

where M is the mass matrix, n is a damping coefficient, and

(b)
Figure2: (a) The sampling of the Max Planck model with
simulation nodes. (b) Fiber network on the surface.

Fext denotes the external forces acting on the system. The
system state x contains the position of all simulation nodes.

Upon computing F; for all simulation nodes, we use the
velocity Verlet integration scheme [Ver67] to solve (15) and
animate the model.

5. Fiber Creation

For a surface Q which we animate using our thin shell ap-
proach, we require a set of sample points or simulation nodes
P C Q. The sampling does not need to be regular, but it
should be adequate in a sense that all features of the surface
need to be represented with sample points [PKKGO03].

The simulation nodes serve as end points for fibers, and
carry the mass of the model. Usually, the model is rendered
using a different surface which is deformed along with the
model (see Section 6). Figure 2 shows the sampling of a
model with simulation nodes and fibers.

The fibers sample a three dimensional space: two dimen-
sions for the position on the surface, plus one dimension rep-
resenting the direction of the fibers. We have to make sure
that all dimensions are adequately sampled. Therefore we
enforce a roughly isotropic sampling in the directional do-
main. Section 7.3 deals with issues related to representing
anisotropy or inhomogenities in the simulated material.

We use a simple heuristic to create an isotropic sampling.
Foranode p, let Pp = {p1,...,pn} C P be the set of nearest
neighbors to p. For each of the pj, we find the most opposite
point with respect to p, pj, i.e.

pj =arg min (q—p,p—pi) (16)
aek
We then create a fiber connecting pj,p,pj. Duplicate fibers
are discarded. The equations for the parametric curve that is
created for the three input points are given in Appendix A.
Figure 3 illustrates the process.

On average, this heuristic approach creates an isotropic
sampling of the surface. There are of course pathological
cases in which this heuristic leads to degenerate sampling.
However, since we can control which points on the surface
become simulation nodes, these cases can be avoided. We
use an adapted version of the clustering algorithm described
in [PGKO02] to select a set of simulation nodes.

(© The Eurographics Association and Blackwell Publishing 2005.
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Figure 3: Fiber creation. In a neighborhood of nodes Pp
around a central point p, one fiber is created for each p; €
Pp, connecting pj, p, and pj, which is the most opposite node
for p;.

6. High-Resolution Surface

For interactive or real-time applications, the computational
effort of simulating the entire model is too high. In order to
be able to simulate visually appealing models with highly
detailed surfaces in reasonable time, we sample the surface
coarsely and use only these samples as simulation nodes.

We deform the original surface of the model by interpo-
lating the deformation field defined only in the simulation
nodes. For each passive point on the surface that needs to
be deformed, we compute local coordinates with respect to
its neighborhood of simulation nodes. When the object de-
forms and the simulation nodes move, an updated position
of the passive point can be computed using these local coor-
dinates.

This method is similar to the skinning approach proposed
by Singh and Kokkevis in [SK00]. While they compute
barycentric coordinates and a normal displacement on a tri-
angle mesh, we use coordinate systems based on two simu-
lation nodes.

Let c be the position of a passive point and Pc = {pj,
i=0...n} for some n a set of neighboring simulation nodes
in their undeformed state, ordered such that ||pi —c|| <
[|pi+-1 — cl|. We first compute a least squares plane through
the pj. The normalized plane normal will be denoted N. We
then transform c— p into n coordinate systems {ef, €2, &},
yielding coordinates C;. The coordinates systems are com-
puted from the normal of the least-squares plane and the po-
sition of one of the neighbors relative to the nearest neigh-

bor:
1 » Nxg ;3 €&xe

& =pi—p g = g = (7)
e il il

Each of these coordinate systems measures surface stretch in
the direction &', and account for rotations around e'. Due to
the normalization of & and €7, the coordinate system i does
not capture surface stretch in these directions.

Local coordinates are computed as

‘. <C—po,e">
“ = e

(© The Eurographics Association and Blackwell Publishing 2005.

(18)

and are stored with the passive point. When the surface de-
forms, we transform the local coordinates back into world
coordinates, yielding n positions .

d =po+Ct-g'+ct-e +Cci.e” (19)

Here, the coordinate systems e,k’ are computed from the de-
formed simulation node positions p;. The deformed position
¢’ is a computed as a weighted sum of the positions ¢.

F_ Tiwig
c = TiWi (20)
and
i = o= @)

Using some weight function w(-) satisfying w(0) = oo and
w(1) = 0. Thus, the surface deformation is smooth provided
that the weight function is smooth.

Note that any surface representation can be used as a high-
resolution surface using this deformation method.

7. Plasticity and Fracturing

So far, we have only treated purely elastic objects. However,
most objects exhibit plasticity, or fracture under high stress.
This section describes how plasticity and fracturing can be
integrated into our framework.

7.1. Plagticity

Materials that exhibit plastic behaviour remember part of
their deformation. Elastic forces will not restore the origi-
nal shape, but a new shape created by plastic deformation.
In our model, the rest shape of an object is stored in the rest
shape of the fibers used to sample it. It is thus sufficient to
consider a single fiber.

The elastic force for a fibre is computed using its rest arc
length 19 and rest tangential angle 8%, as well as the cur-
rent length | and current tangential angle 8. To incorporate
plasticity, the rest length and rest angle used to compute the
elastic force is expressed in terms of the original value and a
plastic deformation

|O

|orig+|plastic
22
90 = eorig:r|‘9plastic ( )

The plastic deformation represented by Ipjasic and Bpjasic
changes whenever the deformation of the fiber becomes too
high. The rest arc length of a fiber changes if

B <119, (23)

where [ is the plastic yield constant for stretching deforma-
tions. Similarly, the curvature Opagic is updated if

Be <1667, (24)

where g is the plastic yield threshold for bending deforma-
tions. We update the rest state similar to [OBHO02], however
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Figure 4: Different fracture modes. A crack introduced by
(a) tensile stress; (b) bending stress.

accounting for plastic creep by adding time dependence to
the update rule. In each timestep in which (23) or (24) hold,
lplasiic and Bpjasiic are changed according to (25) and (26) re-
spectively.

Alpiasic = ni(l—lg)At (25)
ABpiastic = Ne(6— 6o)At (26)

The plastic creep parameters n; g determine how fast the ma-
terial can adapt to the new state. In addition to this basic form
of plasticity, a variety of other nonlinear effects can be mod-
eled, an example is given in Section 7.4.

7.2. Fracturing

When a material fractures or tears, parts of the material that
are separated by a crack do not influence each other, even
though they might be close. This coupling between simula-
tion nodes is modeled by fibers in our framework. Thus, in
order to model a crack, we have to cut the fibers that intersect
the crack surface.

We initiate a crack if the stress on some fiber in the model
becomes too high, specifically if one of

i < /10
Vo < |e_90| (27)

holds for a fiber f. y; and yg are fracture thresholds for ten-

sile stretching and bending fracture respectively. We do not
model compressive stress. See Figure 4 for an illustration.

Fracturing is a sudden and violent process, introducing
discontinuities into the model. As such, it poses extreme dif-
ficulties for any simulation based on discrete timesteps. In
order to alleviate these problems, we only allow one crack
to form in each timestep. Furthermore, if in one timestep a
crack has formed, fracturing is disabled for a number of sim-
ulation steps, until the material had enough time to relax and
dissipate the freed energy.

If the material is under high stress, the condition (27) is
usually fulfilled for several fibers. Of these, we choose the
fiber where fracture is most urgent, i.e. the fiber wich maxi-
mizes

0 |g_ a0
max(1L, =81

Yi Yo ) (@8)

(@) (b)
Figure5: Fracturing. (a) When stress along a fiber exceeds
a fracturing threshold (black), a new crack plane orthogo-
nal to the fiber tangent is created. (b) Fiber sampling after
neighborhood recomputation. Fibers intersecting the crack
plane have been deleted, the edges have been resampled.

Once a fiber is chosen, a small disc, the crack plane, is
placed at the center node pc of the fiber. Its normal is the
fiber’s tangent in pe, and its radius is equal to the aver-
age node distance in the neighborhood. The neighborhoods
of nearby simulation nodes are recomputed accounting for
crack planes, i.e. only nodes that are not separated by a crack
plane can be in the same neighborhood. We then reinitialize
fibers as described in Section 5, using the original positions
of the simulation nodes, but the newly computed neighbor-
hoods. This effectively cuts any fibres that would intersect
with a crack plane. The recomputation of neighborhoods
makes sure that the material remains adequately sampled
with fibers, also along the crack surfaces. Figure 5 illustrates
the procedure. For surface points in the vincinity of a new
crack, the neighborhoods and coordinates for the high reso-
lution surface have to be recomputed as well.

We can model microcracks and material weaknesses in-
troduced by fracture effects by only creating a crack plane if
more than a certain ratio of the fibres passing through a node
have been broken. If the stress on a fiber exceeds a fracturing
threshold, we consider this fiber broken. Its contribution to
the forces acting on connected nodes will from now on be
zero.

Controlled fracture can be easily implemented by assign-
ing very low fracture thresholds in regions where cracks are
desired and high thresholds where the material should not
fracture.

7.3. Anisotropy and Inhomogenity

Many materials exhibit anisotropic behaviour, for example
stiffness varying depending on stress direction. We found
that the best way to integrate anisotropy is to use a roughly
regular and isotropic sampling throughout the model, and
vary the stiffness constants of the individual fibers accord-
ing to position or direction, or time.

7.4. Nonlinear Effects

Many materials change their material properties depending
on the current strain state or the amount of plastic deforma-

(© The Eurographics Association and Blackwell Publishing 2005.
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tion they undergo. It is easy to integrate such effects into our
framework. Since all material properties are stored with the
individual fibers, we can vary these parameters depending
on the current state of the fiber (the local strain state of the
material), or the past deformations of the fiber.

As an example, the following update rule for the fracture
thresholds implements a behaviour often found in hard plas-
tics and metals. The material weakens under repeated plastic
bending deformation.

Ay = —0yg|ABpiastic] (29)

Here, the parameter a determines how much the material is
weakened by plastic deformation. ABpasic is the change of
plastic deformation as defined in (26), which is evaluated in
each time step.

8. Discussion

The discretisation approach described in sections 3 and
4 will lead to different material behaviour depending on
the sampling chosen. Since the forces are normalized, in-
creasing the number of fibers per point does not increase
material stiffness, however, anisotropic sampling results in
anisotropic material behaviour. This occurs in regions of
highly irregular sampling, where the heuristic described in
Section 5 breaks down.

Under very large stretching deformations, the initial sam-
pling degrades. Currently, no resampling of the simulation
nodes is done. Hence, simulation quality suffers after apply-
ing a large (plastic) deformation.

In our current implementation, we solve the differential
equation governing the thin shell behaviour using explicit
time integration. While being fast, this integration method is
not stable under arbitrary conditions. For very stiff materials,
oscillations and instabilities occur, especially if discontin-
uous processes such as fracture are considered. Simulation
timesteps have to be extremely small, and simulation times
can become prohibitive. In order to simulate a wider range
of materials, an implicit integration scheme has to be imple-
mented.

As input, our methods expects a set of sample points that
adequately represent the surface. While we implemented
our framework using point-sampled surfaces, the simulation
method will work for other surface representation as well.
In order to use a different input representation, the required
sample points on the surface are generated before the fiber
network is initialized. A simple sampling algorithm can be
used to provide the samples [LR98]. The surface deforma-
tion method described in Section 6 is applicable to other sur-
face representations as well [SK00].

Although the fiber-based simulation avoids creating a
consistent triangulation, connectivity is explicitly encoded
in the fibers. Conceptually, a truly meshless approach, simi-
lar to [MKN*04], would be more elegant.

(© The Eurographics Association and Blackwell Publishing 2005.

9. Results

We have tested our simulation method on a variety of mod-
els. Simulation times were measured in a 3 GHz PC. Ta-
ble 1 summarizes the measurements. Shown are the number
of simulation nodes, the number of surface points, as well
as average simulation times per frame. As can be seen from
the data, the animation of the high-resolution surface is rela-
tively expensive. Since it is only performed once per frame,
it is a good alternative to a full simulation if the simulation
timestep is small compared to the frame time. For extremely
slow motion animations, such as the balloon sequence, sur-
face reconstruction is clearly the limiting factor.

average time/frame [ms]
Model #Nodes #Points forces fract. surf. total

Max 931 9835 7 — 64 71
Balloon 1170 24578 24 23 166 212
Mask 1987 40880 222 — 325 547

Pinup 11860 240000 1533 6066 1459 9058

Table 1: Simulation times for several models. Shown are
(from left to right): number of simulation nodes; number of
surface points; time for force computation and integration;
time for fracture testing and neighborhood recomputation;
time for high-resolution surface animation; total animation
time per frame.

Figure 6 presents frames from an animation showing an
elastic mask dropping on the floor. We also dropped a bronze
bust to demonstrate plasticity. Figure 7 shows some frames
from the resulting animation. Plasticity has no significant
impact on simulation times.

In Figure 8, a poster is torn apart. We placed a weak point
in the middle of the top edge to initiate the tearing process.
The material has a very high stretching stiffness, leading to
oscillations along the tear. The discontinuities introduced by
the tearing process put extreme strain on the explicit integra-
tion.

Figure 9 shows frames from an animation in which a bal-
loon tears as it is inflated too much. As can be seen from
Table 1, fracturing is quite expensive.

Please also refer to the accompanying videos for the com-
plete animations.

10. Conclusion

We have presented a novel framework for the simulation of
thin shells. Using a sampling approach to capture the geo-
metric surface properties, we are able to compute the forces
derived from curvature and arc length. Since the simulation
nodes can be chosen at arbitrary locations on the surface,
the method is mostly independent of the initial sampling of
the surface, as well as the surface representation. The pro-
posed simulation method can handle a wide range of mate-
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rials, from pure elastic or plastic objects to materials show-
ing ductile or brittle fracture. We also devised a method to
smoothly interpolate the displacement field defined only at
the simulation nodes in order to transfer the computed de-
formation to a high resolution surface.

Future research will focus on implementing an implicit in-
tegration scheme for the simulation of extremely stiff mate-
rials. For large deformations, a resampling strategy is needed
that keeps the surface adequately sampled.
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Figure 6: An elastic mask is dropped. The shell deforms and bounces, before coming to a rest state on the surface.

Figure7: A heavy bronze bust is dropped on the floor. Note that the expected behaviour for a solid object would be to form a
flat surface where plastically deformed by the impact. However, due to the lack of volume preservation forces, a shell caves in.

Figure8: A large poster is torn apart by external forces. We start the crack by adding a weak point to the top edge of the sheet.
Since the material is not brittle and the forces are moderate, the crack propagates slowly.

Figure9: A balloon tears when inflated too much. Once the tear is opened, the shell can relax and the tearing process stops.
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Appendix A:
Spline Equations

A fiber in our implementation is a natural cubic spline
through three simulation nodes on the object surface. Its
parametric representation is given as a piecewise cubic poly-
nomial:
| f(2t) 0<=t<05
o= { f(2(t—05) 05<=t<1 &0

for x, y, and z respectively. The polynomials f; and f; are
defined as

fi(t) = a +bit +cit” + dit?, (31)

their coefficients depend linearly on the input points p1, p
and p2:

a = P2

a = p

by = 4p1-|— %p P2

b, = —3pl+3p2

C1 = 0 2 (32)
C2 = Pl— %FH— 4p2

dl = p‘|‘ 4p2

2 = p1+ ip—3p2

Arc Length Approximation i(f)

The arc length of a parametric curve can be numerically ap-
proximated by

-1 nz;n ! (33)

Taking the first derivative of (31) and coefficients defined in
(32), (33) can be computed easily. Since the splines in our
framework are generally well-behaved, the approximation
is sufficiently accurate even for a small number of sample
points.

Gradient of I(f)

The gradient of (33) is essentially a sum of gradients.

1n1 i 1n1

= Z)V”fl M=+ = Z)V”fz (34)

Thus, the gradients of the arc length with respect to the cen-
ter point p and the endpoints p1 and p, can be written as

Vpi(t) = 5 L > %
pl()—z}m(df 4)(/”) (35)

3, 3
+Z)n||f’ (33t g

velh) = %m@ L STHULNNEO

+% |f,

szr(f) = %n”f'?/ )”( i i ) (/n) (37)
3
2

+Z)n||f’ 3

Tangential Angle 6¢

2)f5(i/n)

—3t+ 2 t) 3(i/n)

& 2)4(i/n)

As a measure for the curvature of a fiber f, we use its tan-
gential angle 6¢, the angle between the fiber’s tangents at
t=0,tpandt =1, tq. Thisangle is oriented according to the
surface normal in p. Therefore, we multiply the angle with
the sign of (N, f"/(0.5)).

K(f) =6¢ =sign({N,

{to, t1)
(05)>)arccos||t el (38)
Gradient of k(f)

Since the derivative of signum is zero, the gradient of (33)
with respect to a point p; is

Vpk(f) = sign((N, f"(0.5)))Vp, (arccos ||§:>T|7|Tt11)|| ) (39)

to = bg and t1 = by + 2¢, 4 3d,. Thus, for center point p
and endpoints p1 and p»,

5di—te (tots) 4 (to,t1)
VoK) =Cpial + 4 ool to = 4||to||||t1\3‘1)

9d; 3 (to,t1 {to,t1)
Vek(f)=Cygifar — 2l to+ 3 igfiety)  (40)

$diHe | 1 (tofr)
VK (F)=C( it + 2 ol to

where tc = by (i.e. the tangent in the central point p) and

o sign({N, f"'(0.5))) 1)
1 —cos?(8)

_ 5 (toty) 4
A Tl )
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