
Image-space Free-viewpoint Video

Stephan Würmlin, Edouard Lamboray, Michael Waschbüsch
Peter Kaufmann, Aljoscha Smolic†, Markus Gross

Computer Graphics Laboratory †Fraunhofer Institute for Telecommunications
ETH Zürich, Switzerland Heinrich-Herz-Institute, Germany

Abstract

Image-space free-viewpoint video (FVV) is a
framework for representation and coding of sparse
multi-view video and subsequent re-rendering from
arbitrary viewpoints. It is based on the fundamen-
tal concept of storing all information describing a
scene’s visual appearance in multi-channel video
images. Each pixel’s channels define different at-
tributes of discrete point samples of observed sur-
faces. In this paper, we show how image-space
FVV can be implemented with standard video cod-
ing tools and ready-available video coding meth-
ods can thus be reused. Besides, this representa-
tion has been adopted as extension of the MPEG-4
AFX standard. In addition to the representation, we
also introduce a novel video coding technique that
allows random access and progressive transmission.
We evaluate this new codec in the context of FVV
and compare it to state-of-the-art image and video
codecs like MPEG-4 and JPEG-2000. We present
results based on real-world data proving the suit-
ability of the chosen approach.

1 Introduction

In the face of recent research activity, the field
of dynamic visual media enabling free viewpoint
selection draws more and more attention. The
prospect of free navigation regarding time and
space in streams of visual data might even repre-
sent the next major step in terms of interactivity,
allowing for virtual replays just as for the well-
known freeze-and-rotate effects. This motivates
to face the challenges in designing a representa-
tion that enables capturing and processing of dy-
namic scenes and subsequent rendering from arbi-
trary viewpoints. 3D-television [16] marks a first
line of recent research, aiming at view-independent
video for dynamic scenes but in a very limited range

only. That is, users might experience changes in
parallax but no fly-around effects are possible. The
concept of free-viewpoint video, on the other hand,
allows for truly free navigation in the spatial range
of captured data, i.e. in the range covered by the
acquisition cameras. The format we present is a
well qualified representation for FVV. Because it
encodes a scene’s complete appearance in a stream
of images using multiple channels we refer to it
as being an image-space representation. The dif-
ferent channels record all relevant attributes of a
scene being acquired by exploiting the notion of
point samples. That is, all channels of each video
pixel describe attributes of discrete 3D point sam-
ples. An image-space FVV representation features
many advantages as compared to other descriptions.
Firstly, it may be understood as a unified repre-
sentation also amenable to topological changes of
the scene’s geometry—quite contrary to approaches
based on mesh and texture information that require
handling of heterogeneous types of data and do
not allow changes in topology. Secondly, being
an image-space representation, well proven conven-
tional video coding schemes are applicable—a fact
reflected by the MPEG industry standard support-
ing our representation as an extension of MPEG-4
AFX. Moreover, since our representation incorpo-
rates geometrical scene knowledge in terms of point
samples we have to deal with less acquisition cam-
eras for even broader viewing ranges as compared
to purely image-based approaches in the spirit of
Light Fields [13]. Note that the latter technique
may successfully be extended as appropriate repre-
sentations for 3D-television. Besides all advantages
given, our image-space FVV framework is able to
deal with every static or dynamic 3D data set which
can be completely described by a set of 2D views.
Furthermore, the framework can smoothly be ex-
tended to an arbitrary camera setup where only a
few cameras see the object at a time.

VMV 2005 Erlangen, Germany, November 16–18, 2005



processing encodingacquisition decoding rendering

1011001111010

1010001001000

0101111110100

0010011110000

1101101101010

0101010001001

0011001101001

001...

Figure 1: Overview of the image-space free-viewpoint video pipeline.

2 Background and Related Work

In free-viewpoint video, multi-view video streams
are used to re-render a time-varying scene from ar-
bitrary viewpoints. There is a continuum of rep-
resentations suited for different acquisition setups
and applications. Purely image-based representa-
tions [13] need many densely spaced cameras. This
constraint can be relaxed by adding more and more
geometry in terms of depth maps which lead to
depth image-based representations, e.g. [1]. On
the other end there are model-based representa-
tions which describe the object or scene by a time-
varying triangular mesh with additional video tex-
tures, e.g. [5].

Besides representations one has to distinguish
between online and offline applications. Matusik
et al. [14, 15] focused on real-time applications,
e.g. 3D video conferencing. However, they did not
address the coding of their representations. Gross
et al. [7] used a 3D video system based on a point
sample representation [21] for their telecollabora-
tion system blue-c. Their temporal coding scheme
is in a sense a depth-map compression but with a
focus towards real-time encoding. Mulligan and
Daniilidis [17] also target telepresence. They com-
pute geometric models with multi-camera stereo
and transmit texture and depth over a network. Off-
line free-viewpoint video systems typically process
triangular meshes. Carranza et al. [5] employ an
a-priori shape model which is adapted to the ob-
served outline of a human. Therefore, only mo-
tion parameters and video images need to be trans-
mitted. However, this system is only able to cap-
ture pre-defined shapes and no scene acquisition is
possible. Geometry videos [3] are another interest-
ing representation for compression of dynamic 3D
objects. Geometry is reorganized into 2D images

before deploying conventional video compression.
However, the mapping of a 3D mesh to a 2D im-
age is non-trivial. The 3D video recorder by Würm-
lin et al. [22] handles point-sampled 3D video data
which is encoded using hierarchical space partition-
ing. But the reported bit rates are well above our
target rates.

3 Image-space Free-viewpoint Video

In this paper, we present a free-viewpoint video
system where data is represented in image- or
camera-space. Consequently, we can employ cod-
ing schemes from image or video compression. The
image-space framework extends depth image-based
representations towards a point-based representa-
tion. This means that although the data is repre-
sented in image-space each pixel basically corre-
sponds to a discrete point sample of the captured
surfaces. Therefore, the point samples constitute
a dynamic point cloud of the objects in the scene.
This allows for arbitrary topology changes which
is not trivially handled using other representation,
e.g. triangular meshes. For our free-viewpoint
video system multiple video streams are synchro-
nously recorded. After capturing we process the
images to have not only color information for each
pixel but also depth, and optionally normal and
splat information. The latter two attributes are
used for high-quality point rendering. These multi-
attributed video images are then encoded using im-
age or video coding schemes and stored to disk.
During playback free-viewpoint video sequences
can be streamed and decoded over the network or
from local disk and displayed on screen using high-
quality point-based rendering. For this purpose, our
framework allows for view-dependent decoding and
blending of the different camera images.

666



3.1 Data Acquisition and Processing

Acquisition of real-world data for free-viewpoint
video typically captures multiple concentric or par-
allel video sequences of the same scene. All cam-
eras have to be calibrated beforehand, i.e. the in-
trinsic and extrinsic parameters of each camera
are known. The video sequences of the multiple
cameras are recorded with synchronized cameras.
When acquiring 3D video objects we first perform
a background segmentation algorithm to calculate
for every input frame an image mask telling which
pixels belong to the object of interest, i.e., are fore-
ground pixels, and which pixels belong to the back-
ground.

After the input images have been processed by a
3D reconstruction algorithm, each input frame pro-
vides for each foreground pixel a depth value de-
scribing, in combination with the camera calibra-
tion parameters, the geometry of the object, and
a color value. Currently we use a shape-from-
silhouettes method based on the image-based visual
hulls algorithm [15] to extract the depth informa-
tion. For each foreground pixel, a surface normal
vector and a splat size can be stored as optional at-
tributes. This data can be computed for example by
the approach of [18]. In general, with the data rep-
resentation presented in the next section it is pos-
sible to encode any attributes describing the visual
appearance of an object or scene. Given a specific
rendering scheme or target application, any subset
of the above pixel attributes might be sufficient.

3.2 Data Representation

A key component for efficient compression and ren-
dering of free-viewpoint video is the underlying
data representation. An image-space data repre-
sentation allows to use conventional video coding
algorithms for compressing the time-varying data.
In our free-viewpoint video coding framework we
basically structure all point attributes in separate
images or separate channels of a (video) image.
This representation was adopted by the MPEG com-
mittee as an extension to the MPEG-4 Animation
Framework eXtension (AFX) for representing static
and dynamic point-sampled geometry [10].

AFX aims at providing 3D formats for natu-
rally looking scene objects. In the following,
we present the depth image-based representation
(DIBR) which is the standardized format for the

image-space data representation. Version 1 of
DIBR introduced depth images as representation for
still and animated 3D objects [8]. A 3D object or
scene is represented as a set of reference images
completely covering its visible surface. This data is
usually accompanied by some kind of information
about the object geometry. To this end, each refer-
ence image comes with a corresponding depth map,
an array of distances from the pixels in the image
plane to the object surface. Rendering is achieved
by either forward warping or splat rendering. But
with Version 1 of the specification of DIBR nodes
no high-quality rendering, as suggested in Section
3.3, can be achieved.

For Version 2 of the specification of DIBR nodes
we extended the initial concepts for high-quality
point-based rendering. For this purpose, the de-
finition of depth images were extended by the
fields normal, splatU and splatV. Since the latter
two fields are constrained to 8 bits, splatMinMax
specifies the minimum and maximum splat vector
lengths. Thus, both splatU and splatV fields have to
be scaled to the interval defined by the splatMinMax
field. The normal field specifies the normal vec-
tor for each pixel in the texture. The normal vector
should be assigned to the object-space point sample
derived from extruding the pixel with depth to 3-
space (by using the camera calibration parameters
already included in the depth image). The splatU
and splatV fields specify the local tangent plane and
reconstruction kernel needed for high-quality point
rendering. The next section will explain how we
use these three fields to enable high-quality point
rendering. If the fields are not specified, the de-
coder can calculate them on-the-fly during render-
ing. Refer to [8, 10] for detailed information on
DIBR Version 1 and Version 2 nodes. Figure 2 illus-
trates our representation combining multiple depth
image-nodes describing the different attributes.

color

position

normal

splatsize

camera i camera i+1

color

position

normal

splatsize

color

position

normal

splatsize

Figure 2: Illustration of the image-space data repre-
sentation for free-viewpoint video.

666



An example of all fields can be found in Figure
3. Note that the silhouette or shape can be coded
implicitly in the alpha channel of the texture field
which then can be used for shape-adaptive coding.
Explicit shape coding by coding separate images is
also possible.

color
silhouette

position
normal

splatsize

Figure 3: Example of a DIBR node.

When using the MPEG video format the normal
and splat fields can be encoded in the auxiliary im-
ages. MPEG-4 video allows for a maximum of
three auxiliary images, each auxiliary image con-
sisting of an 8 bit grayscale image. The normal
codecs proposed in [6, 2] allow to quantize sur-
face normals on 3 to 15 bit words. Würmlin et
al. observed that a precision of 7 bits is sufficient
for many applications [22]. For circular splats, the
splat sizes can also be efficiently quantized on 8
bit words. Thus, if an explicit encoding of surface
normal vectors and splat sizes is required, these at-
tributes can be encoded using two of the three op-
tional auxiliary images. However, as for the depth
values, the statistics of the normal and splat size
codewords are different from the statistics of color
data in video sequences. Thus, we cannot expect
the same performance from the MPEG compression
algorithms for normal and splat size data than for
color data. Furthermore, the lossy encoding does
not allow to reproduce exactly the same codewords
at the decoder. Hence, the MPEG encoding of nor-
mal vectors and splat sizes may lead to artifacts in
the rendering.

3.3 Free-viewpoint Video Rendering

High-quality rendering is based on the notion of
point-sampled surfaces as non-uniformly sampled
signals. Point-sampled surfaces can be easily con-
structed from the DIBR nodes by projecting the pix-
els with depth into 3-space. The discrete signals are
rendered by reconstructing and band-limiting a con-
tinuous signal in image space using so called resam-

pling filters [24]. To this end, we have to associate a
2D reconstruction kernel rk with each sample point
pk. The kernels are defined in a local tangent frame
with coordinates u and v at the point pk, as illus-
trated in Figure 4. The tangent frame is defined
by the splat and normal fields of the DIBR struc-
tures Version 2. The kernels are rendered as over-
lapping elliptical disks spanned by the u and v axes
of the tangent frame. To get a continuous approx-
imation of the surface the overlaps are blended in
image space by associating a gaussian alpha texture
with each kernel.

Figure 4: Illustration of local tangent planes and re-
construction kernels for high-quality point render-
ing.

Because only a part of the surface is generally
visible from the current viewpoint there is no need
to decode and render all points from all available
camera images. Due to anisotropic material prop-
erties of the object, the texture provided by a sin-
gle acquisition camera is only accurate for views
close tho the real acquisition viewpoint. There-
fore, we apply a view-dependent rendering tech-
nique by only displaying the points from those so-
called rendering-active cameras that are closest to
the current virtual viewpoint. We determine the
set of rendering-active cameras on the fly whenever
the view changes. To avoid discontinuities during
viewpoint transitions, which would appear as pop-
ping artifacts in the rendered video, we associate a
weight with each camera describing the impact of
its points to the rendering. Thereby, we achieve a
smooth blending by using the weight to scale the
amplitude of the gaussian alpha mask of each re-
construction kernel.

One way to compute the camera weights is given
by Unstructured Lumigraph Rendering [4]. How-
ever, we noticed in our experiments that this ap-
proach does not produce the best possible results
for our sparse camera setting. Due to the highly

666



non-linear blending, the transitions between two
rendering-active cameras is not seamless. We found
that a weight computed by the dot product between
the virtual and real viewing directions produces
smoother results. In a concentric camera setup, the
simple consideration of the viewing directions is
sufficient. Figure 5 and the accompanying video il-
lustrate camera weighting.

Figure 5: Illustration of view-dependent camera
weighting. Green dots indicate the inactive and yel-
low dots the rendering-active cameras. The size
of the circle corresponds to the camera rendering
weight for the virtual viewpoint of this rendering.

3.4 Coding Requirements

The 3DAV ad-hoc group (for 3D audio/visual)
of MPEG defined requirements for free-viewpoint
video [9]. Our data representation fulfills some
of these requirements directly. Besides straightfor-
ward requirements the most important are multiple
views, integration with SNHC computer graphics,
disparity information, occlusion handling, and dif-
ferent display types. Partial or view-dependent de-
coding of the data is directly possible due to the na-
ture of the data representation. Since the number of
cameras can be large and thus a huge data volume
is available it is not realistic to decode and render
all cameras in real-time. Hence, before decoding
we have to choose a subset of the cameras which
is needed to render an image for a given virtual
viewpoint. For this purpose we employ the algo-
rithm of [21], i.e. given a viewpoint and the camera
calibration data, we compute the contributing cam-
eras and read the data accordingly before decoding.
To this end, a feedback channel is required. Fur-
thermore, a coding method for image-space free-
viewpoint video should address the following fea-
tures for requirements like scalability, random ac-
cess, and interactivity:

• Multi-resolution. Scalability and progressiv-
ity with respect to resolution. This feature can
be achieved using a progressive encoding of
the data.

• Multi-rate. Scalability with respect to time,
i.e., the playback of the sequence is possible at
a different frame rate than the recording frame
rate. Backward playback should also be possi-
ble.

• Random access. A codec can access a specific
frame in constant time.

• Full-frames. Besides handling video objects
a codec should also handle full-frame images
to represent scenes.

The random access property is essential for un-
constrained free-viewpoint video as defined by
Lamboray et al. [12]. They propose to distin-
guish between constrained and unconstrained free-
viewpoint video. In the constrained case, the 3D
data can be rendered from any possible direction af-
ter real-time decoding, but either only small view-
point changes are allowed during rendering, or dis-
continuities in rendering are tolerated in presence
of large viewpoint changes. In the unconstrained
case, such discontinuities are minimized during ren-
dering and the spatio-temporal viewpoint trajectory
during playback can be arbitrary.

In addition, the codecs must enable encoding of
all attributes for the image-space framework, i.e.,
color, depth, optional normal and splat size. Fur-
thermore, a codec should be able to decode multiple
multi-attributed video frames in real-time. As side
information for each camera intrinsic and extrinsic
calibration parameters need to be available at both
encoder and decoder.

4 Image and Video Coding

A great variety of image and video coding meth-
ods are available today, further are under devel-
opment. Among those, we concentrate on stan-
dard formats developed by MPEG and JPEG, since
we target interoperable systems and these standards
represent the state of the art in image and video cod-
ing. We selected a few standard codecs which are
described in more detail below and which satisfy
our specific requirements best. Scalable video cod-
ing has also been widely studied [20, 23], result-
ing for instance in a standard known as MPEG-4
FGS. However, the compression efficiency is very

666



limited compared to it’s non-scalable counterparts
and the level of scalability is also quite restricted.
H.264/AVC is a recently finalized standard devel-
oped jointly by ISO/MPEG (MPEG-4 Part 10, Ad-
vanced Video Coding) and ITU/VCEG and repre-
sents the state of the art in video coding. However,
it only supports conventional rectangular video and
therefore shape information has to be encoded ad-
ditionally. Our early tests proved that H.264/AVC
is not competitive to shape-adaptive MPEG-4 for
3D video objects. Therefore, we refrained from
taking H.264/AVC into our evaluation. In Section
4.2 we review a non-standardized coding scheme
which however supports progressive encoding and
full random access.

4.1 Image and Video Coding Standards

MPEG-4 Core Profile. The MPEG-4 Core Profile
is the state of the art codec with support for arbi-
trarily shaped video objects. Shape is an inherent
requirement of our system as described before and,
hence, we employ the shape coding part (MPEG-
4 Shape Only Object). For random access support
we apply intra-only coding, i.e. all frames are coded
in intra mode, without any temporal prediction. In
our comparison we denote the intra-only coding in
MPEG-4 as MP4-I.

JPEG-2000. J2K represents the state of the art
in still image coding. It provides highest compres-
sion efficiency and full spatial and quality scalabil-
ity, due to wavelet transform coding. Therefore J2K
is the reference method for our evaluation satisfying
all requirements. As mentioned before we combine
it with MPEG-4 shape coding.

4.2 Average Coding

Since the conventional video coding schemes—
based on temporal prediction and motion
compensation—do not optimally support the
coding of unconstrained free-viewpoint video,
we investigate the use of temporally averaged
information in reference frames and encode the
difference between the original frame and the refer-
ence frame in the corresponding delta frames. The
reference frame thus contains a prediction value for
every foreground pixel for the respective attribute
and thus provides already a good approximation
of the target frame. The remaining differential
information in the delta frame should allow for

a better compression than the original frame. In
our experiments we averaged information over 5
frames. Within this approach, the codec can access
each frame in constant time and thus fulfills the
desired properties for unconstrained free-viewpoint
video coding.

Progressive Average Coding (PAC). Apart from
the silhouettes which require lossless encoding,
e.g. lossless MPEG-4 binary shape coding can
be used [11], the free-viewpoint video average
coder can be implemented using progressive im-
age coders. We implemented progressive attribute
codecs for the depth and color channels based on
the embedded zero-tree wavelet algorithm [19]. In
this case, we encode the depth information in one
grayscale image. The color data is encoded in the
YUV 4:2:0 format and appropriate ratios of the re-
spective channels are decoded in order to match the
desired bit rate. Progressive average coding is in-
troduced in [12].

5 Comparison and Evaluation

We evaluate our free-viewpoint video coding frame-
work using a real-world data sequence which was
recorded in our acquisition stage comprising 16
cameras. The sequence was recorded at the reso-
lution of 640x480 pixels and at 25 frames per sec-
ond with a total length of 250 frames. As can be
seen in Figure 7, our acquisition stage is part of a
telepresence environment. In this multipurpose in-
stallation the cameras are embedded behind glass
panels. The narrow spyholes in the wainscot ex-
plain the dark areas in the lower left corners of the
camera images in Figure 7. In our test sequence
the user moves in a range of approximately 2 me-
ters. Since we use a uniform 8-bit quantization of
the depth values, the sole quantization error is in
the order of ±4 millimeters. Figure 5 and the ac-
companying video shows additional results using
a synthetic test sequence provided by MPEG. The
input images of this sequence have a resolution of
320x240 processed at 25 frames per second with a
total length of 200 frames.

Figure 10 a) illustrates view-dependent decoding
of reference camera images. We locked the cam-
era selection for the virtual viewpoint of Figure 7
and rotated the viewpoint by approx. 90 degrees. It
can be seen that we only decode and render surface
points needed for the virtual viewpoint. However,

666



the decoded representation can carry redundant in-
formation when the same surface point is visible
in all decoded views. Elimination of such samples
would introduce high frequencies (holes) in the im-
ages and thus result in lower coding efficiency. Fig-
ure 10 b) shows a visualization of the point sam-
ple representation. We scaled down the splat sizes
of the rendered surface points for Figure 7. No
connectivity between the points is needed. But for
calculating local tangent planes and reconstruction
kernels at each point sample the corresponding nor-
mals are required. Figure 10 c) shows the estimated
surface normals.

Table 1 summarizes again all evaluated coding
schemes with their supplied coding requirements
for image-space FVV. Figure 8 illustrates the aver-
age PSNR values obtained from the evaluated cod-
ing schemes. Note the different scales of the PSNR
values. The experimental results from color and
depth coding are presented for various bit rates.
We devised per camera target bit rates of 128, 256,
384 and 512 kbps and allocated the available rate
such that color uses twice as much bits than depth.
The shape is encoded separately and accounts for
approximately 25 kbps per camera. The rendered
images in Figure 9 are composed of two reference
cameras, so the total bit rate for these images are
306, 562, 818 and 1’074 kbps.

MULTI

RES R

MULTI

ATE A

RANDOM

CCESS E

FULL

FRAM S

MP4

MP4-I

PAC

J2K

Table 1: Supplied coding requirements of evaluated
codecs.

As can be seen clearly in Figure 8, MPEG-4 Core
Profile is superior to all other codecs because of
its shape-adaptive nature. This gets also reflected
in the rendered FVV images in Figure 9 e) and
i). If neither progressive decoding nor multi-rate
or random access features are desirable this is the
best choice for image-space FVV. If multi-rate and
random access is needed, e.g. for slow motions or
backward play, MPEG-4 intra-only coding should
be considered as can be seen in the PSNR val-
ues in Figure 8 and Figure 9 d) and h). An inter-
esting observation is the fact that intra-only cod-

ing of depth values performs better than motion-
compensated coding. Both MPEG-4 codecs can
handle full-frame video but for full-frame intra-only
coding it is assumed that JPEG-2000 (J2K) will be
superior. Progressive average coding (PAC) and
J2K both have random access and progressive de-
coding capabilities. For 3D video objects PAC per-
forms better as can be seen again in Figure 8.

Rendered images with J2K coding exhibit signif-
icant visual artifacts at the object boundary. This
is due to coarsely reconstructed depth maps which,
combined with discontinuity at the shape bound-
ary, lead to substantial artifacts in the decoded depth
maps as illustrated in the difference images in Fig-
ure 6 a). The same effect is also visible in the differ-
ence image of the decoded color image in Figure 6
d). PAC demonstrates similar artifacts but the codec
can handle the boundary better because zero differ-
ence between the average frame and the delta frame
means a value of 128 and we employ padding with
128 in the delta frames. The errors for the MPEG-
4 codecs appear to be uniformly distributed as can
be seen in Figure 6 c) and f) which leads to better
visual results in the rendered FVV images.

6 Conclusions and Future Work

We presented image-space free-viewpoint video as
a representation and data format for re-rendering
multi-view video data from arbitrary viewpoints.
Since the representation is adopted as an exten-
sion of the MPEG-4 AFX standard and coding is
possible with standard MPEG-4 video codecs the
image-space free-viewpoint framework is possible
with available MPEG-standardized technology. Us-
ing special codecs further features like progressive-
ness and random access to the video data can be em-
ployed. We believe that free-viewpoint video gives
novel possibilities regarding replay, editing and in-
teracting with multi-view video data. Future work
includes investigating coding of normal and splat
fields and optimal bit allocation for the different at-
tributes of the representation. Furthermore, shape-
adaptivity as employed by MPEG-4 proves to be
much superior in terms of rate distortion. Investiga-
tion of shape-adaptive JPEG-2000 and H.264/AVC
would be interesting. In addition, an algorithm de-
termining the optimal window length for average
coding should be developed.

666



a) b) c) d) e) f)

Figure 6: Difference images between uncompressed and compressed reference video images, from a camera
contributing to the view in Figure 9. Depths at total bit rate of 512 kbps, magnified by a factor of 5: a) J2K,
b) PAC, c) MP4. Colors at total bit rate of 128 kbps, magnified by a factor of 2: d) J2K, e) PAC, f) MP4-I.

References
[1] Y. Bayakovski, L. Levkovich-Maslyuk, A. Ig-

natenko, A. Konushin, D. Timasov, A. Zhirkov,
M. Han, and I. K. Park. Depth image-based rep-
resentations for static and animated 3d objects. In
ICIP ’02, volume 3, pages 25–28, 2002.

[2] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient
high quality rendering of point sampled geometry. In
Proceedings of the 13th Eurographics Workshop on
Rendering, pages 53–64, 2002.

[3] H. Briceno, P. Sander, L. McMillan, S. Gortler,
and H. Hoppe. Geometry videos. In Proceedings
of ACM Symposium on Computer Animation 2003,
pages 136–146, 2003.

[4] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and
M. Cohen. Unstructured lumigraph rendering. In
SIGGRAPH ’01, pages 425–432, 2001.

[5] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Sei-
del. Free-viewpoint video of human actors. In SIG-
GRAPH ’03, pages 569–577, 2003.

[6] M. Deering. Geometry compression. In SIGGRAPH
’95, pages 13–20, 1995.

[7] M. Gross, S. Würmlin, M. Näf, E. Lamboray,
C. Spagno, A. Kunz, A. V. Moere, K. Strehlke,
S. Lang, T. Svoboda, E. Koller-Meier, L. V. Gool,
and O. Staadt. blue-c: A spatially immersive dis-
play and 3d video portal for telepresence. In SIG-
GRAPH ’03, pages 819–827, 2003.

[8] ISO/IEC JTC1/SC29/WG11 (MPEG). FDIS of
ISO/IEC 14496 Part 16: Animation Framework eX-
tension (AFX). Doc. N5397, Awaji Island, Japan,
December 2002.

[9] ISO/IEC JTC1/SC29/WG11 (MPEG). Applications
and requirements for 3DAV. Doc. N5877, Trond-
heim, Norway, July 2003.

[10] ISO/IEC JTC1/SC29/WG11 (MPEG). FPDAM1 of
ISO/IEC 14496 Part 16: Animation Framework eX-
tension (AFX). Doc. N6986, Hong Kong, China,
January 2005.

[11] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Os-
termann, and G. M. Schuster. MPEG-4 and rate-
distortion-based shape-coding techniques. Proceed-
ings of the IEEE, 86(6):1126–1154, June 1998.

[12] E. Lamboray, S. Würmlin, M. Waschbüsch,
M. Gross, and H. Pfister. Unconstrained free-
viewpoint video coding. In ICIP ’04, 2004.

[13] M. Levoy and P. Hanrahan. Light field rendering. In
SIGGRAPH ’96, pages 31–42, 1996.

[14] W. Matusik, C. Buehler, and L. McMillan. Poly-
hedral visual hulls for real-time rendering. In
EGRW ’01, pages 115–125, 2001.

[15] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based visual hulls. In SIG-
GRAPH ’00, pages 369–374, 2000.

[16] W. Matusik and H. Pfister. 3D TV: A scalable sys-
tem for real-time acquisition, transmission, and au-
tostereoscopic display of dynamic scenes. In SIG-
GRAPH ’04, 2004.

[17] J. Mulligan and K. Daniilidis. View-independent
scene acquisition for tele-presence. In International
Symposium on Augmented Reality ’00, pages 105–
110, 2000.

[18] M. Pauly, M. Gross, and L. Kobbelt. Efficient sim-
plification of point-sampled geometry. In VIS ’02,
pages 163–170, 2002.

[19] J. M. Shapiro. Embedded image coding using ze-
rotrees of wavelet coefficients. IEEE Transactions
on Signal Processing, 41(12):3445–3462, 1993.

[20] D. Taubman and A. Secker. Highly scalable video
compression with scalable motion coding. In
ICIP ’03, volume 3, pages 273–276, 2003.

[21] S. Würmlin, E. Lamboray, and M. Gross. 3d video
fragments: Dynamic point samples for real-time
free-viewpoint video. Computers & Graphics ’04,
28(1):3–14, 2004.

[22] S. Würmlin, E. Lamboray, O. G. Staadt, and M. H.
Gross. 3D video recorder. In Proceedings of Pacific
Graphics 2002, pages 325–334, 2002.

[23] Z. Zhang, G. Liu, and Y. Yang. High performance
full scalable video compression with embeddd mul-
tiresolution MC-3DSPIHT. In ICIP ’02, volume 3,
pages 721–724, 2002.

[24] M. Zwicker, H. Pfister, J. van Baar, and M. Gross.
EWA splatting. IEEE Transactions on Visualization
and Computer Graphics, 8(3):223–238, 2002.

666



a) b) c)

Figure 7: An image-space free-viewpoint video example. a) and c) are synchronized video images from
different viewpoints, b) is an intermediate view rendered from uncompressed data.

20

22

24

26

28

30

32

34

36

38

40

60 100 140 180 220 260 300 340

bit rate [kbps]

P
S
N

R
 [

d
B

]

MP4 MP4-I PAC J2K

a)

26

28

30

32

34

36

38

40

42

44

46

30 50 70 90 110 130 150 170

bit rate [kbps]
P

S
N

R
 [

d
B

]
MP4 MP4-I PAC J2K

b)

Figure 8: Results from our test sequences, PSNR values for devised bit rates: a) color values, b) depth
values. Note the different scales of the PSNR values. Bit rates are given for coding of one attribute only.

a) b) c) d) e)

f) g) h) i)

Figure 9: Rendered FVV images with different coding methods compared to image rendered from uncom-
pressed data a). Total bit rate of 512 kbps per camera: b) J2K, c) PAC, d) MP4-I, e) MP4. Total bit rate of
128 kbps per camera: f) J2K, g) PAC, h) MP4-I, i) MP4.

a) b) c)

Figure 10: a) Locked camera selection and rotated viewpoint for image of Figure 7, visualizing the depth
values and view-dependent rendering. b) Visualization of point sample representation by scaling down the
splat sizes. c) Visualization of point sample normals.

666


