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In this study we explore ways of using precomputed vector field topology as a guide
for interactive feature-based visualization of flow simulation data. Beyond stream-
line seeding based on critical points, we focus mainly on computing special stream
surfaces related to critical points and periodic orbits. We address the special case of
divergence-free vector fields which is often met in practical CFD data, and we extend
the topological analysis to no-slip boundaries by treating 3D velocity and 2D wall
shear stress in a unified way. Finally we apply the proposed techniques to flow simu-
lation data and demonstrate their usefulness for the purpose of studying recirculation
and separation phenomena.

1 Introduction

Vector field topology as a means to visualize the structure of fluid flow has been in-
troduced by Helman and Hesselink [HH89]. A first generation of topology-based vi-
sualization methods locates, classifies, and displays critical points of the given vector
field as point icons. Sophisticated icons can convey various information on the local
topology and geometry of the flow [GLL91]. Beyond critical points, periodic orbits
can be located [WS02] and classified based on their Poincaré maps. Another use of
Poincaré maps is to include them into 3D visualizations for a better understanding
of the flow near the periodic orbit [LKG98]. Finally, the topological skeleton of the
vector field is obtained by computing all critical points and periodic orbits together
with their stable and unstable manifolds, i.e. the union of streamlines converging in
positive or negative time to the critical point or periodic orbit.

The striking property of these direct topological methods is that they are fully
automatic and free of tuning parameters. A practical limitation is however that for
many kinds of vector field data the topology is far too rich to be displayed in full
detail. This led to concepts such as topological simplification [LL99, TSH00]. The
stable or unstable 2D manifold of a 3D saddle point is a particularly interesting fea-
ture as it indicates a local flow separation. However, displaying a larger number of
such stream surfaces leads to occlusion problems. Again, simplification is needed,
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and a possible solution is to only display their intersection curves, known as saddle
connectors [TWH*03] or as heteroclinic and homoclinic orbits.

When considering the use of vector field topology for visualizing CFD data, it
has to be kept in mind that topological features are not the final result an engineer
or scientist wants to see. The topological analysis can, however, be a valuable first
step to be followed by other visualization techniques. One possible strategy is to use
topology for segmenting a vector field into regions of similar flow. This is particularly
successful in 2D, while in 3D the notion of segmentation must be somehow relaxed
to a more local property [MBS*04].

A second approach is to use topological features as guides for a different type of
visualization. For example, a region-of-interest can be defined or a set of streamlines
can be seeded [YKP05] based on topological features. If an interactive, explorative
type of visualization is pursued, visual clutter can usually be avoided, so that simpli-
fication is often not needed, even when stream surfaces are used for the visualization.

In this work we focus mainly on 2D manifolds of 3D saddles and saddle type
periodic orbits. We believe that compared to arbitrarily chosen stream surfaces, such
2D manifolds can be more expressive and in most cases also of a simpler shape. In
particular, recirculation zones and separation surfaces are well suited for this type
of visualization. The underlying idea of visualizing topologically meaningful stream
surfaces and their relationship to topological features has previously been used by
Garth et al. [GTS*04] in their visualization of a vortex breakdown in the flow over a
delta wing.

Computing stream surfaces in the vicinity or even converging to singularities, re-
quires robust algorithms. The classical stream surface algorithm is that of Hultquist
[Hul92]. Here, the stream surface is generated by integrating a sequence of dis-
cretized streamlines and triangulating between them where appropriate. Triangle
shape is optimized by choosing the shorter of the two possible edges in the pro-
cess of triangulating between two streamlines. Triangle size is controlled by seeding
new streamlines or stopping streamlines. This basic algorithm can be implemented
with a depth-first strategy. However, to evaluate the criteria for adding or stopping
a streamline, it is more convenient to used a breadth-first strategy where a current
“front” is used. Garth et al. [GTS*04] added a refinement criterion based on the an-
gle between adjacent segments of the front. Theisel et al. [TWH*03] remarked that
Hultquist’s algorithm fails if the tangents of the front are almost in the direction of
the vector field, a situation which can arise e.g. near critical points or periodic or-
bits. They use as an initial front a line perpendicular to the vector field. This way,
even tightly spiralling streamlines can be handled. However, the choice of the line is
critical to avoid cracks or multiple coverings. Also, this approach produces spurious
internal boundaries which have to be postprocessed for a correct result.

Vector field topology requires differentiable 2D or 3D vector fields. Usually, no
further restriction is made for the vector fields. This is appropriate in the context
of dynamical systems [GH83], which was the original application of vector field
topology. Vector fields arising in physics, however, are often known to be divergence-
free or irrotational or both. In Sec. 2 we will explore some of the implications of
zero divergence to vector field topology and its application to the visualization of
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flow structures. In most CFD simulations, no-slip boundary conditions are imposed
on some of the boundaries. Extending vector field topology to no-slip boundaries is
the topic of Sec. 3. And finally, in Sec. 4 we will discuss some applications.

2 Topology of divergence-free vector fields

The case of a divergence-free (sometimes called solenoidal) vector field is particu-
larly important in fluid dynamics. Examples of divergence-free vector fields are: ve-
locity fields in hydrodynamics, vorticity fields, magnetic fields. Further divergence-
free fields may be obtained by multiplying a given vector field (having neither
sources nor sinks) with an appropriate scalar field. This is based on the fact that
multiplication with a nonvanishing scalar field does not change the topology. As an
example, the momentum field has the same topology as the velocity field, because
they are identical up to a nonvanishing factor, the density. If the velocity field for in-
stance is a steady solution of the compressible continuity equation ∂ρ

∂ t +∇ ·(ρu) = 0,
then the momentum field would be divergence-free.

The special case of divergence-free vector fields has an effect on the analysis of
critical points. Asimov [Asi93] mentions that in 2D and 3D divergence-free vector
fields sources and sinks are not possible, but any types of saddles are. And in the 2D
case, there is a new structurally stable type of critical points, namely the center. The
center is said to have constrained structural stability. The center has the property
that in a neighborhood, all streamlines are closed.

A similar analysis as for critical points can be done for periodic orbits (closed
streamlines) in divergence-free 3D vector fields. Periodic orbits are of interest as
they can indicate recirculation zones. Many properties of the periodic orbit can be
studied in two dimensions by computing a Poincaré map. This is done by selecting
a surface patch S which is everywhere transversal to the vector field. If sufficiently
small, this so-called Poincaré section S is intersected by the periodic orbit in a single
point. For a sufficiently close point x ∈S , the Poincaré map P(x) is then defined
as the first intersection of the streamline seeded at x with S .

Periodic orbits are called hyperbolic if the eigenvalues of the linearization P of
P , the so-called Floquet multipliers, lie off the complex unit circle. According to
Asimov [Asi93], hyperbolic periodic orbits can be classified into sources, sinks, sad-
dles, twisted saddles, spiral sources and spiral sinks depending on the Floquet multi-
pliers.

The Poincaré map P has a fixed point where it is intersected by the periodic
orbit. For the eigenvalue analysis, P is now linearized in a neighborhood of a fixed
point. This linearized map P takes an infinitesimal circle centered at the fixed point
to an ellipse with the same center. If the velocity field is divergence-free and thus
volume preserving, the fluxes through the circle and the ellipse are equal. The flux
is the integral of the normal velocity over the circle or ellipse. The normal velocity
can be linearized as well, and because of symmetry, it can be replaced by its average.
It follows that P must be area conserving, i.e. has a determinant of one. The sign is
positive because a Poincaré map always conserves orientation.
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2.1 Source and sink periodic orbits

It is now easy to see that periodic orbits of type source or sink are not possible
for a divergence-free vector field. In the case of a source (either node source or
spiral source), both eigenvalues lie outside of the complex unit circle. Hence, the
determinant of P has absolute value greater than one, meaning that the area of an
infinitesimal circle is not conserved under P . The same can be concluded for sinks.

2.2 Saddle and twisted saddle periodic orbits

Periodic orbits of type saddle or twisted saddle are possible in divergence-free vec-
tor fields. Such periodic orbits are particularly suitable for visualization because they
have a stable and an unstable manifold which are stream surfaces converging to the
periodic orbit in positive or negative time. The nice property of these manifolds is
that they “return to themselves” when following the periodic orbit for a full turn. This
means, if a streamline is seeded on the intersection of the manifold with a Poincaré
section and sufficiently close to the periodic orbit, it will return to the same intersec-
tion curve. If the seed curve is reduced to an infinitesimal line segment, its behav-
ior is given by the eigenvalues of P. If both eigenvalues are positive, the generated
stream surface band returns untwisted to the Poincaré section. It may have done an
integer number of full (360 degrees) so-called extrinsic twists. And it can shrink or
stretch, depending on the eigenvalue associated to the eigenvector aligned with the
seed line. If both eigenvalues are negative, the stream surface band does an additional
half twist. In our case of divergence-free vector fields the product of the two eigen-
values equals one because of the above-mentioned conservation of area. Because of
their property to return to the seed curve, (un-)stable manifolds are the ideal stream
surfaces to depict the local behavior of the field near the periodic orbit.

2.3 Center periodic orbits

If a periodic orbit in a divergence-free vector field has complex eigenvalues of P its
type can be neither spiral source nor spiral sink. It must be the in-between case with
eigenvalues on the complex unit circle. This is not a hyperbolic case, but has the
constrained structural stability similar to that of center critical points in 2D fields.
By analogy, we call it a center periodic orbit.

The linearized Poincaré map P of such a periodic orbit has complex eigenvalues
and a determinant of one. It can therefore be written as P = TRT−1 where R is a
pure rotation. It follows that T applied to an infinitesimal circle is an ellipse which is
invariant under P. This means that a stream surface seeded at this ellipse returns to
the ellipse after following the periodic orbit for a full turn. The same idea can be used
for finding finite invariant tori. The goal is here to find a closed seeding curve in the
Poincaré section which is invariant under P . As an initial guess a scaled version of
the infinitesimal ellipse can be used. If starting from this an invariant seeding curve
can be found, the problem is solved. However, we found that in practice this is a
numerically challenging problem.
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3 Topology near no-slip boundaries

3.1 Velocity and wall shear stress

By definition, a critical point is an isolated singularity of the vector field. Vector
topology does not treat extended singularities. However, these occur in practical
vector fields having solid boundaries with associated no slip boundary conditions.
The velocity field u(x) itself is zero on such a boundary, but by using the unsigned
distance to the boundary as a scalar field s(x), it can be written as a product

u(x) = s(x)ũ(x), (1)

where the vector field ũ(x) can be assumed to exist also on the boundary and to be
nondegenerate there.

From the divergence-free criterion follows for points on the boundary:

0 = ∇ · (sũ) = (∇s) · ũ+ s(∇ · ũ) = (∇s) · ũ (2)

which means that on the boundary the field ũ has no normal component. In terms of
vector field topology this means that no streamline of ũ ever passes from the solid
boundary to the interior or vice versa.

If Eq. 2 holds, then on the boundary, ũ is related to the wall shear stress τw by
τw = µũ where µ is the kinematic viscosity of the fluid. Because of this proportion-
ality ũ has the same topology as the 2D field of wall shear stresses. At interior points,
s is nonzero and therefore ũ has the same topology as u. Hence, the field ũ nicely
combines the wall shear field with the interior velocity field. However, this relies on
the divergence-free property of the vector field. In the general case the field ũ has a
normal component on the solid boundary. It can not be used to produce the topology
of both the velocity field and the wall shear field. Of course the two vector fields
could be blended, but then the topology of u may not be conserved.

Returning to the case of a divergence-free field, we saw that no streamline of
ũ passes from the interior to the boundary. But there may be convergence towards
critical points on the solid boundary, which are 3D saddle points having two of its
eigendirections along the boundary surface. Also, convergence towards periodic or-
bits on the boundary is possible.

The advantage of using the field ũ is that it is no more necessary to extract
both 2D and 3D critical points (with possible consistency issues). Critical points
on the boundary are now regular 3D critical points. In the special case of u being
divergence-free, sources and sinks can be excluded due to structural stability and
the fact that ũ has the same topology as u. Consequently, such critical points must
be saddles or spiral saddles. Furthermore, by Eq. 2 their two-dimensional stable or
unstable manifolds lie completely on the boundary. The eigenvalue belonging to the
remaining eigenvector is real-valued. Its sign determines whether the point is on a
separation line (positive sign) or a reattachment line (negative sign).

In discrete data, dividing by s has the drawback that due to interpolation inside
the cells the topology is changed. A better strategy is to use the original field u for
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computing and analyzing the critical points in all cells which are not adjacent to
no-slip boundaries. Only for computing the topology in the first layer of cells at the
boundary, the modified field ũ is actually needed. The following steps are performed
for cells adjacent to no-slip boundaries:

1. On interior nodes: compute ũ by dividing u by the wall distance.
2. On boundary nodes: interpolate u on two points on the boundary normal, com-

pute ũ, and linearly extrapolate to the boundary node.
3. Find critical points on the cell faces on the no-slip boundary. Use a 2D algorithm

for finding the critical points, but classify them as 3D critical points.

3.2 Critical points on no-slip boundaries

Critical points on no-slip boundaries are important features for the study of flow
separation. By applying the 3D classification, we will now concentrate on saddles
and spiral saddles and ignore sinks and sources. These are of minor interest for the
study of flow separation, and in divergence-free vector fields they do not occur.

Attracting (i.e. 2:1) saddles and spiral saddles have their stable manifold com-
pletely on the boundary. Any boundary curve of this manifold is a separation line.
Similarly, repelling (1:2) saddles and spiral saddles have their unstable manifold
on the boundary, so any boundary curve of it is a reattachment line. The case of
spiralling separation (called tornado-type separation in [SGH06]) has not been dis-
cussed much in the visualization community.

A pattern we encountered often consists of a pair of spiral saddles, one of them in
the interior and one on a solid boundary (see Fig. 1, points C1 and C2, respectively).
They are rotating in the same sense and mark a recirculation area.

Fig. 1. Sketch of typical recirculation zone with two critical points of type spiral saddle
(C1,C2) and one periodic orbit (P1,P2) involved. 1D manifolds (red curves) nearly meet. 2D
manifolds (shown as blue curves) have a strong spiralling component.

The 1D manifolds nearly meet, while the 2D manifold of C1 encloses the recircu-
lation zone. This stream surface is not closed, so recirculation is not perfect. Within
the recirculation zone there is a periodic orbit (P1 and P2). Finally, the points A and B
appearing as saddles in the planar section, seem to indicate a separation line. How-
ever, these points are topologically nothing special, they are just the points where the
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skin friction line is intersected orthogonally by the planar section. This means that
many nearby skin friction lines can be regarded as separation lines.

Surana et al. in their exact theory of flow separation [SGH06] suggest as a cri-
terion ”strong hyperbolicity”, i.e. large absolute eigenvalues of the saddles in the
orthogonal section. An alternative and purely topological definition would be to pick
the boundary curve of the unstable manifold of C2 (which lies entirely on the solid
boundary). In general this is composed of separatrices of nearby saddle points on the
solid boundary.

4 Applications

4.1 Pelton turbine

A first application is a dataset resulting from a CFD simulation by VA Tech Hydro
for the study of a Pelton turbine with the primary goal to optimize the stability of the
water jets. The jets generated in the injectors (Fig. 2) must have a temporally stable
circular cross section in order to optimally hit the runner buckets. Quality of the jets
is mainly affected by vortices evolving in the outer ring where the water is deflected
into the injectors. In Fig. 3 taken near the first of six injectors, the red stream surface
shows the separation vortex arising because the flow does not follow the boundary.
The yellow stream surface shows a smaller scale tornado-type separation.

Fig. 2. Pelton turbine with five injectors. Fig. 3. Two vortices extending from the ring
distributor into the first (of six) injectors

.

Inspecting the nearby critical points reveals that there is a pair of spiral saddles
in this region, one of them is on the no-slip boundary (upper right in Fig. 4). A quick
exploration by integrating a streamline forward and backward from seed points near
the critical points gives an idea of the stable and unstable manifolds of the two spiral
saddles (Fig. 5).

Appeared in: H.Hauser, H. Hagen, H.Theisel (eds)., Topology-based Methods in Visualization



8 Ronald Peikert and Filip Sadlo

Fig. 4. Extracted interior (blue) and bound-
ary (red) critical points. Periodic orbit (ma-
genta).

Fig. 5. Streamlines seeded near the bound-
ary critical point (black) and the interior
critical point (white).

Consistent with the situation sketched in Fig. 1, the stable manifold of the interior
critical point encloses the recirculation zone (Fig. 6). The recirculation zone contains
a single periodic orbit which is of twisted saddle type (Fig. 7). In this case, the stable
and unstable manifolds of the periodic orbit are classical Möbius strips with a half
twist and no further extrinsic twisting.

Fig. 6. Stable manifold of interior critical
point.

Fig. 7. View from the wall with stable and
unstable manifolds of the periodic orbit (red
and blue stream surfaces).

Similar flow patterns as near the first injector also appear near the third and fifth
injector. In all cases, a periodic orbit of type twisted saddle can be observed. How-
ever, in the case of the third injector, the eigenvalues are relatively close to -1, which
suggests that instead of the twisted saddle, the center type (with a rotation angle close
to 180 degrees) would be possible as well for slightly different data.
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4.2 Draft tube

As a second application, we examined the flow in the incompressible CFD simulation
of a Francis draft tube. The design of the draft tube is such that in its lower part
it is split into two channels. As observed in the simulation data, the right channel
exhibits significantly stronger vortices. For topological interests we picked one of the
strong vortices extending horizontally and almost orthogonally to the primary flow
direction. The transient simulation of this vortex consists of 3 interesting and quite
steady phases: First there is a vortex breakdown bubble of the unstable 2D manifold
of a spiral saddle, enclosed in the stable 2D manifold of a spiral saddle. Then the
bubble collapses and the stable manifold develops into a vortex breakdown bubble.
Finally this bubble collapses too, leaving a common vortex. We have chosen a time
step of the first phase where the vortex breakdown bubble is quite steady and hence
the examination of its instantaneous topology should reveal some of its properties.
Additionally, as reported by [SMH98], vortex breakdown bubbles are not necessarily
the result of unsteady flow behavior.

Fig. 8. Tornado-type separation and vortex in the draft tube dataset. Stream surface (trans-
parent blue) starts at saddle and goes upstream enclosing a vortex breakdown bubble (blue
streamline) containing a periodic orbit (red). Critical points (red) and vortex core lines (green).

Fig. 8 gives a view from top on the flow going from left to right. It shows (from
bottom to top) a tornado-type separation with a critical point on the (outer) wall, and
a vortex core line that connects to that critical point and extends across the channel
into the part where the two channels merge. There is a recirculation region identified
as a vortex breakdown bubble with a critical point at its bottom and a periodic orbit
inside it. Another critical point resides above the bubble where the detected core
line is disrupted. The stable 2D manifold of that saddle is visualized by an upstream
surface that encloses the vortex breakdown bubble and approaches the wall.
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Fig. 9. Sketch of ideal (unperturbed)
vortex breakdown bubble. Critical points
(C1,C2,C3) and one periodic orbit (P1,P2).

Fig. 10. Sketch of real-world (perturbed)
vortex breakdown bubble. No intersection
of the two 2D manifolds due to nonzero di-
vergence in this region.

Unperturbed vortex breakdown bubbles (Fig. 9) are axisymmetric and consist
of nested invariant tori. In the real world [Ven02, TH03], they contain regions of
chaotic dynamics with possible islands of stability and KAM tori (impermeable)
or Cantori (permeable) separating the regions (Fig. 10). We refer the reader to the
paper of Sotiropoulos et al. [SVL01] for details. In the field of visualization, vortex
breakdown bubbles have been studied recently ([TGK*04, GTS04, GTS*04]).

In our case, a vortex breakdown bubble containing a periodic orbit has been iden-
tified (Fig. 10). It seems that the stable 2D manifold of the upper saddle (transparent
stream surface in Fig. 8) marks the end of the recirculation region since Spohn et al.
[SMH98] report that vortex breakdown bubbles exhibit permanent inflow and out-
flow at the downstream tail. The fact that the two manifolds do not intersect is due to
the inaccuracy of the simulation leading to nonzero divergence in this region.

Computing the vortex breakdown bubble as a stream surface seems impossible
with Hultquist-type algorithms due to the complex folding and also due to the quasi-
periodicity of the streamlines. Since a single streamline covers the toroidal stream
surface densely, it can be seeded near the critical point and sampled on a voxel grid.
The resulting field can then be visualized by an isosurface. To reduce aliasing effects
and enhance resolution, a voxel value is not set in a binary manner when the stream-
line passes but computed based on coverage. An initial sequence of integration steps
was not sampled in order to avoid an isolated spiral from the saddle point to the
unstable manifold of the bubble.

Fig. 11 shows a slice of the resulting voxel field after tracing the particle for 109

time steps. Its resolution is 750×600×600 and it spans the complete bubble. Fig. 12
shows a finer sampling of a subregion. This makes the massive folding of the surface
visible. Fig. 13 and 14 show an isosurface of the voxel field with the complete bubble.
The isolevel was chosen to be 5% instead of 50% in order to avoid unmanageably
many triangles in the fine folds. By adding a Gaussian smoothing step, we were able
to cut down the the triangle count to about 20 million.
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Fig. 11. Slice of the voxel field that sampled
a single streamline.

Fig. 12. Detail sampled at higher voxel res-
olution.

Fig. 13. Isosurface of the voxel-sampled sin-
gle streamline on the surface of the break-
down bubble.

Fig. 14. Same isosurface clipped for view to
the inside.

5 Conclusion

We gave examples of flow features in real CFD datasets which can be nicely illus-
trated by 2D manifolds of 3D saddles. Our experience showed that stream surface
integration gets particularly challenging for these special cases of stream surfaces.
Very robust stream surface algorithms are required which can cope with situations
such as tightly winding spirals occurring in 2D manifolds of spiral saddles or sad-
dle type periodic orbits. This issue is worth being addressed in further work, and as
the ultimate goal in this line of research we see a stream surface algorithm which
is fully “topology aware”, i.e. which behaves correctly when integration approaches
any kind of topological feature. The authors acknowledge VA Tech Hydro for the
simulation data. This work was funded by Swiss Commission for Technology and
Innovation grant 7338.2 ESPP-ES.
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