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Figure 1: Ablating a polyp in the hysteroscopy simulator.

ABSTRACT

A central training objective of virtual reality based surgical simu-
lation is the removal of pathologic tissue. This necessitates stable,
real-time updates of the underlying mesh representation. Within the
framework of a hysteroscopy simulator, we have developed a hybrid
cutting approach for tetrahedral meshes. It combines the topolog-
ical update by subdivision with adjustments of the existing topol-
ogy. Moreover, the mechanical and the visual model are decoupled,
thus allowing different resolutions for the underlying mesh repre-
sentations. With our method, we can closely approximate an arbi-
trary, user-defined cut surface while avoiding the creation of small
or badly shaped elements, thus strongly reducing stability prob-
lems in the subsequent deformation computation. The presented
approach has been integrated into a virtual reality training system
for hysteroscopic interventions. The performance of the algorithm
is demonstrated by examples of intra-uterine tumor ablations.

Keywords: tetrahedral meshes, cutting, surgical simulation, mass-
spring models

1 INTRODUCTION

Surgical simulation has become a popular application in the field
of virtual reality based training [11]. One of the essential parts
of such a system is the cutting of soft, deformable tissue. Since
tetrahedral meshes are a popular representation for volumetric ob-
jects, methods to impose topological changes on such meshes are
required. Cutting a tetrahedral mesh is a non-trivial problem, due
to several conflicting requirements. On the one hand, the cutting
process should not create badly shaped elements, which could cause
numerical instabilities during deformation calculation. On the other
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hand, the user defined cut trajectory should be closely approximated
for realistic appearance. So far, most methods have concentrated
only on one of these problems. We take a different approach by
combining these methods to develop a stable and realistic cutting
system. We introduce a hybrid approach for cutting tetrahedral
meshes, which approximates an incision as well as possible, while
avoiding the creation of small or degenerate tetrahedral elements.
Moreover, we decouple the mechanical simulation and visualiza-
tion domains, which allows modelling of fine surface detail without
increasing the computational burden on the physical simulation.

The paper is organized as follows: in section 3, we briefly re-
view previous work related to cutting tetrahedral meshes in virtual
surgery. Thereafter, section 4 presents our hybrid cutting approach.
Section 5 deals with the visual representation and its coupling to
the deformation model. Experimental results are discussed in sec-
tion 6, and we conclude and provide an outlook to future work in
section 7.

2 MEDICAL APPLICATION AREA

We have developed our new cutting approach in the context of hys-
teroscopy simulation. In hysteroscopy, a surgeon uses a curved
loop electrode as a cutting tool to ablate pathological tissue inside
the uterus (Figure 1). The loop electrode is positioned behind the
pathology and then advanced towards the camera from the back,
cutting off tissue parts. Due to this, the actual cutting process can-
not be seen by the surgeon. For this reason, non-progressive cutting,
where a tetrahedral element is decomposed only once it has been
completely traversed, is a reasonable approximation for our appli-
cation area, and so we define the cut only once the loop electrode
has traversed the pathology. Moreover, there is little, if at all, resis-
tance to the cut tool movement through the tissue. Therefore, in the
current stage, we do not model any interaction of the cutting tool
with the deformable object during a cut. The deformable objects
in our simulation are represented by tetrahedral meshes and sim-
ulated by a mass-spring model, including distance-, volume- and
surface-preserving forces [19].



3 RELATED WORK

Previous approaches can be classified into three different cate-
gories. The first and simplest methods delete tetrahedra which are
touched by the cutting tool, as for instance described in [7, 4]. No
new elements are created, however, this approach violates the phys-
ical principle of mass conservation. Furthermore, it requires very
high resolution meshes for acceptable visual quality.

The second class of methods restricts incisions to be aligned with
existing faces. This has the advantage of only small increase in el-
ement count, even after multiple cuts. However, the approximation
quality of the cut path as well as the smallest possible size of ex-
cised material pieces depends highly on the initial resolution of the
mesh. [15] and [18] apply the concept of node snapping, where ex-
isting nodes are moved to the cut surface to approximate the tool
trajectory. However, this requires an update of mesh parameters of
the undeformed mechanical model, which can be difficult if dis-
placements are large.

In the third class of methods, elements are actually subdivided
into smaller ones. Since a mesh-based physical simulation needs
a consistent mesh at all times, a cut tetrahedron must be decom-
posed into smaller elements such that a new consistent configu-
ration results. To achieve this, many small tetrahedra have to be
created, which dramatically increases element count and thus may
slow down the simulation substantially. Even worse, very small
or badly shaped tetrahedra (i.e. slivers) may be created, causing
simulation instabilities, unless very small time steps are used. In
[10] the problem of badly-shaped tetrahedra is handled by remov-
ing such elements on-the-fly. However, not all elements can be re-
moved without larger changes to the mesh. Moreover, the approach
again violates the principle of mass conservation.

There is a large number of ways a tetrahedron can be cut, de-
pending on the number of edge intersections, and each must be han-
dled separately. For each case, pre-defined decomposition schemes
are usually used to subdivide tetrahedra [8, 9, 3]. In addition, great
care must be taken to ensure that new adjacency information is al-
ways correct.

Most existing cutting approaches are either non-progressive or
semi-progressive meaning that a tetrahedron can only be cut once
the cutting tool has completely moved through the element. De-
pending on mesh resolution, this can cause a noticeable lag between
the actual cutting and the movement of the tool, making it difficult
to control the cut. In [1] a progressive approach has been presented,
where the decomposition of a tetrahedron is changed depending on
the movement of the cutting tool inside an element. However, the
approach is highly non-trivial to implement and also poses some
stability problems due to badly-shaped elements. Progressive mesh
cutting has also been described in [13], but due to badly-shaped el-
ements small time steps are required, which prevents the simulation
from running in real-time.

Finally, work has been published where simulation and visual-
ization domains are decoupled. [12] presented a virtual node al-
gorithm, where nodes and elements are copied such that no new
smaller elements are created. Elements are only decomposed in
the visualization domain. A tetrahedron cannot be cut more than
three times, however, and the resolution of the surface depends on
the resolution of the underlying tetrahedral mesh. [14] simulates
elasticity and plasticity as well as fracture on a low resolution tetra-
hedral mesh, while using an embedded triangle mesh to visualize
the object surface. However, the new visualization surfaces created
after an object is fractured depend on the resolution of the tetrahe-
dral mesh. Other related work focusing on fracture modelling is
reported in [17]. They use a related approach to perform offline
computations of fracture propagation in tetrahedral FEM meshes.

4 CUTTING TETRAHEDRAL MESHES

4.1 Overview

We introduce a new hybrid approach to cutting tetrahedral meshes.
A given cut trajectory - in the following called sweep-surface - is
approximated as closely as possible, while lowering the increase in
element count and avoiding the creation of small and badly-shaped
tetrahedral elements. When cutting a deformable tetrahedral mesh,
we carry out the following steps:

1. Define sweep-surface according to tool movement.

2. Determine edges intersected by the sweep-surface.

3. To avoid small or badly shaped elements, identify the nodes
close to the sweep surface. Along these nodes the mesh can
be separated.

4. Separate existing tetrahedra or decompose them into smaller
sub-elements.

5. Move selected nodes onto the sweep-surface for better cut ap-
proximation (node-snapping).

6. Improve mesh quality with local relaxation.

7. Update deformation parameters for stable simulation.

4.2 Definition of the Sweep-Surface

Before a cut can be performed, the sweep-surface must be defined.
It can be any surface that does not self-intersect and can be triangu-
lated. Moreover, it can intersect the model totally or only partially.

In our implementation, the cutting tool is defined as a curve ap-
proximated by n line segments, as can be seen in Figure 2. The
system constantly checks for collisions of the cutting tool with the
deformable model. If this has been the case, the starting curve of the
sweep-surface is defined. Thereafter, the tool movement is tracked
until it fully leaves the deformable object. At this point, the end

start curve

end curve

(a) Sweep-surface defined by start
and end curve representing cutting
tool.

end curve

start curve

(b) A partial cut.

Figure 2: Definition of the sweep-surface: (a) The cutting tool is
defined as a curve defined by n line segments. Once the tool collides
with the model, the start curve of the sweep-surface is defined. When
the tool leaves the object, the end curve is defined. Connecting cor-
responding sample points of both curves linearly interpolates the cut
trajectory and defines the sweep-surface, which can be triangulated
easily. (b) In a partial cut the sweep-surface does not intersect the
model totally.



curve of the sweep-surface is defined. The cut trajectory is then
linearly interpolated by connecting corresponding sample points on
the start and end curves. Now, the surface can easily be triangulated
by 2n triangles.

4.3 Selecting Cut-Nodes and Cut-Edges

Once the sweep-surface has been defined, it is possible to determine
those tetrahedra which are simply separated from each other and
those that are actually decomposed into smaller sub-elements. If
an edge is cut close to a node, the cut is constrained to go through
that node, thus avoiding the generation of small tetrahedra and an
increase in element count. If an edge is incised close to the middle,
chances are lower that small sub-elements are created. Thus, such
an edge is a candidate for subdivision. For the discussion below, we
introduce the following terms:

cut-node: a node that is sufficiently close to the sweep-surface and
to which a cut is constrained to. None of its incident edges can
be cut.

cut-edge: an edge which is intersected by the sweep-surface and
for which none of its end nodes are cut-nodes.

d

(a) For all edges which are intersected by the sweep-surface, the end
node closer to the intersection point is selected. If this node lies within a
threshold d, it is marked as a cut-node. All intersected edges which have
no cut end nodes are marked as cut-edges.

d
d

(b) All cut-nodes are duplicated and all cut-edges are split. The sweep-
surface is closely approximated without creating ill-shaped elements.

Figure 3: Selecting cut nodes in 2-D.

To find the sets of cut-nodes (Nc) and cut-edges (Ec), we have
implemented a similar approach to [15]. We start out with Ec con-
taining all edges e, which intersect the sweep-surface. For all edges
in Ec, the end node n which lies closest to the intersection point is
selected. As shown in Figure 3, if the node’s distance to the sweep-
surface is smaller than a threshold d, the node is added to Nc, and
all intersected edges incident to n are removed from Ec. Thereafter,
all cut-nodes in Nc are duplicated, while all cut-edges in Ec are split
into two new edges, thereby also creating two new collocated end
nodes at position pint . The reference position of these new nodes

in the undeformed state, p0
int , is obtained by linearly interpolating

the reference positions p0
0 and p0

1 of the previous end nodes of the
cut-edge, using the intersection parameter t in the deformed config-
uration.

t = ||(pint −p0)||/||(p1 −p0)||
p0

int = p0
0 + t(p0

1 −p0
0)

(1)

In rare cases an edge may be cut twice, because the sweep-
surface can be curved. If this happens, both cuts are simply dis-
carded and corresponding tetrahedra are decomposed according to
the cuts through its other edges as described below.

4.4 Hybrid Tetrahedron Decomposition

Now that the sets of cut-nodes and cut-edges have been determined,
we have all the pre-requisites to actually realize the cut by splitting
and decomposing tetrahedra.

We have extended the methods reported in [3, 8], which re-
stricted possible cut states to intersections with one to four edges
of a tetrahedron. This resulted in five distinct, rotationally-invariant
decomposition schemes (A-E) as depicted in Figure 4. We intro-
duce three new schemes, where a tetrahedron has either one cut-
node and two cut-edges (scheme X), two cut-nodes and one cut-
edge (Y), or only three cut-nodes (Z). In these schemes, the cut is
forced to go through nodes, avoiding the creation of small or badly-
shaped tetrahedra and lowering the increase in element count.

The decomposition schemes (A-E) can be characterized by a
simple binary six-digit cut-edge-code, where each digit stands for a
specific edge being cut or not. Meanwhile, schemes X and Y addi-
tionally need a binary four-digit cut-node-code to determine which
of its nodes are cut. We restrict the schemes with cut-nodes to com-
plete cuts only, we do not cut nodes for tetrahedra which are only
partially cut by the sweep-surface. Therefore, a node which could
be marked as a cut-node is always treated as a normal, non-cut node,
if one of its incident tetrahedra is only partially cut. After com-
puting the cut-edge-code and cut-node-code for each tetrahedron,
the mesh can be separated along the sweep-surface. All tetrahedra
which have one or two cut-nodes and at least one cut-edge are de-
composed according to schemes X and Y. If a tetrahedron has only
cut-nodes but no cut- edges, as in scheme Z, it is simply detached
from its neighbors. All tetrahedra containing only cut-edges but no
cut-nodes are decomposed according to schemes A-E.

Furthermore, we apply a new symmetric face triangulation
scheme such that the sub-elements have a better shape. In Fig-
ure 5(a), the face triangulation scheme suggested in [3] can be
seen, while Figure 5(b) shows our approach. Experiments have
shown that with our technique we can use larger time steps be-
cause elements are less likely to be badly-shaped and element sizes
are more equally distributed. The (asymmetric) decomposition
schemes from [8] are more optimal in terms of element count, but
for each scheme, several sub-cases must be implemented so that
faces shared by two tetrahedra are triangulated consistently.

The reference (and similarly the deformed) position of a new
face node is computed by taking the average of the reference posi-
tions of the four corner nodes of the face prism.

4.5 Node Snapping

Along cut-nodes, the mesh is not aligned with the cut trajectory. Al-
though cut-nodes are always close to the sweep-surface and there-
fore the mesh usually does not look too jagged, it can still be de-
sirable to have the mesh perfectly aligned to the sweep-surface.
Therefore, a cut-node n is relocated by projecting it orthogonally
onto the given sweep-surface, yielding a new position pnew. Since
this is done in the deformed configuration, the new reference po-
sition p0

new of the node n must be computed as well. This is done
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Figure 4: There are five rotationally-invariant schemes to decompose a tetrahedron (A-E) which has at least one of its edges cut. Additionally,
three new schemes are added, where one, two or three existing nodes are separated (X-Z). This helps avoiding small tetrahedra created when
using decomposition schemes A-E for cuts close to a node.

(a) Symmetric triangulation of a
tetrahedral face according to [3].

(b) Our face triangulation ap-
proach, where sub-elements are
better shaped and have more
equal sizes.

Figure 5: Enhanced symmetric triangulation of a tetrahedron face.

similar to [16]. Barycentric coordinates of pnew with respect to a
tetrahedron T incident to n are computed in the deformed configu-
ration. Using these coordinates and the reference positions of the
nodes of T , p0

new is computed.
Because all cut-nodes are within a small threshold distance d to

the sweep-surface, their displacement is small compared to the size
of tetrahedral elements. Therefore, updating mesh parameters is
easier and more stable than with previous methods [15, 18]. How-
ever, snapping nodes to the sweep-surface can create badly-shaped
or even degenerate tetrahedra. In [10], these tetrahedra are removed
in an extra step. In our implementation, we do not snap nodes that
lead to degenerate tetrahedra.

4.6 Mesh Relaxation

Even with our hybrid cutting approach and improved decomposi-
tion schemes, it is possible that elements with very different sizes
may be created, decreasing the stability of the simulation. There-
fore, to further improve mesh quality after a cut, we perform a se-
quence of mesh relaxation steps, similar to the 2D method described
in [18]. First, we define a set S containing all nodes n in the 2- or

3-step-neighborhood of a cut. To preserve the shape of the model,
only interior nodes can move in all directions. Nodes on the sweep
surface can move within the surface, while those on the original
surface or surfaces resulting from an earlier cut are fixed. All edges
incident to a movable node from S are now considered as springs
whose rest lengths equal the average length of these edges. All
nodes are considered as mass points and have equal masses. To en-
force more even spacing between nodes, we apply a force resulting
from the Lennard-Jones potential energy function.

The movement of a node ni is governed by the following equa-
tion of motion:

miẍi + ciẋi = (wspring ∑
j

Fspring
i j +wparticle ∑

j
FLJ

i j ) (2)

where Fspring
i j and FLJ

i j are the spring and Lennard-Jones forces,
respectively, between node ni and its neighbor n j . wspring and
wparticle represent weighting constants.

Explicit integration is applied to solve the above equation. Due
to high damping, overall computation time is only slightly in-
creased, and oscillations are avoided. We perform several mesh
relaxation steps to obtain a sufficiently good mesh quality. New
rest positions for relaxed nodes are computed in the same way as
for node snapping (section 4.5).

It must be noted that due to the constraint of fixing surface
nodes of the tetrahedral mesh, mesh relaxation cannot improve
mesh quality greatly. The presented hybrid tetrahedral decompo-
sition schemes play a much more important role in the improved
stability of the simulation. However, if a larger number of internal
tetrahedra would be cut, the effect of the relaxation step would be
more prominent.

4.7 Adaptation of Masses and Reference Values

After a cut has been performed, nodes have been snapped and the
mesh relaxation has improved the quality of new tetrahedra, we
must update the rest quantities of edges and tetrahedra correctly
to keep the underlying deformation simulation stable.

To compute rest edge lengths and rest tetrahedron volumes, we
simply use the reference positions of corresponding nodes, which



have been computed during the cutting process (section 4.3), in
node snapping and mesh relaxation. The masses of the simulation
nodes which have at least one incident tetrahedron that was affected
by the cut must also be updated. This is because after a cut, smaller
tetrahedra appear and volumes and edge lengths may have changed.
The mass of a simulation node ni is proportional to the rest volumes
V0 of incident tetrahedra j, which have a density k:

mi = k∑
j

V 0
j

4
(3)

This guarantees mass conservation, since the total volume is not
changed by a cut. Stiffness constants ki

s and ki
v for spring and

volume-preservation forces are adapted to [19]:

ki
s =

k(m1+m2)
(l0

i )2

ki
v =

k(m1+m2+m3+m4)
(v0

i )
2

(4)

5 CUTTING THE VISUALIZATION SURFACE

In most previous cutting approaches, the simulation and visualiza-
tion domains were strongly coupled. In order to represent intri-
cate surface details, high-resolution tetrahedral meshes are needed,
which substantially slows down a simulation. In approaches where
cuts can be performed only along existing edges and faces, the size
of the smallest portions of material that can be cut off depends
highly on the resolution of the mesh. To alleviate these problems,
we have decoupled the simulation and visualization domains into a
low-resolution tetrahedral mesh for physical simulation and an em-
bedded high-resolution (closed) triangle mesh for surface render-
ing. The embedded surface is animated together with the tetrahe-
dral mesh. We build on the approach of [14]. For each surface ver-
tex, the closest tetrahedron is found and barycentric coordinates of
the vertex with respect to the linked tetrahedron are computed and
stored. When the tetrahedral mesh deforms, the position of each
vertex is interpolated using the linked tetrahedron and the stored
barycentric coordinates.

5.1 Incision into the Surface Mesh

Cutting the two-dimensional surface mesh is similar to the three-
dimensional case. First, the sweep-surface must be defined (refer
to section 4.2). Then, each triangle can be decomposed according
to two rotationally invariant schemes (two edges cut for a complete
cut, one edge cut for a partial cut). We do not cut vertices in the
surface mesh, since we do not care about badly-shaped triangles in
the visualization surface.

As in the 3D-case, the reference position of new vertices cre-
ated when an edge is cut is interpolated from the reference posi-
tions of the end vertices of the edge and the intersection parame-
ter t. Texture coordinates for the new vertices are computed sim-
ilarly. Using this reference position, a linked tetrahedron is found
and barycentric coordinates are computed. For old surface vertices
whose linked tetrahedron has been decomposed or now lies on the
other side of the sweep-surface, a totally new tetrahedron must be
determined. For old surface vertices whose linked tetrahedron had
only one or more nodes snapped, but was not decomposed, only the
barycentric coordinates must be recomputed. In all cases, we must
make sure that both the tetrahedron and the surface vertex lie on the
same side of the sweep-surface.

5.2 Generating New Surfaces

After the original surface mesh has been separated, two additional
interior cut surfaces have to be created. Generating these new sur-
faces consists of two steps: first, we must find the boundary of the

(a) The cut boundary is de-
termined. It lies on the
sweep-surface and is mapped
to a planar 2D surface ac-
cording to its parameteriza-
tion.

(b) The new surface is triangulated in 2-
D, using the mapped cut boundary. Fi-
nally, the new surface is mapped back
into 3-D.

Figure 6: Triangulation of the new surfaces.

new surface, the cut-boundary. Then, using the cut-boundary and
the given sweep surface, it is triangulated. Note that this triangula-
tion is totally independent of the volumetric mesh, contrary to [14],
where the new surface is aligned to the (coarse) tetrahedral mesh.

To find the cut-boundary, we start at a new surface vertex (i.e. a
vertex created when an edge is cut) and traverse along the boundary,
which is defined by edges which have exactly one adjacent triangle,
until the start vertex is visited again. It must be noted that this
approach works only unconditionally if the original mesh is closed.
Also, if the model is concave, there may be more than one closed
cut-boundary curve. In case of a partial cut as shown in Figure 7,
we must first determine the two face vertices, which are defined
as the two intersection points of the sweep-surface boundary with
the surface mesh. We assume that there are exactly two such face
vertices, which is the case for partial cuts through convex, closed
surfaces. The face vertices can be found directly during the triangle
decomposition step. If we visit a face vertex during the boundary
traversal, we must move on directly to the other face vertex and
then continue on from there.

Since the sweep-surface does not have to be planar, the cut-
boundary need not lie in a plane, and thus the cut-boundary alone
does not give sufficient information on how to triangulate the new
surface. Obviously, this surface should lie on the sweep-surface.
For general sweep-surfaces, the new surfaces can be triangulated
using constrained 2.5-D Delaunay triangulation techniques [6] with
the given cut-boundary and sweep-surface. In our implementation,
we make use of the fact that the cut-boundary lies completely on
the sweep-surface and that the sweep-surface can be parameterized
in 2-D. Therefore, the cut-boundary is mapped into 2-D, where it
can be triangulated more easily and efficiently, as can be seen in
Figure 6. The new vertices created in the triangulation process are
then finally mapped back into 3-D using the sweep-surface and the
vertices’ parameters.

For a realistic visualization, the new surfaces must also be tex-
tured. Because the triangulation process was conducted in 2-
D, the new vertices’ 2D-coordinates can be used directly as tex-
ture coordinates. As long as the distortions arising from the 2D-
parameterization of the sweep-surface are small, this simple ap-
proach has shown to produce adequate results.

Since we now again have one (closed) surface mesh, performing
another cut through both a new and an old surface mesh simulta-
neously is straightforward and works exactly the same way as de-
scribed above.



6 RESULTS

We are able to perform cuts in real-time on models with 1000 tetra-
hedra and 2000 surface mesh triangles on a 3GHz Pentium IV ma-
chine. We can handle complete as well as partial cuts in both the
volumetric and the embedded surface mesh (Figure 7).

(a) Polyp model.

original traditional hybrid hybrid
mesh subdivision (standard (enhanced

triangul.) triangul.)
tets 136 543 282 266
edges 265 813 497 477
nodes 69 201 123 115
tetminAR 0.017 10−6 0.015 0.017
Vmax/Vmin 25.07 6674.1 259.3 92.87
lmax/lmin 4.11 35.84 23.92 11.96
hmax 0.005 6×10−5 5.7×10−4 0.001

(b) Myoma model.

original traditional hybrid hybrid
mesh subdivision (standard (enhanced

triangul.) triangul.)
tets 277 1772 615 599
edges 421 2254 994 973
nodes 85 492 224 200
tetminAR 0.025 10−7 0.014 0.016
Vmax/Vmin 11.67 3.6×107 94.84 52.38
lmax/lmin 2.03 540.01 9.743 7.70
hmax 0.004 6×10−6 0.0009 0.0012

Table 1: Comparison between our hybrid cutting approach and a
standard subdivision approach as described in [3] where no existing
nodes are separated. The element count for hybrid cutting is 2-3
times smaller, while mesh quality is kept acceptable. Using our newly
proposed triangulation of tetrahedral faces (section 4.4) results in
even better mesh quality, compared to other symmetric triangulation
approaches.

We compare our hybrid method to existing approaches in Fig-
ure 9. First, a tetrahedral mesh is cut along existing faces, result-
ing only in a coarse approximation of the sweep-surface (Figure
9(a)). In comparison, decomposing all cut tetrahedra matches the
sweep-surface exactly, but badly-shaped elements are created and
the element count has drastically increased (Figure 9(b)). In Fig-
ure 9(c), the same mesh is cut using our hybrid approach without
node-snapping. The sweep-surface is more closely approximated,
while no badly-shaped elements have been created and the element
count has increased only slightly. Finally, when node snapping is
applied together with our hybrid approach as shown in Figure 9(d),
the sweep-surface is approximated even better, without further in-
creasing the element count.

In Table 1, our hybrid approach and the pure subdivision method
according to [3] are compared. Element count as well as sev-
eral mesh quality measures are considered. For our hybrid cut-
ting, element count is 2-3 times smaller. The ratios between largest
and smallest tetrahedron volume and the largest and smallest edge
length are still satisfactorily small after a cut. Also, the lowest as-
pect ratio of all tetrahedra (tetminAR; incircle radius divided by cir-
cumcircle radius; 0.33/0.00 being the highest/lowest possible val-
ues) does not become too small. For pure subdivision, aspect and
volume ratios can become arbitrarily bad. All three measures are
crucial for a stable deformation simulation. In addition, it can be
seen from the larger aspect and smaller volume ratios that mesh
quality is improved when using our newly proposed tetrahedral face

Figure 7: Several incisions have been made into a polyp.

triangulation (section 4.4), allowing us to use a simulation time step
which is almost twice as large as for the standard approach. In our
measurements, the maximum distance d of cut-nodes to the sweep-
surface is one-fifth of the average edge length of the mesh. The
models we have used are the polyp shown in Figure 9 and the my-
oma depicted in Figure 10.

Decoupling the simulation and visualization domains allows us
to simulate highly detailed surfaces in real-time, using a low-
resolution volumetric mesh. Creating a new surface after a cut is
totally independent of the tetrahedral mesh, enabling us to create
arbitrarily detailed surfaces and sharp but non-jagged edges. In Fig-
ure 8, we have cut an artificial deformable solid several times. Note
the intricate surface detail such as sharp edges and very thin object
parts, and the small portions of material we have cut off. Because
our approach does not create small or badly-shaped tetrahedra, it
is easy to perform several (possibly intersecting) cuts in the same
region of the model.

6.1 Integration into Surgery Simulator Environment

Our methods have been integrated into our hysteroscopy simula-
tor. In this system, the methods have been combined with physi-
cal soft-tissue simulation, collision handling of deformable models,
fluid simulation to simulate bleeding, as well as haptic interaction
to build an extremely realistic environment for virtual reality based
training of surgical interventions.

Figure 10 shows an example of a surgical procedure. In the upper
image panel, the real-world situation can be seen. The surgeon uses
the cutting tool to move and deform the myoma. She then moves the
loop electrode behind the myoma, turns on the electrical current and
pulls the electrode towards the front, thereby cutting off a portion
of tissue. The process is repeated until everything has been ablated.
In the bottom image panel, the same cutting process is shown in the
virtual environment.

7 CONCLUSIONS AND FUTURE WORK

We have presented a new real-time approach for cutting tetrahedral
meshes. It combines existing techniques of decomposing tetrahe-
dra into smaller elements and cutting entirely along existing edges
and faces. We are able to approximate a given sweep surface more
closely while avoiding the creation of degenerate tetrahedra, thus
keeping the physical simulation stable. Mesh relaxation improves



(a) The solid was cut into several pieces by a curved knife. Note the sharp
and thin edges and the small portions we have carved out.

(b) The underlying tetrahedral mesh. The small pieces are represented by a
larger, better-shaped tetrahedra.

Figure 8: Several scoops have been taken from an artificial de-
formable solid.

the quality of a cut mesh additionally. Decoupling the simulation
and visualization domains allows the representation of intricate sur-
face detail without placing an additional computational burden on
the physical simulation.

Nevertheless, some simplifications were made, which we will
address in the future. The cutting is not progressive, and there is
no force feedback during the cutting. Moreover, we only model
the result of a cut after it has been performed. Finally, our tetrahe-
dral decomposition schemes are not optimal with respect to element
count.
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(a) A tetrahedral mesh is cut along
existing edges, nodes and faces.

(b) The mesh is cut by decompos-
ing each tetrahedron intersected by
the sweep-surface.

(c) The mesh is cut using our
hybrid approach without node-
snapping.

(d) After cutting the mesh with
the hybrid approach, nodes are ad-
ditionally snapped to the sweep-
surface.

Figure 9: Comparison of our hybrid cutting approach with existing methods of cutting only along existing elements and splitting intersected
tetrahedra.

(a) Cutting in a real operation.

(b) Cutting in the hysteroscopy simulator.

Figure 10: Comparison between cutting in a real operation (a) and cutting in the simulator environment (b). The surgeon uses the cutting tool
to move and deform the myoma. She then moves the loop electrode behind the myoma, turns on the electrical current and pulls the electrode
towards the front, hereby cutting off a portion of tissue. The process is repeated until everything has been ablated.


