Eurographics/ ACM SIGGRAPH Symposium on Computer Anima{@006)
M.-P. Cani, J. O’Brien (Editors)

Fast Arbitrary Splitting of Deforming Objects

Denis Steinemann Miguel A. Otaduy ~ Markus Gross

Computer Graphics Laboratory, ETH Zurich, Switzerland

Abstract

We present a novel algorithm for efficiently splitting defiable solids along arbitrary piecewise linear crack
surfaces in cutting and fracture simulations. We propogeube of a meshless discretization of the deformation
field, and a novel visibility graph for fast update of shapections in meshless discretizations. We decompose the
splitting operation into a first step where we synthesizekrgurfaces as triangle meshes, and a second step where
we use the newly synthesized surfaces to update the Wjstpitiph, and thus the meshless discretization of the
deformation field. The separation of the splitting openatioto two steps, along with our novel visibility graph,
enables high flexibility and control over the splitting &ajories, provides fast dynamic update of the meshless
discretization, and facilitates an easy implementatioakimg our algorithm scalable, versatile, and suitable for

a large range of applications, from computer animation teractive medical simulation.

The geometric and topological aspect of cutting and frac-
] ture cannot be completely separated from the mechanical
1. Introduction aspect, since the choice of discretization method largely i

Many applications of computer graphics exploit the simula- fluences the requirements of the geometric algorithms for
tion of cutting and fracture of virtual objects. To cite some splitting deformable solids. In commonly used finite elemen
prominent examples, the growing field of medical simulation Methods (FEM), the stability of the simulation strongly de-
has targeted numerous medical interventions that involve P€nds on the quality of the mesh, which tends to be pre-
cutting of tissue; modeling by virtual carving and sculpt- served by introducing constraints in the splitting of melsh e
ing requires elementary operations that produce topologi- €ments BMG99,GCMSO0QNv0Q]. The use of dense meshes
cal changes; and videogames and special effects for featurediminishes the visual artifacts caused by element spiittin

films often animate exploding and breaking objects. constraints, at the cost of slow computations. Similar to
our work, the virtual node algorithnmiV[BF04] focuses on

The simulation of cutting and fracture of deformable ob- he geometric and topological aspects of cutting and frac-
jects encompasses two main aspeC#/J00]: the geomet- yyre. It enables highly detailed surfaces without compro-
ric and topological aspect, concerned with the synthesis of yising the stability of the simulation, but it relies on a
crack surfaces and how these surfaces affect the discretiza gense underlying mesh. Recently, meshless methods have
tion of the domain in the physically-based simulation; and peen proposed for simulating fracture in computer graph-
the mechanical aspect, concerned with the computation of jsg [MKN *04, PKA*05], as they enable lightweight restruc-
forces, deformations, and crack initiation and propagatio tyring of the discretization of the models. FEM meshes im-
In this paper, we are concerned with the geometric and topo- py a partitioning of objects for defining interpolation ftin
logical aspect of simulating cutting and fracture, and @t th tjons and evaluating differential operators, while meséle
respect, they are analogous operations. However, from the methods offer a solid mathematical framework for approx-
mechanical point of view, and for practical purposes of com- jmating those operators without a need for explicitly parti
puter simulation, it is common to distinguishrtual cut- tioning the space. However, previous meshless methods in
ting[BMG99, GCMS0(Q, where crack propagationiis explic- computer graphics use implicit surface definitions thattlim
itly defined by the surface swept by a virtual blade object, the control on splitting trajectories and impose a high com-

from virtual fracture [TF88 OH99, OBHOJ, where crack pytational burden on the evaluation of boundary conditions
propagation is determined from simulated material stress.
In this paper, we present a novel approach for the effi-

cient splitting of deformable objects. It combines the adva
T {deniss,otaduy,grossm}@inf.ethz.ch tages of explicit mesh-based surface representationgivath

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spigtiof Deforming Objects

Figure 1: Peeling a Virtual Apple. As the peeler slices through the apple, the skin deforms atgldff. The apple consists
initially of 2121 simulation nodes anéi124triangles, and it is peeled &5 fps.

flexibility of a meshless discretization of the underlyirgr d
formation field. This combination allows us to decouple the
synthesis of crack surfaces from the update of the diseretiz
tion during fracture or cutting. The method is highly scédab
while retaining arbitrary and highly controllable splitrsu
faces. Our approach encompasses two main contributions:

e An algorithm for crack generation decomposed into two
sequential operations: first, meshing an explicit crack sur
face from the propagation of cutting or fracture fronts hwit
out restrictions on the topology or trajectory of the front;
and second, updating the meshless discretization of the sim
ulation domain, using the readily available explicit crack
surface.

e A visibility graph for storing proximity information in
the meshless discretization of the simulation domain. The
graph is created as a preprocess, and it is locally and effi-
ciently updated at runtime exploiting the explicit crack-su
faces. Shape functions of affected simulation nodes aoe als
efficiently updated by using distances along visible paths i
the graph. Even though the visibility graph stores connec-
tions between simulation nodes, it does not require a parti-
tion of the simulation domain as in FEM methods.

Our algorithm is highly scalable, making it suitable for
a large range of applications. We have demonstrated it in
examples such as an interactive hysteroscopy simulation in
Figure6, or the cutting simulation shown in Figule

2. Related Work

The simulation of breaking objects was introduced to com-
puter graphics almost twenty years adé88. Nowadays,
finite element methods (FEM) have become a very popular
approach for the physically-based simulation of deforrabl
objects that are cut or fractured. O'Brien et al. developed
models for brittle PH99 and ductile fracture QBHOZ|
based on FEM discretization of continuum mechanics equa-
tions, and also demonstrated the generation and propagatio
of cracks from eigen analysis of the stress tensor.

From the geometric and topological point of view, many
approaches have been proposed for dealing with the split-
ting of FEM mesh elements as the result of cutting or frac-
ture. The splitting of tetrahedral elements by planar cuts
can be described by a small set of configuratidsis!(599,

GCMSO0Q, and can also be handled in a progressive
manner MK00, BGTG03. However, arbitrary decomposi-
tion of tetrahedra may produce badly-shaped sub-elements
that destabilize the simulation. Hence, many authors have
adopted various element decomposition constraints. in sit
uations where speed is a priority, such as virtual cutting in
medical simulation, the decomposition constraints inelud
deleting elements as they are crossed by a blad\DA0],

or snapping nodes of the elements to the trajectory swept by
the blade Nv0Q]. Others have followed hybrid approaches
that combine snapping and decompositi®H{zS06. The
virtual node algorithmABF04] detaches the surface repre-
sentation from the FEM mesh, and replicates nodes for sim-
ulation purposes. It enables arbitrary cuts through messh el
ments, as long as one original node falls on each side of the
cut. When combined with dense underlying FEM meshes,
the virtual node algorithm enables practically arbitramy-c
ting trajectories, at the price of slow computations.

In the last decade, new techniques such as the ex-
tended finite element metho1PB99] or meshless meth-
ods BLG94] have been designed in the field of computa-
tional mechanics for avoiding the volumetric remeshing of
FEM in the simulation of fracture. As opposed to FEM,
meshless methods do not require a partition of the volume
of the deformable objects. This freedom comes at the price
of more complex definitions of the shape functions of sim-
ulation nodes, but in the simulation of fracture or cutting
it offers the important advantages of adaptive resampling
and reconfiguration of the shape functiohsup2, FM04],
without the possible stability problems induced by badly-
shaped mesh elements. Meshless methods have previously
been proposed for simulating fracture of deformable models
in computer graphics as welMKN *04, PKA*05]. These
approaches employ meshless representations of the crack
surfaces, which can be very efficiently sampled as cracks
propagate. However, the meshless surface representations
are defined implicitly through a moving least squares (MLS)
approximation [S81], and expensive ad-hoc book-keeping
of connectivity is necessary near the crack front to avoid
sampling problems and reach the desired surface topol-
ogy [AKO4]. Similarly, the implicit surface definition im-
poses a heavy computational burden on the evaluation of
boundary conditions, and limits the explicit control of the

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spiigtiof Deforming Objects

trajectories of cracks. This could be especially problémat

in virtual cutting, where the cut surfaces must align wité th

virtual blade to avoid artifacts. We also adopt meshless dis X;
cretization methods for the simulation of cutting and frac- ! X; + u(x
ture, but we model the crack surfaces explicitly using trian

gle meshes. We share this strategy with previous approachesgigyre 2: Crack Surfaces. A crack defines a discontinuity

j+ u(x)

in computational mechanicXB99, Duf0], but we intro- iy the mapping from material coordinatag(eft) to the de-
duce more efficient methods to handle cracks in geometri- formed statex + u(x) in world coordinates (right). Shape
cally rich objects for visual applications. functions in meshless discretization methods must account

Accurate evaluation of surface boundaries is a key as- for these discontinuities.
pect with meshless methods, as it governs the reconfigu-
ration of shape functions after cracks propagate. Vise
ibility criterion [BLG94] cancels the shape functions if Mller etal. MKN *04] for modeling dynamic deformations

two points are not visible within the object, tlkffraction using meshless discretizations. The deformation fieldis sa
method[OFTB94 weights the Euclidean distance between pled at a discrete set of simulation nodes- {p;}, and it
two points by their distances to the crack tip, andtta@s- can be approximated at any position in the objectias

parency methodOFTB94 adds to the Euclidean distance ¥ ®i(x)u;, using shape function®; computed, for exam-

a factor that depends on the distance to the crack tip. The ple, by moving least squares (MLS) approximatitu$81].
diffraction and transparency methods were designed for sim For possible options in the design of shape functions for
ple 2D cracks with a well-defined crack tip. They have also meshless methods, we refer #\04, MKN *04, PKA*05].
been used in 3D, with triangle meshes in computational
mechanics KB99, Duf06], and with meshless surfaces in
computer graphicsHKA*05], even though they generalize
poorly to jagged 3D cracks and are computationally expen-
sive, as discussed by Duflob{if06]. Instead, we propose
the use of a visibility graph for estimating the distancenglo
fully visible paths, thus handling naturally and efficigntl
both original concavities and arbitrary crack surfaces.

Each shape functiof; (x) is weighted by a smoothly de-
caying kerneko(x, i, ri), based on the support radigsof
node p;. The support radius of shape functions should be
sufficiently small to adequately discretize gradieitsy05],
and is often estimated based on the distance téttheear-
est simulation nodeMIKN *04]. We define aseighborsof
a simulation nodey; the nodes for which the value of the
kernel functionw; of pj, and thus also the shape function

The concept of visibility graph is associated with the- ®;, is larger than a small cutoff value. Without loss of gen-
clidean shortest patifESP) problem HS99: finding the erality, we can consider as neighborspptthose nodes that
shortest visible path between two points given a set of poly- are closer than the support radiysof p;. In order to ac-
hedral obstacles. The ESP between two 3D points, if a path count for material discontinuities introduced by cracke an
exists, is formed byvisibility edgesthat connect the two original surface concavities, we define thaterial distance
3D points and points on obstacle edges. Finding the ESP petween nodep; and p; of objectA, as the ESP between
in 3D is NP-hard, but several polynomial approximations andx;, subject to the boundary surface AfAs explained
have been proposed, which sample obstacle edges to con-ater in Section5, we approximate the ESP by the graph-
struct a 3D visibility graph €SY94. Graphs over point based distance using a visibility graph.
clouds are also common to other geometric problems, such

as surface reconstructiodPD*92, ABK98,KZ04] or prox- For animating points on the boundary of the object as it

imity queries EGNO4. For the construction of our visibility ~ deforms, we follow the approach of Muller et KN *04],

graph, we adapt the Riemannian graptbp*92]. using the MLS approximation of the deformation field.
Specifically, the displacementof a vertexv with material

3. Overview coordinatex can be computed based on the displacements

In this section, we outline our geometric algorithm forgpli Ui Of the simulation nodes as:

ting deformable models in cutting or fracture simulation. 1 T

First, however, we overview the meshless discretization of U= 100X > W(X,Xi, Ii) <Ui + Vi (X—Xi)> -
deformable models, and we discuss the geometric and topo- ' Y !

logical implications of cutting and fracture in the disizat In the simulation of cutting or fracture, we also require the
tion and representation of the models. definition of the inverse mapping, from the world coordi-
natesx 4+ u to material coordinates. For points on the sur-
face, we compute the material coordinaxelsy linearizing
Given a 3D solid object with material coordinatethat pa- the mapping functiomi(x) over each surface triangle using
rameterize the volume of the object, a displacement field barycentric coordinates. For points in the interior of an ob
u(x) defines the deformed positions of internal particles in ject, we solve fox in Eq. (1) after estimating kernel weights
world coordinates as+ u(x). We follow the framework of wy in world coordinates.

3.1. Meshless Discretization

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spigtiof Deforming Objects

3.2. Virtual Cutting and Fracture

A crackis defined as a new surface of a solid object formed
when atomic or molecular bonds are broken. In the scope
of computer graphics, atomic or molecular bonds are mod-

4.1. Front Propagation

We concentrate here on synthesizing crack surfaces on a 3D
object A whose boundary surface is a watertight triangle
meshSa. A splitting front F is a 3D curve, possibly non-

eled at a macroscopic level by internal forces, and a crack manifold, and possibly closed. We decompose the front into
can be defined as a surface across which internal forces areopen 1-manifold components, represented by piecewise lin-

disrupted. When separated by a crack, particles that aae adj]
cent in material coordinates are free to split and move away

ear curves. Then, a splitting froft can be described by a
sequence of point§f;... fn}, as shown in Figur&-b. As

from each other in world coordinates, hence, as discussed bycracks are essentially surfaces that disconnect particles

O’Brien and Hodgins QH99, cracks may induce disconti-
nuities in the displacement fieldx), as shown in Figuré.

A crack can be characterized geometrically by two surface
sheets joined at a sharp crease, shétting front As dis-
cussed in the introduction, in computer simulation it is eom
mon to distinguish between virtual fracture and virtualcut
ting depending on whether the propagation of splitting fson
is defined from simulated material stress or explicitly from
the motion of a virtual blade object. From the geometric and
topological point of view, both virtual cutting and fracéur
involve two main operations: (i) synthesize crack surfaces
and cut the original surface as splitting fronts propagate,

(i) update the discretization of the simulation domaintsuc
that internal forces are disrupted across crack surfacigs. W
meshless discretizations, the second operation reduaes to

material coordinates, it is appropriate to define the pmsiti

of front points f; in material coordinates;. In the simu-
lation, the splitting front is sampled at discrete time step
We refer assplitting surface §to the surface swept by the
front between two consecutive time steps. We approximate
the splitting surface by assuming linear trajectories far t
front points, and triangulating the surfaces defined byspair
of front points, as shown in Figui&b. If front points move
more than a user-defined threshold between time steps, the
time step may be decomposed into smaller substeps for bet-
ter approximation of the splitting surface. We distinguigh
tween the splitting surfac8s and the actual crack surface,
which is the portion of the splitting surface trimmed when
the front intersects with the surfa&g of the objectA. The
positions of front pointd; are defined initially in world coor-

dating the set of neighbors and the shape function of each dinates, either by sampling a virtual blade object (in ftu

simulation node according to new material distances that ac
count for crack discontinuities.

3.3. Algorithm Outline

As summarized in the introduction, our algorithm for split-
ting deforming objects handles sequentially the two main ge
ometric and topological operations mentioned above. We dy-
namically update the meshless discretization exploitivg t
readily available explicit crack surfaces and a novel Viigyb
graph. The algorithm consists of the following steps:

Propagate splitting fronts (Sectidril).

Intersect them with the surface of the object (Secti@h
Trim and triangulate crack surfaces (Sectod).

Cut the visibility graph with crack surfaces (Sect®B).
Sample new nodes near crack surfaces (Sebti)n
Update neighbors of simulation nodes (Sec&d3).
Update node neighbors of surface vertices (Se&ibn

NoogkswNE

4.

In this section, we present our general algorithm for pregre
sively meshing crack surfaces on deforming objects. First,
we discuss the propagation of splitting fronts, the geianat

of splitting surfaces as fronts are swept, and the handling
of topological events produced by intersections of splitti
surfaces and the surface of the deforming object. Next, we

Progressive Cracks

cutting), or from eigen analysis of the simulated stressden
(in virtual fracture). We compute the material coordinates

of front points by inverting the displacement functidi), @s
described in SectioB.1 When the mapping is not well ap-
proximated by a piecewise linear function, the splittirafr
may be upsampled by adding extra points to the new front
Fx+1 and drawing extra edges to the old fréqt Similarly,

the front may be downsampled by collapsing pairs of points
in the new frontR 1. In virtual cutting, a blade may inter-
sect different parts of the surface of an object. Then, goint
on the blade must be mapped to different front components
in material coordinates, depending on the local mapping of
each intersection region.

As described by Pauly et alPKA*05], the topologi-
cal changes produced during crack propagation can be de-
scribed through a combination of four elementary events:
crack initiation, branching, merging, and termination. We
exploit the explicit representation of our splitting swéa to
efficiently detect and handle the various events. Crack init
ation, branching, and termination are automatically head|
by computing the intersections between the splitting serfa
Ss and the surface of the obje&k, as shown in Figur@,
where the new fronf, 1 branches into two components.
Crack merging, on the other hand, is detected as the inter-
section of splitting surfaces. If splitting surfaces istext,

describe the process of meshing the crack surface, cutting e force the merging by snapping nodes at the new front(s).

the original surface of the object, and connecting them to-
gether. Due to the explicit representation of splitting-sur

4.2. Trimming and Triangulation

faces, this process can be efficiently performed as a sequenc Given the surfac& of an object, and a newly swept split-

of well-known geometric operations: triangle mesh interse
tion, trimming, triangulation, and stitching.

ting surfaceSs, we compute their intersection curves (which

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spiigtiof Deforming Objects

==

Figure 3: Stages of Progressive Crack Synthesis. From left to right: (&) The X letter being cut by a blade, while the crack
surface (in blue) is progressively meshga).The splitting front defined by a blade propagates frgmicF, 1, and the splitting
surface §is triangulated. Black squares indicate cross sectionsdges of the surface of the objech. $c) The intersections
between §and S are detected. In red, intersections of edges ®&8d triangles of g and, in green, intersections of edges
of S and triangles of & (d) Each triangle T of the splitting surfaces® trimmed. The connected alternating sequence of
triangle boundary curves (in red) and trimming curves (ie@n) yields a trimming looge) The newly swept crack surface is

meshed by triangulating separately tAe polygon defined by each trimming loop. Additional pointslfiack) are inserted to

improve the quality of the triangulation.

we refer to agrimming curveyby connecting edge-triangle
intersection points (see FiguBec). Since the intersections
between the old frorfg andS, are known from the previous
frame, we efficiently find a subset of the trimming curves by
walking alongSa until we reach intersections between the
new frontR. 1 andSa. In order to find other possible trim-
ming curves, like the one that produces the front branching
event in Figure3, we perform intersection queries between
edges ofSy and triangles of5s and vice versa, accelerated
by the use of spatial hashing techniqueslM*03]. After in-
tersecting the surfaces, we must decompose the intergectin
triangles of both surface8y, andSs, and stitch the resulting
patches together at the trimming curves. Note that the crack
surface maps to two different surfaces in world coordinates
and, in order to maintain a watertight triangle mesh, it must
be handled in material coordinates as two collocated meshes
with opposite normals.

We handle the meshing of each trimmed trianplef the
surfacesSy and Sg individually but in a uniform manner.
Hereafter we discuss the meshing of trimmed triangles in
the splitting surfaces, but the same procedure is valid for
triangles inSa. Without loss of generality, every intersecting
triangleT € Sgis trimmed byS, into a set of 2D polygons,
possibly with holes. The boundary of each polygon result-
ing from trimming, which we refer to asimming loop is
a connected sequence of trimming curyes} and triangle
boundary curvegc;}, as shown in Figur8-d. All trimming
loops of a trimmed triangl& € Ss can be found efficiently
by walking between intersection points of its edges with tri
angles ofSy, alternating steps along trimming curves and
triangle boundary curves, until loops are completed and all
intersection points are visited. Similarly, inner holestlod
polygons enclosed by trimming loops can be found by walk-
ing between intersection points dfwith edges ofSa.

Once a trimming loop is detected and possible inner holes
are identified, the enclosed polygon can be triangulated as
shown in Figure3-e, using fast state-of-the-art 2D polygon
triangulation algorithms$he02. Note that, typically, each

(© The Eurographics Association 2006.

trimming loop consists of a small (@) amount of vertices.
To reduce robustness problems, before triangulation we col
lapse pairs of intersection points that lie very close from
each other, and after triangulation we try to eliminate near
degenerate triangles, since they could cause problems if fu
ther cracks passed through them. Depending on the applica-
tion, we propose further processing of the crack surfaces fo
enhanced surface detail control. Local decimation, asiprev
ously applied by others§O01], can serve to increase per-
formance in interactive cutting simulations. In computer a
imation of brittle fracture, on the other hand, it is possitd
apply further subdivision for obtaining rich jagged sudac

5. Visibility Graph

In this section, we present a visibility graph for storingxor
imity information in meshless discretizations. We first de-
fine the graph, and we describe how neighbors of simulation
nodes can be efficiently determined using a modified Floyd-
Warshall algorithm. Next, we describe the handling of cut-
ting and fracture, through the update of the visibility drap
using our explicit crack meshes, as well as adaptive resam-
pling. To conclude, we describe an efficient augmentation
of the graph in order to store and update node neighbors of
surface vertices for the animation of the surface mesh.

5.1. Defining the Visibility Graph

As introduced in SectioB.1, the evaluation of shape func-
tions for meshless simulation requires knowledge about the
material distance between pairs of nodes. Given a pair of
nodes{p;, pj} of an objectA, we approximate their material
distance as the shortest path distag¢gp;, pj) along a visi-
bility graphG in the interior ofA. As mentioned in Sectio?,
finding exact shortest paths with polyhedral obstacles in 3D
is NP-hard, therefore we construct an approximate visibility
graphG by drawing visibility edges between pairs of nodes.

Specifically, given an objecA discretized by a set
of nodesP, we initialize the graphG as a Riemannian
graph HDD*92] on P, subject to the constraints imposed

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spigtiof Deforming Objects

\

N

Figure 4: Graph and Neighborhood Updates during Crack Propagation. From left to right: (a) Initial visibility graph, ac-
counting for surface concavitief) Initial neighbors of a simulation nodg jpvhere edge width encodes graph-based distance.
(c) As a crack cuts edges of the graph (in red), we execute a mbéifdyd-Warshall algorithm on the set of nodegfate(in
red), in order to update their neighboréd) Updated neighbors of nodg.pAfter the crack cuts the edde, p;j), the material
distance between; @nd p is approximated a§pyx — pi|| + || pj — pk|| for shape function evaluation.

by the polyhedral boundary @&. The Riemannian graph of distance between any other pair of nodes. In our modified
P is an undirected graph formed by the Euclidean minimum algorithm, we only update distances if they are smaller than
spanning tree (EMST) d?, augmented with edgesp;, p;) the support radiusmax- As a result, givem regularly sam-

if pj is one of thek closest nodes op; or vice versa (ac- pled simulation nodes with an average number of neighbors
cording to the Euclidean distance). In practice, a value of m, the matrixD is sparse with Qm) elements per row, and

k = 26 based on a regular grid-like sampling yields a suf- the time-complexity of the algorithm is(@zn). At termi-
ficiently dense visibility graph where Euclidean distange i nation of the algorithm, thé&" row of the matrix stores the
well approximated by graph-based distance. Accuracy may distances to the neighbors of nopie

be traded for lower memory requirements using smaller val-

ues ofk. After initializing the graph, we perform visibility 5.3. Dynamic Neighborhood Updates

tests with the initial surface of the objestto remove edges
that cross concavities of the boundary, and obtain thE sét
valid visibility edges. Using graph-based distances, we ca
find the node neighbors of each nogleas those closer than

its support radius, and thus evaluate shape functions. Fig-
ure 4 shows the visibility graph and the set of neighbors of
a simulation node near a concave region of a surface, before
and after the propagation of a crack.

Upon crack propagation, we intersect the triangles of newly

synthesized crack surfaces against the set of visibiligesd

E, as shown in Figurd-c. This operation can be accelerated

using spatial hashingTHM*03]. We define the set of cut

edgesEcut, and the set of nodes that need to update neigh-

borsP,pdate The sePypgateconsists of nodep; whose dis-

tance to an end point of some cut eégeEct is shorter than

rmax— de, Wherede is the length of edge. Note that, in this
During the simulation of cutting or fracture, for each node case, a shortest path betwegnand some of its neighbors

pi we maintain a set of incident visibility edggs; }, and before crack propagation may cross the edgand needs

a set of neighborgp;j} entirely defined by distances along to be recomputed. Note also that nodese Pupdate ONly

the visibility graph. When cracks propagate, we employ the need to update material distances w.r.t. their old neighbor

newly synthesized crack surfaces (Sec#to perform in- in Pypdate but the distances w.r.t. neighbqus ¢ Pypdatere-

tersection tests with the visibility edges and update tis li main constant. Figuré-c shows the seypgateas a crack

of neighbor nodes if visibility edges are cut. For simplicit propagates.

we will describe our algorithm assuming regular sampling

and a homogeneous support radiggx. In Section5.4, we

describe the handling of adaptive sampling.

To update neighbors of nodes, we remove the cut edges
Ec from the visibility graphG, and we execute MFW on
o) the subgraph defined by the nod&gqate as described in
5.2. Initialization of Neighbors the previous section. From the resulting matrix of MFW,
Given the initial visibility graptG, we must initialize the set e update material distances and neighborhood information
of neighbors of each nodg by finding all nodes that are ~ among nodes iRy pdate
closer than its support radius. This initialization redsite@
computing all-source shortest paths on the visibility grap ~ 5-4. Adaptive Sampling
G. However, we exploit the fact that distances must be com-
puted only w.r.t. nodes closer than the support radius, and
we have designed a modified Floyd-Warshall (MFW) algo-
rithm [CLROQ with expected linear time-complexity in the
number of nodes.

In adaptively sampled objects, the support radius varies
across nodes according to the sampling density, as dedcribe
in Section3.1 The definition of node neighborhoods based
on pairwise distances may suffer from inconsistencies in
adjacent regions with disparate sampling densities, as two

The standard Floyd-Warshall algorithm stores a mdlix ~ nodesp; and p; may be determined as neighbors, while a
of pairwise distances between node®irThe matrix is ini- nodepy in the shortest path betwe@nandpj is not a neigh-
tialized with the lengths of the edges of the visibility gnap bor of either of them. One possibility for handling varying
G. The algorithm proceeds by looping over all nodes, test- sampling densities is to map the adaptively sampled domain
ing if a path passing through the current node reduces the to a regularly sampled reference domaio{i05. Inspired

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spiigtiof Deforming Objects

pling density of the surfac&, is considerably higher than
the sampling density of nodds and this difference incurs
in a considerable increase in the cost of executing MFW.

We propose a sparse augmentat®n of the visibility
graph for neighborhood computations of mesh vertices. For
each nodepm close to the surface of the object, we set one
visibility edge to its closest vertexn, which we refer to as
master We complete the graph by growing treesstdves
from the masters in a breadth-first-search (BFS) manner, as
shown in Figures-c, until we cover the entire surface. We
initialize neighbor nodes by assigning to each vexdke
neighbor nodes ofm, wherepm is the adjacent node of the
master ofv. For the computation of the weights in EQ)(
we use Euclidean distances from the vertices to the nodes, as
we found that graph-based distances are not a good estimate

Figure 5: Nodes and Graph in a Pumpkin Model. From left

to right: (a) Cross-section of a pumpkin showing the initial
adaptive samplinglb) Resampling of the volume as a crack
is meshed(c) Visibility graph in the locality of a node (in
red). In blue, edges to other nodes; in red, edge to a master
vertex (in green); and, in green, tree of slave vertices.

by this idea, we propose a method for warping the visibil-
ity graph such that the length of visibility edges is no longe

measured in Euclidean space, but in a warped semi-regularly in this case.

sampled space. We define the lendghof a visibility edge During crack propagation, we must perform local updates
e(pi, pj) by normalizing the Euclidean length w.r.t. the max- of node neighbors in affected vertices due to two general
imum support radius of the nodesandp;, de = rl\]&?]r\ll) . reasons: (i) edges of the augmented visibility gr&hare

cut, and (ii) new vertices and nodes are added to the object.
Note that new nodes close to the boundary are connected
to surface vertices that become masters. We define the set
of orphanverticesVyrphan as those without a valid master.
Vertices may be tagged as orphans because they are newly
added, they belong to a subtree of slaves that gets discon-
During crack propagation, the interior of an objéanust nected because a surface edge is cut, or their master gets
be dynamically resampled in order to conform the sampling disconnected because a visibility edge to a node is cut. We
density to the dynamically varying boundary. Moreover, in perform the dynamic update of node neighbors of surface
our framework for defining node neighborhoods based on vertices in two steps. First, we grow trees of slaves in BFS
a visibility graph, dynamic resampling fulfills the task of manner to assign a master to all orphans. Second, we up-
guaranteeing the existence of visible paths inside copdect date distances and neighbors in trees whose masters are con-
components of the object. We follow the same approach of nected to nodes iR, pgate(after being augmented withew),
motion planning algorithms that sample the domain near ob- following the same procedure as at their initialization.
stacles in order to guarantee visible paths through narrow
passagesABD *98], and we place new nodes by offsetting
sample points from the newly swept crack surfaces. Then, We have evaluated our technique on diverse applications,
we apply the octree-based decomposition proposed by Paulyincluding computer animations that involved cutting oper-
etal. [PKA*05] in order to produce a smooth variation of the ~ ations (Figuresl, 8, and7), prescored fracture animation

In this way, the maximum support radius for the execution
of the MFW algorithm is normalized asax = 1. Note that
we only use the normalized edge lengths for defining node
neighbors, but we resort to unnormalized graph-based-short
est path distances for the evaluation of shape functions.

6. Results

sampling density. We connect the set of new ndelgg, to (Figure8), and an interactive surgical simulator (Figle

the visibility graph by drawing new edg&sewto thek clos- All demonstrations were executed on 4 &Hz Pentium-4

est nodes (subject to boundary constraints). For the compu- processor PC with .0 GB of memory. For collision han-
tation of neighbor nodes, we simply augmEeai with Enew, dling between independent deformable objects, we have fol-

and we redefin®,pgaeaccordingly for the execution of the lowed a penalty-based approach, but for self-collision-han
MFW algorithm. Figure5-a shows the initial sampling of a dling we have applied a constraint-based approach similar
pumpkin model, with two resolution levels, and Figi® to [BFA02].

shows the dynamic resampling while the pumpkin is split. Figure5-b depicts a scenario used for evaluating the per-
formance and scalability of our algorithms. We have halved
models of a pumpkin with varying surface and volume sam-
The verticed/ of the surface mes8a are animated accord- pling densities, following identical cutting trajectosieon-

ing to the motion of simulation nodd? based on Eq.1). sisting of 12 steps. As shown in Tahlethe time for syn-
Every vertex must store a set of neighbor nodes, which may thesizing the entire crack surface ranges from 110 ms with
vary dynamically due to crack propagation. One could aug- a 25K-triangle mesh, to 420 ms with a 10K-triangle mesh.
ment the visibility graphG of nodes with the edges of the Note that this trend matches the optimal cost ¢f/@) for
meshS, to cover all vertice¥, and thus dynamically update visiting all triangles along a meridian of a regularly sam-
node neighbors of the vertices. However, typically the sam- pled spherical surface withtriangles. The time for cutting

5.5. Animation of the Surface Mesh

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spigtiof Deforming Objects

Figure 6: Interactive Cutting in a Surgical Simulator.

&

Cuts produced interactively anorethan45 fps.

Figure 7: Self-Coalliding Jell-O. Spiral cuts induce challenging self-collisions that arentiked robustly.

Initial | Final | Graph| Meshing | Triangleg Triangles
Mesh| Mesh| Edges| Crack (ms) Cut per sec.
2500| 3252 | 94.4K 110 158 1436
10000| 11260, 95K 200 276 1380
40000| 42464{ 94.9K 420 523 1245
Initial | Final | Graph| Updating | Nodes | Updates
Nodeg Nodes Edges| Graph (ms) Updated| per sec.
2150 | 2764 | 47.6K 158 590 3734
4300| 5145| 95K 247 847 3429
8600 | 9574 |185.4K 303 1239 4089

Table 1: Timings for Crack Synthesis and Graph Update.

In a cutting scenario similar to Figuré-b, the throughput

of cut triangles per second and node-neighborhood updates
per second remains almost constant for varying surface and
volume sampling densities.

the visibility graph and updating neighborhood informatio
ranges from 158 ms with a sampling of 2150 nodes, to 303
with 8600 nodes. Most importantly, Talllelemonstrates the
scalability of our technique. For the same surface geometry
the throughput of cut triangles per second remains approxi-
mately constant independently of the surface sampling den-
sity, and the throughput of node-neighborhood updates per
second remains approximately constant independentlyeof th
volume sampling density.

Figure 1 shows a simulation where an apple is peeled
with a curved knife. The apple consists initially of 6124 tri
angles, 2345 simulation nodes, and4® visibility edges.
During the simulation, the number of triangles increases to

14504, and the number of nodes to 3149. Splitting operations
run at an average of 25 fps, which implies a performance
improvement of 2 orders of magnitude compared to previ-
ous meshless approaches in computer graplfisA[05],
thanks to our fast visibility queries and localized updates
graph-based distances. The complete simulation is exiécute
at 3 fps. The animation also demonstrates the effectiveness
in capturing arbitrary splitting trajectories. Speciflgathe
crack surfaces conform accurately to the trajectory of the
knife, showing sharp features at the junction with the orig-
inal surface of the apple, but smooth behavior along the di-
rection of the junction. Moreover, the cut pieces of skin are
adaptively sampled, and deform naturally until they fafl of
Computer-generated peeling imposes multiple challenges o
previous techniques. Previous meshless approaches would
have difficulties producing sharp features and evaluatisig v
ibility queries for updating shape functions. On the other
hand, FEM approaches would require dense meshes and
slow computations to provide similar control on the cutting
trajectories and the thickness of cut pieces of skin.

The letters depicted in Figu&@present thin features that
require very dense sampling for guaranteeing accurate and
stable deformations. The initial scene consists of 27K simu
lation nodes and 100K triangles. With this dense sampling,
the simulation runs at an average ob Zec/frame, but the
splitting operations take only 10% of the computationssThi
animation demonstrates again the scalability of our tech-
nique and its ability to split deforming objects along arbi-
trary trajectories. We have also explored the application o
our technique for prescoring fracture animations of solids

(© The Eurographics Association 2006.

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spiigtiof Deforming Objects

Figure 8: Sliced Letters and Smashed Pumpkins. Left: The blade of the curved wedge cuts the letters smouthile they
deform. The scene consists of a totaP@K nodes andlOXK triangles, and the cutting runs &t fps. Middle and Right: Our
algorithm for synthesizing crack surfaces is used for presg fracture.

As an example, the pumpkins depicted in Fig8rare split
into pieces interactively as a preprocess, for later use in a
fracture animation.

Compared to implicit surface representations in previous
meshless simulation approaches, the use of an explicit sur-
face mesh enables robust self-collision handling, as demon
strated in FigureZ, which shows spiral cuts being made on
a block of Jell-O. Initially, the partially split pieces mev
apart, and then they clamp together, inducing challenging
self-collisions. When the cuts terminate, the four didjoin
pieces of Jell-O collapse. The model is initially sampled
with 920 nodes and 6200 triangles. The simulation runs at
4.1 sec/frame, but the computations are highly dominated
by self-collision handling (more than 90%).

One of the major advantages of our technique is that it
allows stable arbitrary splitting at very diverse resans
and model complexities. We have exploited this feature in
an interactive simulator of hysteroscopy procedures, ether
malicious polyps are cut from the uterus cavity, as shown
in Figure 6, using a haptic device as a 3D input tracker.
In the simulation, the scalpel is modeled as a sharp curve
that can cut in all directions when the blade is active, and
there is no scalpel-polyp collision response or handling of
self-collisions. The model of the polyp shown in the fig-
ure consists of a constant number of 275 simulation nodes.
The surface mesh complexity increases from 1334 to 4830
triangles. Splitting operations run at all timesnabre than
45 fps, and the complete simulation runs at 21 fps. Previous
techniques for cutting in surgical simulators have often en
countered problems with progressive cutting, partial ,cuts
changing cutting directions, but all these features are han
dled stably and efficiently with our technique. Naturalffy, a
ter reiterative cutting through the same volume, the resolu
tion of the models may grow to levels that cannot be handled
interactively.

7. Limitations and Future Work

In this paper, we have presented a novel algorithm for
splitting deformable solids in a fast and arbitrary man-
ner. It adopts meshless discretization methods, and ineorp

(© The Eurographics Association 2006.

rates a novel visibility graph for efficiently updating skeap
functions in the meshless discretization upon topological
changes. We decompose the splitting operation into two
steps: meshing crack surfaces, and the update of the graph
and the discretization. We have demonstrated the versatil-
ity, efficiency, and scalability of our algorithm, and thelab

ity to produce smooth arbitrary cracks in a fast and stable
manner. Nevertheless, our algorithm presents severdalimi
tions (some of them common to other methods), which set
the lines for future improvements.

The quality of the surface mesh degrades when the same
region is split multiple times. Local surface remeshing is
probably a viable solution, as it does not affect the diszaet
tion of the simulation domain in our algorithm. FEM-based
techniques, however, would require volumetric remesting t
avoid stability problems. In some applications, it is wata
ploring the combination of meshless methods in deforming
regions that can potentially be split, with traditional FEM
methods in regions that are never split.

Regarding the visibility graph, we are exploring possibili
ties for better approximation of distances in concave regjio
by adding a small subset of the surface vertices to the visi-
bility graph, and it is also worth to design means for reduc-
ing memory requirements. For handling plastic deformation
and the subsequent modifications of the visibility graph, we
are exploring kinetic data structureSGN04 in combina-
tion with the plasticity model of jIKN *04].

To conclude, we are currently pursuing the inclusion of
our algorithm for splitting deformable models in various
other surgical simulation applications. This task will re-
quire additional research for fast handling of self-caiiss,
physically-based cutting and tool-object interactiond an
force feedback.

Acknowledgements

The authors would like to thank Richard Keiser, Martin
Wicke, Nico Galoppo, Oliver Buechi, Roni Oeschger and Si-
mon Bucheli for their support in this project. This research

D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Spigtiof Deforming Objects

has been supported by the NCCR Co-Me of the Swiss Na- [HS99]

tional Science Foundation.

References

[ABD*98] AMATO N. M., BAvAazIT O. B., DaLE L. K., JONES
C., VALLEJO D.: OBPRM: An obstacle-based PRM for 3D
workspacesProc. of the Workshop on Algorithmic Foundations
of Roboticq1998).

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new
voronoi-based surface reconstruction algorithRroc. of ACM
SIGGRAPH(1998).

[AKO4] AMENTA N., KiL Y. J.: The domain of a point set sur-
face.Proc. of Eurographics Symposium on Point-Based Graphics
(2004).

[BFAO2] BRIDSONR., FEDKIW R., ANDERSONJ.: Robust treat-
ment of collisions, contact and friction for cloth animatioln
Proc. of ACM SIGGRAPHK2002).

[BGTGO03] BIELSERD., GLARDON P., TESCHNERM., GROSS
M.: A state machine for real-time cutting of tetrahedral hre=s
Proc. of Pacific Graphic$2003).

[BLG94] BELYTSCHKO T., LU Y. Y., Gu L.: Element-free
Galerkin methodsinternational Journal for Numerical Methods
in Engineering 371994).

[BMG99] BIELSERD., MAIWALD V. A., GROSSM.: Interactive
cuts through 3-dimensional soft tissu®roc. of Eurographics
(1999).

[CDA0O] CoTIN S., DELINGETTE H., AYACHE N.: A hy-
brid elastic model allowing real-time cutting, deformaiso and
force-feedback for surgery training and simulatiohhe Visual
Computer 168 (2000).

[CLR90] CORMENT. H., LEISERSONC. E., RVESTR. L.: In-
troduction to Algorithms, 2nd EAVIT Press, 1990.

[CSY94] CHoI J., SELLEN J., YAP C.-K.: Approximate Eu-
clidean shortest path in 3-spacACM Symposium on Compu-
tational Geometry(1994).

[CWIO0] CARTER B. J., WAWRZYNEK P. A., INGRAFFEA
A. R.: Automated 3D crack growth simulatiorinternational
Journal for Numerical Methods in Engineering 42000).

[Dufo6] DurLOT M.: A meshless method with enriched weight
functions for three-dimensional crack propagatibriernational
Journal for Numerical Methods in Engineerifg006). Preprint
available online.

[FMO4] FrRIES T. P., MATTHIES H. G.: Classification and
Overview of Meshfree Methad$ech. rep., TU Brunswick, Ger-
many, 2004.

[GCMS00] GaNoOVELLI F., CGNONI P., MONTANI C.,
ScoPIGNOR.: A multiresolution model for soft objects sup-
porting interactive cuts and lacerationBroc. of Eurographics
(2000).

[GGN04] GaoJ., GuiBAS L. J., NGUYENA.: Deformable span-
ners and applicationsProc. of Symposium on Computational
Geometry(2004).

[GO01] GaNOVELLI F., O'SuLLIVAN C.: Animating cuts with
on-the-fly re-meshingProc. of Eurographicg2001).

[HDD*92] HoppPEH., DEROSET., DUCHAMP T., MCDONALD
J., STUETZLE W.: Surface reconstruction from unorganized
points. Proc. of ACM SIGGRAPH1992).

HERSHBERGERJ., SURI S.: An optimal algorithm for
Euclidean shortest paths in the plais#AM Journal on Comput-
ing 28 6 (1999).

[KB99] KRYSLP., BELYTSCHKO T.: The element-free Galerkin
method for dynamic propagation of arbitrary 3-D crackis-
ternational Journal for Numerical Methods in Engineering 4
(1999).

[Kou05] KouMouTsAakosP.: Multiscale flow simulations using
particles.Annual Review of Fluid Mechanics §2005).

[KZ04] KLEIN J., ZACHMANN G.: Proximity graphs for defining
surfaces over point cloud®roc. of Eurographics Symposium on
Point-Based Graphic€004).

[Liu02] Liu G. R.: Mesh-Free MethodsCRC Press, 2002.

[LS81] LANCASTER P., SALKAUSKAS K.: Surfaces generated
by moving least squares methoddathematics of Computation
(1981).

[MBF04] MoLINO N., BAO Z., FEDKIW R.: A virtual node al-
gorithm for changing mesh topology during simulati¢thoc. of
ACM SIGGRAPH2004).

[MDB99] MOESN., DoLBOW J., BELYTSCHKO T.: A finite ele-
ment method for crack growth without remeshirgternational
Journal for Numerical Methods in Engineering ¢8999).

[MKOO] MORA. B., KANADE T.: Modifying soft tissue models:
Progressive cutting with minimal new element creatiBroc. of
MICCAI (2000).

[MKN*04] MULLER M., KEISERR., NEALEN A., PAULY M.,
GROSSM., ALEXA M.: Point based animation of elastic, plastic
and melting objects.Proc. of Eurographics/ACM SIGGRAPH
Symposium on Computer Animati@904).

[NvOO] NIENHUYSH.-W., VAN DER STAPPENA. F.: Combining
finite element deformation with cutting for surgery simidat
Proc. of Eurographic£2000).

[OBHO02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fractuiroc. of
ACM SIGGRAPH2002).

[OFTB96] ORGAND., FLEMING M., TERRY T., BELYTSCHKO
T.: Continuous meshless approximations for nonconvexdsodi
by diffraction and transparencyComputational Mechanics 18
(1996).

[OH99] O’BRIENJ. F., HODGINSJ. K.: Graphical modeling and
animation of brittle fractureProc. of ACM SIGGRAPHK1999).

[PKA*05] PauLy M., KEISeErR R., AbDams B., DUTRE P.,
GROSSM., GuIBAS L. J.: Meshless animation of fracturing
solids. Proc. of ACM SIGGRAPHK2005).

[She02] SiEWCHUK J. R.: Delaunay refinement algorithms for
triangular mesh generationComputational Geometry: Theory
and Applications 221-3 (2002).

[SHGS06] SEINEMANN D., HARDERS M., GROSS M.,
SzekELY G.: Hybrid cutting of deformable solidsProc. of
IEEE Virtual Reality Conferenc€006).

[TF88] TeERzopouLosD., FLEISCHERK.: Modeling inelastic
deformation: Viscoelasticity, plasticity, fracturd?roc. of ACM
SIGGRAPH(1988).

[THM*03] TESCHNERM., HEIDELBERGERB., MULLER M.,
POMERANETS D., GROSSM.: Optimized spatial hashing for
collision detection of deformable objectroc. of VMV(2003).

(© The Eurographics Association 2006.

