
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)
M.-P. Cani, J. O’Brien (Editors)

Fast Arbitrary Splitting of Deforming Objects

Denis Steinemann Miguel A. Otaduy Markus Gross†

Computer Graphics Laboratory, ETH Zurich, Switzerland

Abstract
We present a novel algorithm for efficiently splitting deformable solids along arbitrary piecewise linear crack
surfaces in cutting and fracture simulations. We propose the use of a meshless discretization of the deformation
field, and a novel visibility graph for fast update of shape functions in meshless discretizations. We decompose the
splitting operation into a first step where we synthesize crack surfaces as triangle meshes, and a second step where
we use the newly synthesized surfaces to update the visibility graph, and thus the meshless discretization of the
deformation field. The separation of the splitting operation into two steps, along with our novel visibility graph,
enables high flexibility and control over the splitting trajectories, provides fast dynamic update of the meshless
discretization, and facilitates an easy implementation, making our algorithm scalable, versatile, and suitable for
a large range of applications, from computer animation to interactive medical simulation.

1. Introduction

Many applications of computer graphics exploit the simula-
tion of cutting and fracture of virtual objects. To cite some
prominent examples, the growing field of medical simulation
has targeted numerous medical interventions that involve
cutting of tissue; modeling by virtual carving and sculpt-
ing requires elementary operations that produce topologi-
cal changes; and videogames and special effects for feature
films often animate exploding and breaking objects.

The simulation of cutting and fracture of deformable ob-
jects encompasses two main aspects [CWI00]: the geomet-
ric and topological aspect, concerned with the synthesis of
crack surfaces and how these surfaces affect the discretiza-
tion of the domain in the physically-based simulation; and
the mechanical aspect, concerned with the computation of
forces, deformations, and crack initiation and propagation.
In this paper, we are concerned with the geometric and topo-
logical aspect of simulating cutting and fracture, and to that
respect, they are analogous operations. However, from the
mechanical point of view, and for practical purposes of com-
puter simulation, it is common to distinguishvirtual cut-
ting [BMG99,GCMS00], where crack propagation is explic-
itly defined by the surface swept by a virtual blade object,
from virtual fracture [TF88, OH99, OBH02], where crack
propagation is determined from simulated material stress.

† {deniss,otaduy,grossm}@inf.ethz.ch

The geometric and topological aspect of cutting and frac-
ture cannot be completely separated from the mechanical
aspect, since the choice of discretization method largely in-
fluences the requirements of the geometric algorithms for
splitting deformable solids. In commonly used finite element
methods (FEM), the stability of the simulation strongly de-
pends on the quality of the mesh, which tends to be pre-
served by introducing constraints in the splitting of mesh el-
ements [BMG99,GCMS00,Nv00]. The use of dense meshes
diminishes the visual artifacts caused by element splitting
constraints, at the cost of slow computations. Similar to
our work, the virtual node algorithm [MBF04] focuses on
the geometric and topological aspects of cutting and frac-
ture. It enables highly detailed surfaces without compro-
mising the stability of the simulation, but it relies on a
dense underlying mesh. Recently, meshless methods have
been proposed for simulating fracture in computer graph-
ics [MKN∗04,PKA∗05], as they enable lightweight restruc-
turing of the discretization of the models. FEM meshes im-
ply a partitioning of objects for defining interpolation func-
tions and evaluating differential operators, while meshless
methods offer a solid mathematical framework for approx-
imating those operators without a need for explicitly parti-
tioning the space. However, previous meshless methods in
computer graphics use implicit surface definitions that limit
the control on splitting trajectories and impose a high com-
putational burden on the evaluation of boundary conditions.

In this paper, we present a novel approach for the effi-
cient splitting of deformable objects. It combines the advan-
tages of explicit mesh-based surface representations withthe

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

Figure 1: Peeling a Virtual Apple. As the peeler slices through the apple, the skin deforms and falls off. The apple consists
initially of 2121simulation nodes and6124triangles, and it is peeled at25 fps.

flexibility of a meshless discretization of the underlying de-
formation field. This combination allows us to decouple the
synthesis of crack surfaces from the update of the discretiza-
tion during fracture or cutting. The method is highly scalable
while retaining arbitrary and highly controllable split sur-
faces. Our approach encompasses two main contributions:

• An algorithm for crack generation decomposed into two
sequential operations: first, meshing an explicit crack sur-
face from the propagation of cutting or fracture fronts, with-
out restrictions on the topology or trajectory of the front;
and second, updating the meshless discretization of the sim-
ulation domain, using the readily available explicit crack
surface.
• A visibility graph for storing proximity information in
the meshless discretization of the simulation domain. The
graph is created as a preprocess, and it is locally and effi-
ciently updated at runtime exploiting the explicit crack sur-
faces. Shape functions of affected simulation nodes are also
efficiently updated by using distances along visible paths in
the graph. Even though the visibility graph stores connec-
tions between simulation nodes, it does not require a parti-
tion of the simulation domain as in FEM methods.

Our algorithm is highly scalable, making it suitable for
a large range of applications. We have demonstrated it in
examples such as an interactive hysteroscopy simulation in
Figure6, or the cutting simulation shown in Figure1.

2. Related Work

The simulation of breaking objects was introduced to com-
puter graphics almost twenty years ago [TF88]. Nowadays,
finite element methods (FEM) have become a very popular
approach for the physically-based simulation of deformable
objects that are cut or fractured. O’Brien et al. developed
models for brittle [OH99] and ductile fracture [OBH02]
based on FEM discretization of continuum mechanics equa-
tions, and also demonstrated the generation and propagation
of cracks from eigen analysis of the stress tensor.

From the geometric and topological point of view, many
approaches have been proposed for dealing with the split-
ting of FEM mesh elements as the result of cutting or frac-
ture. The splitting of tetrahedral elements by planar cuts
can be described by a small set of configurations [BMG99,

GCMS00], and can also be handled in a progressive
manner [MK00, BGTG03]. However, arbitrary decomposi-
tion of tetrahedra may produce badly-shaped sub-elements
that destabilize the simulation. Hence, many authors have
adopted various element decomposition constraints. In sit-
uations where speed is a priority, such as virtual cutting in
medical simulation, the decomposition constraints include
deleting elements as they are crossed by a blade [CDA00],
or snapping nodes of the elements to the trajectory swept by
the blade [Nv00]. Others have followed hybrid approaches
that combine snapping and decomposition [SHGS06]. The
virtual node algorithm [MBF04] detaches the surface repre-
sentation from the FEM mesh, and replicates nodes for sim-
ulation purposes. It enables arbitrary cuts through mesh ele-
ments, as long as one original node falls on each side of the
cut. When combined with dense underlying FEM meshes,
the virtual node algorithm enables practically arbitrary cut-
ting trajectories, at the price of slow computations.

In the last decade, new techniques such as the ex-
tended finite element method [MDB99] or meshless meth-
ods [BLG94] have been designed in the field of computa-
tional mechanics for avoiding the volumetric remeshing of
FEM in the simulation of fracture. As opposed to FEM,
meshless methods do not require a partition of the volume
of the deformable objects. This freedom comes at the price
of more complex definitions of the shape functions of sim-
ulation nodes, but in the simulation of fracture or cutting
it offers the important advantages of adaptive resampling
and reconfiguration of the shape functions [Liu02, FM04],
without the possible stability problems induced by badly-
shaped mesh elements. Meshless methods have previously
been proposed for simulating fracture of deformable models
in computer graphics as well [MKN∗04, PKA∗05]. These
approaches employ meshless representations of the crack
surfaces, which can be very efficiently sampled as cracks
propagate. However, the meshless surface representations
are defined implicitly through a moving least squares (MLS)
approximation [LS81], and expensive ad-hoc book-keeping
of connectivity is necessary near the crack front to avoid
sampling problems and reach the desired surface topol-
ogy [AK04]. Similarly, the implicit surface definition im-
poses a heavy computational burden on the evaluation of
boundary conditions, and limits the explicit control of the

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

trajectories of cracks. This could be especially problematic
in virtual cutting, where the cut surfaces must align with the
virtual blade to avoid artifacts. We also adopt meshless dis-
cretization methods for the simulation of cutting and frac-
ture, but we model the crack surfaces explicitly using trian-
gle meshes. We share this strategy with previous approaches
in computational mechanics [KB99, Duf06], but we intro-
duce more efficient methods to handle cracks in geometri-
cally rich objects for visual applications.

Accurate evaluation of surface boundaries is a key as-
pect with meshless methods, as it governs the reconfigu-
ration of shape functions after cracks propagate. Thevis-
ibility criterion [BLG94] cancels the shape functions if
two points are not visible within the object, thediffraction
method[OFTB96] weights the Euclidean distance between
two points by their distances to the crack tip, and thetrans-
parency method[OFTB96] adds to the Euclidean distance
a factor that depends on the distance to the crack tip. The
diffraction and transparency methods were designed for sim-
ple 2D cracks with a well-defined crack tip. They have also
been used in 3D, with triangle meshes in computational
mechanics [KB99, Duf06], and with meshless surfaces in
computer graphics [PKA∗05], even though they generalize
poorly to jagged 3D cracks and are computationally expen-
sive, as discussed by Duflot [Duf06]. Instead, we propose
the use of a visibility graph for estimating the distance along
fully visible paths, thus handling naturally and efficiently
both original concavities and arbitrary crack surfaces.

The concept of visibility graph is associated with theEu-
clidean shortest path(ESP) problem [HS99]: finding the
shortest visible path between two points given a set of poly-
hedral obstacles. The ESP between two 3D points, if a path
exists, is formed byvisibility edgesthat connect the two
3D points and points on obstacle edges. Finding the ESP
in 3D is NP-hard, but several polynomial approximations
have been proposed, which sample obstacle edges to con-
struct a 3D visibility graph [CSY94]. Graphs over point
clouds are also common to other geometric problems, such
as surface reconstruction [HDD∗92,ABK98,KZ04] or prox-
imity queries [GGN04]. For the construction of our visibility
graph, we adapt the Riemannian graph [HDD∗92].

3. Overview

In this section, we outline our geometric algorithm for split-
ting deformable models in cutting or fracture simulation.
First, however, we overview the meshless discretization of
deformable models, and we discuss the geometric and topo-
logical implications of cutting and fracture in the discretiza-
tion and representation of the models.

3.1. Meshless Discretization

Given a 3D solid object with material coordinatesx that pa-
rameterize the volume of the object, a displacement field
u(x) defines the deformed positions of internal particles in
world coordinates asx+u(x). We follow the framework of

Figure 2: Crack Surfaces. A crack defines a discontinuity
in the mapping from material coordinatesx (left) to the de-
formed statex + u(x) in world coordinates (right). Shape
functions in meshless discretization methods must account
for these discontinuities.

Müller et al. [MKN∗04] for modeling dynamic deformations
using meshless discretizations. The deformation field is sam-
pled at a discrete set of simulation nodesP = {pi}, and it
can be approximated at any position in the object asu =

∑i Φi(x)ui , using shape functionsΦi computed, for exam-
ple, by moving least squares (MLS) approximation [LS81].
For possible options in the design of shape functions for
meshless methods, we refer to [FM04,MKN∗04,PKA∗05].

Each shape functionΦi(x) is weighted by a smoothly de-
caying kernelω(x,xi , r i), based on the support radiusr i of
node pi . The support radius of shape functions should be
sufficiently small to adequately discretize gradients [Kou05],
and is often estimated based on the distance to thekth near-
est simulation node [MKN∗04]. We define asneighborsof
a simulation nodepi the nodes for which the value of the
kernel functionωi of pi , and thus also the shape function
Φi , is larger than a small cutoff value. Without loss of gen-
erality, we can consider as neighbors ofpi those nodes that
are closer than the support radiusr i of pi . In order to ac-
count for material discontinuities introduced by cracks and
original surface concavities, we define thematerial distance
between nodespi andp j of objectA, as the ESP betweenxi
andx j , subject to the boundary surface ofA. As explained
later in Section5, we approximate the ESP by the graph-
based distance using a visibility graph.

For animating points on the boundary of the object as it
deforms, we follow the approach of Müller et al. [MKN∗04],
using the MLS approximation of the deformation field.
Specifically, the displacementu of a vertexv with material
coordinatesx can be computed based on the displacements
ui of the simulation nodes as:

u =
1

∑i ω(x,xi , r i)
∑
i

ω(x,xi , r i)
(

ui +∇uT
i (x−xi)

)

. (1)

In the simulation of cutting or fracture, we also require the
definition of the inverse mapping, from the world coordi-
natesx+u to material coordinatesx. For points on the sur-
face, we compute the material coordinatesx by linearizing
the mapping functionu(x) over each surface triangle using
barycentric coordinates. For points in the interior of an ob-
ject, we solve forx in Eq. (1) after estimating kernel weights
ωi in world coordinates.

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

3.2. Virtual Cutting and Fracture

A crack is defined as a new surface of a solid object formed
when atomic or molecular bonds are broken. In the scope
of computer graphics, atomic or molecular bonds are mod-
eled at a macroscopic level by internal forces, and a crack
can be defined as a surface across which internal forces are
disrupted. When separated by a crack, particles that are adja-
cent in material coordinates are free to split and move away
from each other in world coordinates, hence, as discussed by
O’Brien and Hodgins [OH99], cracks may induce disconti-
nuities in the displacement fieldu(x), as shown in Figure2.

A crack can be characterized geometrically by two surface
sheets joined at a sharp crease, thesplitting front. As dis-
cussed in the introduction, in computer simulation it is com-
mon to distinguish between virtual fracture and virtual cut-
ting depending on whether the propagation of splitting fronts
is defined from simulated material stress or explicitly from
the motion of a virtual blade object. From the geometric and
topological point of view, both virtual cutting and fracture
involve two main operations: (i) synthesize crack surfaces
and cut the original surface as splitting fronts propagate,and
(ii) update the discretization of the simulation domain such
that internal forces are disrupted across crack surfaces. With
meshless discretizations, the second operation reduces toup-
dating the set of neighbors and the shape function of each
simulation node according to new material distances that ac-
count for crack discontinuities.

3.3. Algorithm Outline

As summarized in the introduction, our algorithm for split-
ting deforming objects handles sequentially the two main ge-
ometric and topological operations mentioned above. We dy-
namically update the meshless discretization exploiting the
readily available explicit crack surfaces and a novel visibility
graph. The algorithm consists of the following steps:

1. Propagate splitting fronts (Section4.1).
2. Intersect them with the surface of the object (Section4.2).
3. Trim and triangulate crack surfaces (Section4.2).
4. Cut the visibility graph with crack surfaces (Section5.3).
5. Sample new nodes near crack surfaces (Section5.4).
6. Update neighbors of simulation nodes (Section5.3).
7. Update node neighbors of surface vertices (Section5.5).

4. Progressive Cracks

In this section, we present our general algorithm for progres-
sively meshing crack surfaces on deforming objects. First,
we discuss the propagation of splitting fronts, the generation
of splitting surfaces as fronts are swept, and the handling
of topological events produced by intersections of splitting
surfaces and the surface of the deforming object. Next, we
describe the process of meshing the crack surface, cutting
the original surface of the object, and connecting them to-
gether. Due to the explicit representation of splitting sur-
faces, this process can be efficiently performed as a sequence
of well-known geometric operations: triangle mesh intersec-
tion, trimming, triangulation, and stitching.

4.1. Front Propagation

We concentrate here on synthesizing crack surfaces on a 3D
object A whose boundary surface is a watertight triangle
meshSA. A splitting front F is a 3D curve, possibly non-
manifold, and possibly closed. We decompose the front into
open 1-manifold components, represented by piecewise lin-
ear curves. Then, a splitting frontF can be described by a
sequence of points{ f1 . . . fn}, as shown in Figure3-b. As
cracks are essentially surfaces that disconnect particlesin
material coordinates, it is appropriate to define the position
of front points fi in material coordinatesxi . In the simu-
lation, the splitting front is sampled at discrete time steps.
We refer assplitting surface SS to the surface swept by the
front between two consecutive time steps. We approximate
the splitting surface by assuming linear trajectories for the
front points, and triangulating the surfaces defined by pairs
of front points, as shown in Figure3-b. If front points move
more than a user-defined threshold between time steps, the
time step may be decomposed into smaller substeps for bet-
ter approximation of the splitting surface. We distinguishbe-
tween the splitting surfaceSS and the actual crack surface,
which is the portion of the splitting surface trimmed when
the front intersects with the surfaceSA of the objectA. The
positions of front pointsfi are defined initially in world coor-
dinates, either by sampling a virtual blade object (in virtual
cutting), or from eigen analysis of the simulated stress tensor
(in virtual fracture). We compute the material coordinatesxi
of front points by inverting the displacement function (1), as
described in Section3.1. When the mapping is not well ap-
proximated by a piecewise linear function, the splitting front
may be upsampled by adding extra points to the new front
Fk+1 and drawing extra edges to the old frontFk. Similarly,
the front may be downsampled by collapsing pairs of points
in the new frontFk+1. In virtual cutting, a blade may inter-
sect different parts of the surface of an object. Then, points
on the blade must be mapped to different front components
in material coordinates, depending on the local mapping of
each intersection region.

As described by Pauly et al. [PKA∗05], the topologi-
cal changes produced during crack propagation can be de-
scribed through a combination of four elementary events:
crack initiation, branching, merging, and termination. We
exploit the explicit representation of our splitting surfaces to
efficiently detect and handle the various events. Crack initi-
ation, branching, and termination are automatically handled
by computing the intersections between the splitting surface
SS and the surface of the objectSA, as shown in Figure3,
where the new frontFk+1 branches into two components.
Crack merging, on the other hand, is detected as the inter-
section of splitting surfaces. If splitting surfaces intersect,
we force the merging by snapping nodes at the new front(s).

4.2. Trimming and Triangulation

Given the surfaceSA of an objectA, and a newly swept split-
ting surfaceSS, we compute their intersection curves (which

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

F
k

F
k+1

Figure 3: Stages of Progressive Crack Synthesis. From left to right: (a) The X letter being cut by a blade, while the crack
surface (in blue) is progressively meshed.(b) The splitting front defined by a blade propagates from Fk to Fk+1, and the splitting
surface SS is triangulated. Black squares indicate cross sections of edges of the surface of the object, SA. (c) The intersections
between SS and SA are detected. In red, intersections of edges of SS and triangles of SA and, in green, intersections of edges
of SA and triangles of SS. (d) Each triangle T of the splitting surface SS is trimmed. The connected alternating sequence of
triangle boundary curves (in red) and trimming curves (in green) yields a trimming loop.(e) The newly swept crack surface is
meshed by triangulating separately the2D polygon defined by each trimming loop. Additional points (in black) are inserted to
improve the quality of the triangulation.

we refer to astrimming curves) by connecting edge-triangle
intersection points (see Figure3-c). Since the intersections
between the old frontFk andSA are known from the previous
frame, we efficiently find a subset of the trimming curves by
walking alongSA until we reach intersections between the
new frontFk+1 andSA. In order to find other possible trim-
ming curves, like the one that produces the front branching
event in Figure3, we perform intersection queries between
edges ofSA and triangles ofSS and vice versa, accelerated
by the use of spatial hashing techniques [THM∗03]. After in-
tersecting the surfaces, we must decompose the intersecting
triangles of both surfacesSA andSS, and stitch the resulting
patches together at the trimming curves. Note that the crack
surface maps to two different surfaces in world coordinates
and, in order to maintain a watertight triangle mesh, it must
be handled in material coordinates as two collocated meshes
with opposite normals.

We handle the meshing of each trimmed triangleT of the
surfacesSA and SS individually but in a uniform manner.
Hereafter we discuss the meshing of trimmed triangles in
the splitting surfaceSS, but the same procedure is valid for
triangles inSA. Without loss of generality, every intersecting
triangleT ∈ SS is trimmed bySA into a set of 2D polygons,
possibly with holes. The boundary of each polygon result-
ing from trimming, which we refer to astrimming loop, is
a connected sequence of trimming curves{ci} and triangle
boundary curves{c j}, as shown in Figure3-d. All trimming
loops of a trimmed triangleT ∈ SS can be found efficiently
by walking between intersection points of its edges with tri-
angles ofSA, alternating steps along trimming curves and
triangle boundary curves, until loops are completed and all
intersection points are visited. Similarly, inner holes ofthe
polygons enclosed by trimming loops can be found by walk-
ing between intersection points ofT with edges ofSA.

Once a trimming loop is detected and possible inner holes
are identified, the enclosed polygon can be triangulated as
shown in Figure3-e, using fast state-of-the-art 2D polygon
triangulation algorithms [She02]. Note that, typically, each

trimming loop consists of a small O(1) amount of vertices.
To reduce robustness problems, before triangulation we col-
lapse pairs of intersection points that lie very close from
each other, and after triangulation we try to eliminate near-
degenerate triangles, since they could cause problems if fur-
ther cracks passed through them. Depending on the applica-
tion, we propose further processing of the crack surfaces for
enhanced surface detail control. Local decimation, as previ-
ously applied by others [GO01], can serve to increase per-
formance in interactive cutting simulations. In computer an-
imation of brittle fracture, on the other hand, it is possible to
apply further subdivision for obtaining rich jagged surfaces.

5. Visibility Graph

In this section, we present a visibility graph for storing prox-
imity information in meshless discretizations. We first de-
fine the graph, and we describe how neighbors of simulation
nodes can be efficiently determined using a modified Floyd-
Warshall algorithm. Next, we describe the handling of cut-
ting and fracture, through the update of the visibility graph
using our explicit crack meshes, as well as adaptive resam-
pling. To conclude, we describe an efficient augmentation
of the graph in order to store and update node neighbors of
surface vertices for the animation of the surface mesh.

5.1. Defining the Visibility Graph

As introduced in Section3.1, the evaluation of shape func-
tions for meshless simulation requires knowledge about the
material distance between pairs of nodes. Given a pair of
nodes{pi , p j} of an objectA, we approximate their material
distance as the shortest path distancedG(pi , p j ) along a visi-
bility graphG in the interior ofA. As mentioned in Section2,
finding exact shortest paths with polyhedral obstacles in 3D
is NP-hard, therefore we construct an approximate visibility
graphG by drawing visibility edges between pairs of nodes.

Specifically, given an objectA discretized by a set
of nodesP, we initialize the graphG as a Riemannian
graph [HDD∗92] on P, subject to the constraints imposed

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

Figure 4: Graph and Neighborhood Updates during Crack Propagation. From left to right: (a) Initial visibility graph, ac-
counting for surface concavities.(b) Initial neighbors of a simulation node pi , where edge width encodes graph-based distance.
(c) As a crack cuts edges of the graph (in red), we execute a modified Floyd-Warshall algorithm on the set of nodes Pupdate(in
red), in order to update their neighbors.(d) Updated neighbors of node pi . After the crack cuts the edge(pi , p j ), the material
distance between pi and pj is approximated as‖pk− pi‖+‖p j − pk‖ for shape function evaluation.

by the polyhedral boundary ofA. The Riemannian graph of
P is an undirected graph formed by the Euclidean minimum
spanning tree (EMST) ofP, augmented with edgese(pi , p j )
if pi is one of thek closest nodes ofp j or vice versa (ac-
cording to the Euclidean distance). In practice, a value of
k = 26 based on a regular grid-like sampling yields a suf-
ficiently dense visibility graph where Euclidean distance is
well approximated by graph-based distance. Accuracy may
be traded for lower memory requirements using smaller val-
ues ofk. After initializing the graph, we perform visibility
tests with the initial surface of the objectA to remove edges
that cross concavities of the boundary, and obtain the setE of
valid visibility edges. Using graph-based distances, we can
find the node neighbors of each nodepi as those closer than
its support radius, and thus evaluate shape functions. Fig-
ure4 shows the visibility graph and the set of neighbors of
a simulation node near a concave region of a surface, before
and after the propagation of a crack.

During the simulation of cutting or fracture, for each node
pi we maintain a set of incident visibility edges{ei}, and
a set of neighbors{p j} entirely defined by distances along
the visibility graph. When cracks propagate, we employ the
newly synthesized crack surfaces (Section4) to perform in-
tersection tests with the visibility edges and update the lists
of neighbor nodes if visibility edges are cut. For simplicity,
we will describe our algorithm assuming regular sampling
and a homogeneous support radiusrmax. In Section5.4, we
describe the handling of adaptive sampling.

5.2. Initialization of Neighbors

Given the initial visibility graphG, we must initialize the set
of neighbors of each nodepi by finding all nodes that are
closer than its support radius. This initialization reduces to
computing all-source shortest paths on the visibility graph
G. However, we exploit the fact that distances must be com-
puted only w.r.t. nodes closer than the support radius, and
we have designed a modified Floyd-Warshall (MFW) algo-
rithm [CLR90] with expected linear time-complexity in the
number of nodes.

The standard Floyd-Warshall algorithm stores a matrixD
of pairwise distances between nodes inP. The matrix is ini-
tialized with the lengths of the edges of the visibility graph
G. The algorithm proceeds by looping over all nodes, test-
ing if a path passing through the current node reduces the

distance between any other pair of nodes. In our modified
algorithm, we only update distances if they are smaller than
the support radiusrmax. As a result, givenn regularly sam-
pled simulation nodes with an average number of neighbors
m, the matrixD is sparse with O(m) elements per row, and
the time-complexity of the algorithm is O(m2n). At termi-
nation of the algorithm, theith row of the matrix stores the
distances to the neighbors of nodepi .

5.3. Dynamic Neighborhood Updates

Upon crack propagation, we intersect the triangles of newly
synthesized crack surfaces against the set of visibility edges
E, as shown in Figure4-c. This operation can be accelerated
using spatial hashing [THM∗03]. We define the set of cut
edgesEcut, and the set of nodes that need to update neigh-
borsPupdate. The setPupdateconsists of nodespi whose dis-
tance to an end point of some cut edgee∈Ecut is shorter than
rmax−de, wherede is the length of edgee. Note that, in this
case, a shortest path betweenpi and some of its neighbors
before crack propagation may cross the edgee, and needs
to be recomputed. Note also that nodespi ∈ Pupdate only
need to update material distances w.r.t. their old neighbors
in Pupdate, but the distances w.r.t. neighborsp j /∈ Pupdatere-
main constant. Figure4-c shows the setPupdate as a crack
propagates.

To update neighbors of nodes, we remove the cut edges
Ec from the visibility graphG, and we execute MFW on
the subgraph defined by the nodesPupdate, as described in
the previous section. From the resulting matrix of MFW,
we update material distances and neighborhood information
among nodes inPupdate.

5.4. Adaptive Sampling

In adaptively sampled objects, the support radius varies
across nodes according to the sampling density, as described
in Section3.1. The definition of node neighborhoods based
on pairwise distances may suffer from inconsistencies in
adjacent regions with disparate sampling densities, as two
nodespi and p j may be determined as neighbors, while a
nodepk in the shortest path betweenpi andp j is not a neigh-
bor of either of them. One possibility for handling varying
sampling densities is to map the adaptively sampled domain
to a regularly sampled reference domain [Kou05]. Inspired

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

Figure 5: Nodes and Graph in a Pumpkin Model. From left
to right: (a) Cross-section of a pumpkin showing the initial
adaptive sampling.(b) Resampling of the volume as a crack
is meshed.(c) Visibility graph in the locality of a node (in
red). In blue, edges to other nodes; in red, edge to a master
vertex (in green); and, in green, tree of slave vertices.

by this idea, we propose a method for warping the visibil-
ity graph such that the length of visibility edges is no longer
measured in Euclidean space, but in a warped semi-regularly
sampled space. We define the lengthde of a visibility edge
e(pi , p j ) by normalizing the Euclidean length w.r.t. the max-

imum support radius of the nodespi andp j , de =
‖xi−x j‖
max(r i ,r j )

.

In this way, the maximum support radius for the execution
of the MFW algorithm is normalized asrmax = 1. Note that
we only use the normalized edge lengths for defining node
neighbors, but we resort to unnormalized graph-based short-
est path distances for the evaluation of shape functions.

During crack propagation, the interior of an objectA must
be dynamically resampled in order to conform the sampling
density to the dynamically varying boundary. Moreover, in
our framework for defining node neighborhoods based on
a visibility graph, dynamic resampling fulfills the task of
guaranteeing the existence of visible paths inside connected
components of the object. We follow the same approach of
motion planning algorithms that sample the domain near ob-
stacles in order to guarantee visible paths through narrow
passages [ABD∗98], and we place new nodes by offsetting
sample points from the newly swept crack surfaces. Then,
we apply the octree-based decomposition proposed by Pauly
et al. [PKA∗05] in order to produce a smooth variation of the
sampling density. We connect the set of new nodesPnew to
the visibility graph by drawing new edgesEnew to thek clos-
est nodes (subject to boundary constraints). For the compu-
tation of neighbor nodes, we simply augmentEcut with Enew,
and we redefinePupdateaccordingly for the execution of the
MFW algorithm. Figure5-a shows the initial sampling of a
pumpkin model, with two resolution levels, and Figure5-b
shows the dynamic resampling while the pumpkin is split.

5.5. Animation of the Surface Mesh

The verticesV of the surface meshSA are animated accord-
ing to the motion of simulation nodesP based on Eq. (1).
Every vertex must store a set of neighbor nodes, which may
vary dynamically due to crack propagation. One could aug-
ment the visibility graphG of nodes with the edges of the
meshSA to cover all verticesV, and thus dynamically update
node neighbors of the vertices. However, typically the sam-

pling density of the surfaceSA is considerably higher than
the sampling density of nodesP, and this difference incurs
in a considerable increase in the cost of executing MFW.

We propose a sparse augmentationGV of the visibility
graph for neighborhood computations of mesh vertices. For
each nodepm close to the surface of the object, we set one
visibility edge to its closest vertexvm, which we refer to as
master. We complete the graph by growing trees ofslaves
from the masters in a breadth-first-search (BFS) manner, as
shown in Figure5-c, until we cover the entire surface. We
initialize neighbor nodes by assigning to each vertexv the
neighbor nodes ofpm, wherepm is the adjacent node of the
master ofv. For the computation of the weights in Eq. (1),
we use Euclidean distances from the vertices to the nodes, as
we found that graph-based distances are not a good estimate
in this case.

During crack propagation, we must perform local updates
of node neighbors in affected vertices due to two general
reasons: (i) edges of the augmented visibility graphGV are
cut, and (ii) new vertices and nodes are added to the object.
Note that new nodes close to the boundary are connected
to surface vertices that become masters. We define the set
of orphanverticesVorphan as those without a valid master.
Vertices may be tagged as orphans because they are newly
added, they belong to a subtree of slaves that gets discon-
nected because a surface edge is cut, or their master gets
disconnected because a visibility edge to a node is cut. We
perform the dynamic update of node neighbors of surface
vertices in two steps. First, we grow trees of slaves in BFS
manner to assign a master to all orphans. Second, we up-
date distances and neighbors in trees whose masters are con-
nected to nodes inPupdate(after being augmented withPnew),
following the same procedure as at their initialization.

6. Results

We have evaluated our technique on diverse applications,
including computer animations that involved cutting oper-
ations (Figures1, 8, and 7), prescored fracture animation
(Figure8), and an interactive surgical simulator (Figure6).
All demonstrations were executed on a 3.4 GHz Pentium-4
processor PC with 1.0 GB of memory. For collision han-
dling between independent deformable objects, we have fol-
lowed a penalty-based approach, but for self-collision han-
dling we have applied a constraint-based approach similar
to [BFA02].

Figure5-b depicts a scenario used for evaluating the per-
formance and scalability of our algorithms. We have halved
models of a pumpkin with varying surface and volume sam-
pling densities, following identical cutting trajectories con-
sisting of 12 steps. As shown in Table1, the time for syn-
thesizing the entire crack surface ranges from 110 ms with
a 2.5K-triangle mesh, to 420 ms with a 10K-triangle mesh.
Note that this trend matches the optimal cost of O(

√
n) for

visiting all triangles along a meridian of a regularly sam-
pled spherical surface withn triangles. The time for cutting

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

Figure 6: Interactive Cutting in a Surgical Simulator. Cuts produced interactively atmorethan45 fps.

Figure 7: Self-Colliding Jell-O. Spiral cuts induce challenging self-collisions that are handled robustly.

Initial Final Graph Meshing Triangles Triangles
Mesh Mesh Edges Crack (ms) Cut per sec.

2500 3252 94.4K 110 158 1436
10000 11260 95K 200 276 1380
40000 42464 94.9K 420 523 1245

Initial Final Graph Updating Nodes Updates
Nodes Nodes Edges Graph (ms) Updated per sec.

2150 2764 47.6K 158 590 3734
4300 5145 95K 247 847 3429
8600 9574 185.4K 303 1239 4089

Table 1: Timings for Crack Synthesis and Graph Update.
In a cutting scenario similar to Figure5-b, the throughput
of cut triangles per second and node-neighborhood updates
per second remains almost constant for varying surface and
volume sampling densities.

the visibility graph and updating neighborhood information
ranges from 158 ms with a sampling of 2150 nodes, to 303
with 8600 nodes. Most importantly, Table1demonstrates the
scalability of our technique. For the same surface geometry,
the throughput of cut triangles per second remains approxi-
mately constant independently of the surface sampling den-
sity, and the throughput of node-neighborhood updates per
second remains approximately constant independently of the
volume sampling density.

Figure 1 shows a simulation where an apple is peeled
with a curved knife. The apple consists initially of 6124 tri-
angles, 2345 simulation nodes, and 52.4K visibility edges.
During the simulation, the number of triangles increases to

14504, and the number of nodes to 3149. Splitting operations
run at an average of 25 fps, which implies a performance
improvement of 2 orders of magnitude compared to previ-
ous meshless approaches in computer graphics [PKA∗05],
thanks to our fast visibility queries and localized updatesof
graph-based distances. The complete simulation is executed
at 3 fps. The animation also demonstrates the effectiveness
in capturing arbitrary splitting trajectories. Specifically, the
crack surfaces conform accurately to the trajectory of the
knife, showing sharp features at the junction with the orig-
inal surface of the apple, but smooth behavior along the di-
rection of the junction. Moreover, the cut pieces of skin are
adaptively sampled, and deform naturally until they fall off.
Computer-generated peeling imposes multiple challenges on
previous techniques. Previous meshless approaches would
have difficulties producing sharp features and evaluating vis-
ibility queries for updating shape functions. On the other
hand, FEM approaches would require dense meshes and
slow computations to provide similar control on the cutting
trajectories and the thickness of cut pieces of skin.

The letters depicted in Figure8 present thin features that
require very dense sampling for guaranteeing accurate and
stable deformations. The initial scene consists of 27K simu-
lation nodes and 100K triangles. With this dense sampling,
the simulation runs at an average of 2.5 sec/frame, but the
splitting operations take only 10% of the computations. This
animation demonstrates again the scalability of our tech-
nique and its ability to split deforming objects along arbi-
trary trajectories. We have also explored the application of
our technique for prescoring fracture animations of solids.

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

Figure 8: Sliced Letters and Smashed Pumpkins. Left: The blade of the curved wedge cuts the letters smoothlywhile they
deform. The scene consists of a total of27K nodes and100K triangles, and the cutting runs at4 fps. Middle and Right: Our
algorithm for synthesizing crack surfaces is used for prescoring fracture.

As an example, the pumpkins depicted in Figure8 are split
into pieces interactively as a preprocess, for later use in a
fracture animation.

Compared to implicit surface representations in previous
meshless simulation approaches, the use of an explicit sur-
face mesh enables robust self-collision handling, as demon-
strated in Figure7, which shows spiral cuts being made on
a block of Jell-O. Initially, the partially split pieces move
apart, and then they clamp together, inducing challenging
self-collisions. When the cuts terminate, the four disjoint
pieces of Jell-O collapse. The model is initially sampled
with 920 nodes and 6200 triangles. The simulation runs at
4.1 sec/frame, but the computations are highly dominated
by self-collision handling (more than 90%).

One of the major advantages of our technique is that it
allows stable arbitrary splitting at very diverse resolutions
and model complexities. We have exploited this feature in
an interactive simulator of hysteroscopy procedures, where
malicious polyps are cut from the uterus cavity, as shown
in Figure 6, using a haptic device as a 3D input tracker.
In the simulation, the scalpel is modeled as a sharp curve
that can cut in all directions when the blade is active, and
there is no scalpel-polyp collision response or handling of
self-collisions. The model of the polyp shown in the fig-
ure consists of a constant number of 275 simulation nodes.
The surface mesh complexity increases from 1334 to 4830
triangles. Splitting operations run at all times atmore than
45 fps, and the complete simulation runs at 21 fps. Previous
techniques for cutting in surgical simulators have often en-
countered problems with progressive cutting, partial cuts, or
changing cutting directions, but all these features are han-
dled stably and efficiently with our technique. Naturally, af-
ter reiterative cutting through the same volume, the resolu-
tion of the models may grow to levels that cannot be handled
interactively.

7. Limitations and Future Work

In this paper, we have presented a novel algorithm for
splitting deformable solids in a fast and arbitrary man-
ner. It adopts meshless discretization methods, and incorpo-

rates a novel visibility graph for efficiently updating shape
functions in the meshless discretization upon topological
changes. We decompose the splitting operation into two
steps: meshing crack surfaces, and the update of the graph
and the discretization. We have demonstrated the versatil-
ity, efficiency, and scalability of our algorithm, and the abil-
ity to produce smooth arbitrary cracks in a fast and stable
manner. Nevertheless, our algorithm presents several limita-
tions (some of them common to other methods), which set
the lines for future improvements.

The quality of the surface mesh degrades when the same
region is split multiple times. Local surface remeshing is
probably a viable solution, as it does not affect the discretiza-
tion of the simulation domain in our algorithm. FEM-based
techniques, however, would require volumetric remeshing to
avoid stability problems. In some applications, it is worthex-
ploring the combination of meshless methods in deforming
regions that can potentially be split, with traditional FEM
methods in regions that are never split.

Regarding the visibility graph, we are exploring possibili-
ties for better approximation of distances in concave regions
by adding a small subset of the surface vertices to the visi-
bility graph, and it is also worth to design means for reduc-
ing memory requirements. For handling plastic deformations
and the subsequent modifications of the visibility graph, we
are exploring kinetic data structures [GGN04] in combina-
tion with the plasticity model of [MKN∗04].

To conclude, we are currently pursuing the inclusion of
our algorithm for splitting deformable models in various
other surgical simulation applications. This task will re-
quire additional research for fast handling of self-collisions,
physically-based cutting and tool-object interaction, and
force feedback.

Acknowledgements

The authors would like to thank Richard Keiser, Martin
Wicke, Nico Galoppo, Oliver Buechi, Roni Oeschger and Si-
mon Bucheli for their support in this project. This research

c© The Eurographics Association 2006.



D. Steinemann M. A. Otaduy & M. Gross / Fast Arbitrary Splitting of Deforming Objects

has been supported by the NCCR Co-Me of the Swiss Na-
tional Science Foundation.

References

[ABD∗98] AMATO N. M., BAYAZIT O. B., DALE L. K., JONES

C., VALLEJO D.: OBPRM: An obstacle-based PRM for 3D
workspaces.Proc. of the Workshop on Algorithmic Foundations
of Robotics(1998).

[ABK98] A MENTA N., BERN M., KAMVYSSELIS M.: A new
voronoi-based surface reconstruction algorithm.Proc. of ACM
SIGGRAPH(1998).

[AK04] A MENTA N., KIL Y. J.: The domain of a point set sur-
face.Proc. of Eurographics Symposium on Point-Based Graphics
(2004).

[BFA02] BRIDSONR., FEDKIW R., ANDERSONJ.: Robust treat-
ment of collisions, contact and friction for cloth animation. In
Proc. of ACM SIGGRAPH(2002).

[BGTG03] BIELSER D., GLARDON P., TESCHNERM., GROSS

M.: A state machine for real-time cutting of tetrahedral meshes.
Proc. of Pacific Graphics(2003).

[BLG94] BELYTSCHKO T., LU Y. Y., GU L.: Element-free
Galerkin methods.International Journal for Numerical Methods
in Engineering 37(1994).

[BMG99] BIELSERD., MAIWALD V. A., GROSSM.: Interactive
cuts through 3-dimensional soft tissue.Proc. of Eurographics
(1999).

[CDA00] COTIN S., DELINGETTE H., AYACHE N.: A hy-
brid elastic model allowing real-time cutting, deformations, and
force-feedback for surgery training and simulation.The Visual
Computer 16, 8 (2000).

[CLR90] CORMEN T. H., LEISERSONC. E., RIVEST R. L.: In-
troduction to Algorithms, 2nd Ed.MIT Press, 1990.

[CSY94] CHOI J., SELLEN J., YAP C.-K.: Approximate Eu-
clidean shortest path in 3-space.ACM Symposium on Compu-
tational Geometry(1994).

[CWI00] CARTER B. J., WAWRZYNEK P. A., INGRAFFEA

A. R.: Automated 3D crack growth simulation.International
Journal for Numerical Methods in Engineering 47(2000).

[Duf06] DUFLOT M.: A meshless method with enriched weight
functions for three-dimensional crack propagation.International
Journal for Numerical Methods in Engineering(2006). Preprint
available online.

[FM04] FRIES T. P., MATTHIES H. G.: Classification and
Overview of Meshfree Methods. Tech. rep., TU Brunswick, Ger-
many, 2004.

[GCMS00] GANOVELLI F., CIGNONI P., MONTANI C.,
SCOPIGNO R.: A multiresolution model for soft objects sup-
porting interactive cuts and lacerations.Proc. of Eurographics
(2000).

[GGN04] GAO J., GUIBAS L. J., NGUYEN A.: Deformable span-
ners and applications.Proc. of Symposium on Computational
Geometry(2004).

[GO01] GANOVELLI F., O’SULLIVAN C.: Animating cuts with
on-the-fly re-meshing.Proc. of Eurographics(2001).

[HDD∗92] HOPPEH., DEROSET., DUCHAMP T., MCDONALD

J., STUETZLE W.: Surface reconstruction from unorganized
points.Proc. of ACM SIGGRAPH(1992).

[HS99] HERSHBERGERJ., SURI S.: An optimal algorithm for
Euclidean shortest paths in the plane.SIAM Journal on Comput-
ing 28, 6 (1999).

[KB99] K RYSL P., BELYTSCHKO T.: The element-free Galerkin
method for dynamic propagation of arbitrary 3-D cracks.In-
ternational Journal for Numerical Methods in Engineering 44
(1999).

[Kou05] KOUMOUTSAKOSP.: Multiscale flow simulations using
particles.Annual Review of Fluid Mechanics 37(2005).

[KZ04] K LEIN J., ZACHMANN G.: Proximity graphs for defining
surfaces over point clouds.Proc. of Eurographics Symposium on
Point-Based Graphics(2004).

[Liu02] L IU G. R.: Mesh-Free Methods. CRC Press, 2002.

[LS81] LANCASTER P., SALKAUSKAS K.: Surfaces generated
by moving least squares methods.Mathematics of Computation
(1981).

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node al-
gorithm for changing mesh topology during simulation.Proc. of
ACM SIGGRAPH(2004).

[MDB99] M OËSN., DOLBOW J., BELYTSCHKO T.: A finite ele-
ment method for crack growth without remeshing.International
Journal for Numerical Methods in Engineering 46(1999).

[MK00] M OR A. B., KANADE T.: Modifying soft tissue models:
Progressive cutting with minimal new element creation.Proc. of
MICCAI (2000).

[MKN ∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSSM., ALEXA M.: Point based animation of elastic, plastic
and melting objects.Proc. of Eurographics/ACM SIGGRAPH
Symposium on Computer Animation(2004).

[Nv00] NIENHUYS H.-W., VAN DER STAPPENA. F.: Combining
finite element deformation with cutting for surgery simulation.
Proc. of Eurographics(2000).

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fracture.Proc. of
ACM SIGGRAPH(2002).

[OFTB96] ORGAN D., FLEMING M., TERRY T., BELYTSCHKO

T.: Continuous meshless approximations for nonconvex bodies
by diffraction and transparency.Computational Mechanics 18
(1996).

[OH99] O’BRIEN J. F., HODGINSJ. K.: Graphical modeling and
animation of brittle fracture.Proc. of ACM SIGGRAPH(1999).

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P.,
GROSS M., GUIBAS L. J.: Meshless animation of fracturing
solids.Proc. of ACM SIGGRAPH(2005).

[She02] SHEWCHUK J. R.: Delaunay refinement algorithms for
triangular mesh generation.Computational Geometry: Theory
and Applications 22, 1-3 (2002).

[SHGS06] STEINEMANN D., HARDERS M., GROSS M.,
SZEKELY G.: Hybrid cutting of deformable solids.Proc. of
IEEE Virtual Reality Conference(2006).

[TF88] TERZOPOULOSD., FLEISCHER K.: Modeling inelastic
deformation: Viscoelasticity, plasticity, fracture.Proc. of ACM
SIGGRAPH(1988).

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANETS D., GROSS M.: Optimized spatial hashing for
collision detection of deformable objects.Proc. of VMV(2003).

c© The Eurographics Association 2006.


