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Interactive 3D Video Editing

Abstract We present a generic and versatile framework
for interactive editing of 3D video footage. Our framework
combines the advantages of conventional 2D video editing
with the power of more advanced, depth-enhanced 3D video
streams. Our editor takes 3D video as input and writes both
2D or 3D video formats as output. Its underlying core datas-
tructure is a novel 4D spatio-temporal representation which
we call thevideo hypervolume. Conceptually, the processing
loop comprises three fundamental operators:slicing, selec-
tion, andediting. The slicing operator allows users to visual-
ize arbitrary hyperslices from the 4D data set. The selection
operator labels subsets of the footage for spatio-temporal
editing. This operator includes a 4D graph-cut based algo-
rithm for object selection. The actual editing operators in-
clude cut & paste, affine transformations, and compositing
with other media, such as images and 2D video. For high-
quality rendering, we employ EWA splatting with view-
dependent texturing and boundary matting. We demonstrate
the applicability of our methods to post-production of 3D
video.

Keywords 3D video· video editing· video processing·
point-based graphics· graph cuts

1 Introduction

In recent years, significant progress has been made in ac-
quisition of dynamic three-dimensional objects and scenes.
Besides numerous prototype systems for depth image
scanning, commercial sensors, such as 3DV Systems’
ZCamTM(http://www.3dvsystems.com), have become avail-
able and provide solutions for studio setups. The ma-
jor application of such systems is to facilitate forground-
background separation and other operations for post-
production of conventional 2D video footage. While this
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technology still offers room for improvement, we can ex-
pect realiable, depth-enhanced video acquisition in the years
to come. At the same time, three-dimensional and view-
independent video emerged as a novel media technology en-
abling a variety of 3D special effects. In most cases, multi-
view video streams are combined into a spatio-temporal rep-
resentation which can be re-rendered using view interpola-
tion. It has turned out that adding geometry greatly helps
to achieve production quality when interpolating between
views of sparsely sampled cameras. Some approaches com-
pute depth implicitly from the 2D video data [30] using vi-
sion algorithms, whereas others [28] explicitly assume ge-
ometry or adapt template geometry [5]. In spite of the afore-
mentioned activities, however, relatively little research effort
has been devoted to the problem of efficient and intuitive
editing of three-dimensional video.

In this paper, we present a generic framework for inter-
active editing of 3D video footage. It extends on existing
concepts for two-dimensional video and combines their con-
ceptual simplicity with the power of depth-enhanced video
data. The multi-dimensional, spatio-temporal nature of 3D
video leaves its editing highly non-trivial, but, at the same
time, allows for a variety of novel features. Our framework
is based on explicit 3D geometry and assumes its avail-
ability through some 3D acquisition system. Its design in-
volves various novel features and methods leading to the
following main contributions: First, we developed a novel
4D spatio-temporal representation—the so-calledvideo hy-
pervolume—for intuitive handling and editing of the four-
dimensional data. The video hypervolume irregularly sam-
ples the four-dimensional space-time domain to represent
dynamic 3D scenes. Second, we designed a concept for
video editing which is based on three fundamental operators:
slicing, selection, andediting. In particular, we present a 4D
object selection algorithm based on graph-cuts. To convey
object boundaries the user indicates object and non-object
regions in the spatio-temporal domain by painting on the sur-
faces with a 3D paintbrush. In addition, we provide a set of
spatio-temporal editing operations, such as cut & paste and
affine transformations. By using the operators the processing
of 3D video becomes easy and intuitive.
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1.1 Related Work

3D Video. Over the last years, three-dimensional video
emerged as a novel media technology for re-rendering of
multi-view video data. It can be seen as a natural exten-
sion of 2D video to the spatio-temporal domain. On the
one hand, 2.5 D representations as used in the image-based
visual hulls approach (IBVH) [11] extend video imagery
with view-dependent depth of the acquired surfaces as ob-
tained by computer vision methods. While the IBVH em-
ploys shape-from-silhouettes methods, Zitnick et al. [30]
use depth-from-stereo algorithms for this purpose. The lat-
ter renders novel imagery using view interpolation. Simple
editing tasks can be performed, such as cloning and time-
shifting of objects. However, due to its view-dependent na-
ture complex editing tasks are not easily possible. On the
other hand, there exist systems with explicit 3D geometry,
such as triangular meshes [17,5] or 3D point samples [29,
28,24], featuring non-uniform, view-independent handling
of captured objects or scenes. However, none of these ap-
proaches tackled the challenge of designing an editing sys-
tem for 3D video. One common editing task for seamless cut
& paste of objects into new environments would be relight-
ing. However, as shown by Theobalt et al. [21] extracting
reflectance properties from time-varying multi-view video
data is a challenging task and no solution for high-quality
re-rendering has been proposed so far.

Image and Video Editing. Our work is inspired by 2D video
editing where a variety of visual effects production tools ex-
ist to support typical 2D video editing tasks. But this pro-
cess is often tedious, time-consuming and sometimes only
possible by introducing constraints on the scene. For in-
stance, extracting foreground objects from the background
is only possible for objects recorded in front of a special-
coated background. However, without the use of dedicated
backgrounds, i.e. in natural environments, real-time keying
becomes much more diffucult. Yet, recent research targets
video cutout with arbitrary backgrounds using manual inter-
action and graph-cut techniques [9,23] by extending image
cutout methods [10,18]. Our 3D video selection framework
is inspired by these approaches. The video cube [7,8]—also
employed by Wang et al. for their video object cutout—is
based on the concept of displaying video data as a three-
dimensional volume where arbitrary slices through the vol-
ume generate spatio-temporal visualizations. While similar
to our video hypervolume representation the additional di-
mension and irregularity of 3D video data introduces some
more challenges. Proscenium [2] is a video editing frame-
work which uses and extends the video cube representation
by distortion and warping operators.

Geometry information can also be used to facilitate con-
ventional 2D video editing. Snavely et al. [20] utilize depth
maps to stylize movies with various non-photorealistic ren-
dering techniques.

1.2 Overview

Our system complements the 3D video acquisition and re-
construction pipeline with an editing framework for post-
production as illustrated in figure 1. It is based on a novel
four-dimensional data model which represents appearance
and geometry of the scene as point-samples in spacetime.
We call this representation a video hypervolume (section 2).
Some implementation issues are discussed in section 6.

Fig. 1 The 3D video editing framework.

The editing framework is based on three operators: Slic-
ing, selection and editing. Theslicing operator (section 3)
provides an intuitive interface to interact with the four-
dimensional domain. It transforms selected parts of the 4D
data set from the video hypervolume to a cloud of 3D point
samples. The slice orientation and position can be changed
interactively. With theselection operator (section 4) the user
can mark regions or objects of interest. While the former can
be performed using marquee, lasso or paintbrush tools, the
latter requires the notion of object boundaries which we in-
troduce using a graph-cut selection scheme. Users guide the
selection process by painting with an object brush and with
a background brush. If the object is disconnected from other
scene parts, object segmentation is often very easy due to the
underlying 3D geometry—unlike in 2D video editing. All
selected parts can be modified by a set ofediting operators
(section 5). Operations make use of the explicitly modeled
scene geometry and include cut & paste, spatial and tem-
poral translations, rotations and scaling. During composit-
ing handling of occlusions is provided for free. Our unified
handling of space and time naturally supports editing opera-
tions exploiting both spatial and temporal coherence. Selec-
tion and editing are applied directly on a cloud of 3D point
samples which can be rotated interactively using an arcball
interface. The invisible, fourth domain can only be accessed
by defining a different slice. Upon completion of an editing
operation the data in the current slice is back-propagated into
the video hypervolume. By operating on the slice only, we
leverage interactive editing of the huge 3D video data sets.
A typical editing session is illustrated in figure 2.
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Fig. 2 Our interactive 3D video editing combines the advantages of2D video editing with depth-enhanced 3D video streams. Fromleft to right:
Interpolated view of the 3D video input data; hyperslicing to reveal the time domain where selection and editing is intuitive and easily performed;
cutout of a 3D video object; composite 3D video with additional 2D and 3D objects, new background and shadow mapping.

2 Video Hypervolume

Interactive editing of 3D video footage requires a primitive
and a data representation that allows for unified handling of
space and time. We choose to build our editing framework
on irregular point samples in the four-dimensional spacetime
domain. Each point sample represents a point on a scene
surface with a positional coordinate(x,y,z) and a time co-
ordinatet. The point sample has some nice properties for
representing 3D video data samples. Primarily, it does not
need explicit topology and, hence, no connectivity informa-
tion has to be constructed and maintained over time. Sec-
ondly, it encodes explicit 3D scene geometry and color in a
homogeneous way. Furthermore it can be flexibly extended
to contain more application-specific data like more sophis-
ticated material properties or object labels. Inspired by re-
search on visualization of time-varying volumetric data [1,
13] we introduce thevideo hypervolume as representation of
the point-sampled data. Thereby, space and time are consid-
ered as compound entities and facilitate the design of a user
interface to conveniently support editing operations, similar
to video cubes for 2D video [7,8]. By applying hyperslic-
ing and projection methods (see section 3), we can exploit
both spatial and temporal coherence during editing. Figure3
illustrates the video hypervolume.

The point-sampled video hypervolume fits nicely into
existing frameworks for processing of point-sampled geom-
etry [31]. This enables to utilize a variety of post-processing
operations for outlier removal [25], redundancy elimina-
tion [19], and geometry smoothing [14]. Many of these al-
gorithms are independent of the number of dimensions and,
thus, can naturally be extended to integrate time coherence.
For instance, we reduce redundancy in the supplied 3D video
data using a point clustering algorithm [15].

Data Model. The video hypervolume can be constructed in-
dependently from the 3D video acquisition system, using
e.g. depth and color images as an input. It does not impose
any constraints on the setup of the acquisition cameras as
long as occlusions can be resolved. Each point sample in
the video hypervolume carries a set of attributes describing
local surface properties like position, orientation and color.
Identification of a specific sample is done via its position at-
tributep = (x,y,z, t)T which is a vector in Euclidean space-

Fig. 3 The video hypervolume.

time R
4. In the spatial domain, the samples are irregularly

placed on the surfaces, whereas in time we usually deal with
regular sampling resulting from distinct video frames of the
acquisition system. In terms of storage efficiency, the hyper-
volume has some advantages over a dense regular grid due
to the sampling irregularity and the level of sparsity of 3D
video data. Designing in-core and out-of-core compression
schemes is left for future work.

The point samples in the video hypervolume can be eas-
ily constructed by back-projecting the image pixels from the
acquisition cameras using the corresponding depth informa-
tion. To generate hole-free renderings as output, each pro-
jection of a point onto the screen has to cover a certain area
of pixels. The traditional method for static point clouds is
to use surfels [16] which are small 2D ellipses tangentially
aligned to the surface. In our data model, surfels would pro-
vide a full surface coverage in the spatial domain only. To
also cover the time domain, we generalize them to 4D hyper-
surfels representing small ellipsoidal hypervolumes inR

4.
A hypersurfel is constructed from four orthogonal vectors
t1, . . . , t4, ti = (txi, tyi, tzi, tt i)

T spanning a 4D Gaussian ellip-
soid with covariance matrixV = (t1, . . . , tn) · (t1, . . . , tn)

T .
The first three vectors describe a conventional surfel, i.e.
a 2D Gaussian ellipse embedded in the 3D spatial domain.
Hence,t1 andt2 are tangentially aligned to the surface with

Published in The Visual Computer 21(8–10):629–638 (2005).



4 Michael Waschbüsch et al.

tx1 = tx2 = 0, andt3 is set to zero. The time domain is cov-
ered byt4 = (0,0,0,∆ t)T , where∆ t denotes the temporal
sampling density which corresponds to the frame rate of the
video.

The tangent vectorst1 andt2 may be obtained by any of
the available point-based algorithms, e.g. [31]. Alternatively,
if the acquisition system is able to provide stable depth gra-
dients, they can be computed by back-projecting the foot-
print of an image pixel to three-space. Based on the projec-
tion x = C−1 · d · (u,v,1)T + c of a pixel with coordinates
(u,v) and depthd to a 3D pointx via a camera with pro-
jection matrixC and centerc, the tangent vectors can be
computed by differentiation as

(tx1, ty1, tz1) = C−1 ·
(

d · (1,0,0)T +du · (u+1,v,1)T )

, (1)

(tx2, ty2, tz2) = C−1 ·
(

d · (0,1,0)T +dv · (u,v +1,1)T)

, (2)

wheredu anddv are the directional derivatives of the depth
map.

3 Slicing

To be able to view data from the video hypervolume we have
to generate different views on the data set by projecting its
four-dimensional data into 2D screen space. This process is
calledslicing. Apart from the standard projection showing
a 3D video frame at a single time instant, arbitrary projec-
tions can be used to visualize and edit the underlying data.
Slicing is performed using a two-stage projection. First, in
a process called hyperslicing [27], a subset of the 4D point
samples is projected to 3D. The resulting 3D point cloud is
then displayed using conventional point rendering methods,
see section 6. Note that the actual projection operations are
only carried out in the rendering process. Editing tools all
operate on the original 4D points of the current hyperslice
in order not to lose information. Our editing system allows
to perform hyperslicing arbitrarily, providing the user with
views of both spatial and temporal scene information. This
facilitates the application of editing operations in spaceand
time. In the following, we first describe mathematical de-
tails of hyperslicing and then present the user interface for
navigating in the video hypervolume.

3.1 Hyperslicing

Hyperslicing extracts a three-dimensional subspace from the
4D volume by intersection with a hyperplane. It selects all
points p ∈ R

4 fulfilling the plane equationn · p − d = 0,
wheren ∈ R

4 is the normal of the plane andd its distance
from the origin. To comply with the sparse, irregular sam-
pling of our video hypervolume, we extend this procedure
as depicted in figure 4 and select all points within a specific
distance∆d from the plane by solving

|n ·p−d| ≤ ∆d. (3)

Fig. 4 Samples of the video hypervolume (orange) are intersected with
the hyperslice (blue) and projected onto its center plane.

Three-dimensional positionsp′ = Pt ·R ·p are obtained
by a rotationR of p into a coordinate system locally aligned
at the hyperplane followed by a parallel projectionPt along
the t-axis. The local coordinate system is spanned by four
orthonormal column vectorst1, . . . , t4 with t1 = n, yielding
R = (t1, t2, t3, t4)

T . For 2D rendering of the projected 3D
point samples using EWA volume splatting (see section 6),
the covariance matrices have to be projected accordingly by
computingV′ = P ·V ·PT which results in descriptions of
three-dimensional Gaussian ellipsoids.

3.2 User Interface

The slicing operator is used to navigate in the video hyper-
volume. In the most common case, the slice is orthogonal
to the t axis and corresponds to a single 3D video frame.
Orientation of the 3D point cloud can be controlled interac-
tively using an arcball interface. The user can select a spe-
cific frame using a slider to control the slice positiond in
time. Moreover, he can adjust its thickness∆d by defining
in and out points—quite similar to 2D video processing—
resulting in multiple frames getting displayed. This easily
allows to identify static and dynamic scene parts.

For spatio-temporal editing it is also interesting to visu-
alize the time domain on the screen. This facilitates intuitive
spatio-temporal selection as described in the next section.
The user can define arbitrarily oriented slices by drawing a
line on the screen representing the hyperplane. This conve-
niently allows to generate slices through a specific object of
interest, as can be seen in figure 2b. The slider now gener-
ally controls the movement of the slice through the video
hypervolume. The slice thickness can be increased such that
a greater part of the orthogonal, fourth dimension gets pro-
jected onto the screen. When the user defines the new slice,
the system automatically computes its rotation matrixR by
determining its local coordinate system according to the
drawn line and the current view. Figure 5 shows the vec-
torst1, t2 andt3 which are all constructed within the current
hyperslice.t1 andt3 are located in the current image plane,
t1 is orthogonal to the drawn line and defines the normal of
the new slice.t2 is orthogonal to the image plane.t4 is not
depicted as it is orthogonal to the current hyperslice.
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Fig. 5 Non-orthogonal slices are generated by calculating the required
rotation matrix simply from a line drawn onto the screen.

4 Selection

The selection operator is the key to subsequent 3D video
editing tasks. The 4D data does not feature object labels in-
dicating conceptually connected data samples. For this pur-
pose, our framework provides a graph-cut based algorithm
to associate such labels for further editing operations. But
first we introduce some basic selection tools.

4.1 Selection Tools

The user can view and select objects both in space and along
trajectories in time using the slicing operator. By taking ad-
vantage of the underlying 3D geometry, accurate selection of
objects and regions of interest is sometimes already possible
by using basic selection tools.

Marquee and Lasso Selection Tools. Similar to 2D photo
editing applications our framework provides marquee and
lasso selection tools. With these tools users are intuitively
able to select large areas of the visualized slice. Users draw
2D regions on the screen which get extruded into the slice
domain for 3D selection using the current virtual camera pa-
rameters. In this way a whole subvolume and possibly hid-
den surfaces are selected. However, by rotating the viewed
data the user easily sees where hidden surfaces are se-
lected and can work on the selection using different selection
modes. Our framework provides addition, difference and in-
tersection modes.

3D Paintbrush. Another selection tool is the paintbrush also
known from 2D photo and video editing applications to paint
selections or colors. However, due to the additional dimen-
sion we have to define a 3D footprint of the paintbrush. Intu-
itively we define the 3D paintbrush as a spherical volume in
3D. We determine the 3D center point by calculating the 3D
position of the front surface data sample at the 2D screen-
space coordinate of the mouse pointer. 3D data points are
selected if they are contained in the spherical volume around
the center point and are determined using a range query in
the underlying kd-tree structure (see section 6). We calculate

the 3D center point with help of thez-buffer. By considering
z-values of all pixels within the screen-space footprint of the
projected spherical volume the intersection point of the pick-
ing ray with the scene can be determined very robustly. The
user can chose the depth of the sphere as either determined
by the nearestz-value or by a median filter over allz-values.
The former can be used for selecting small surface patches in
front of a bigger surface without the need to exactly click on
them. The latter can be employed for selecting the densest
surface without considering small surface patches.

4.2 Object Selection

The captured 4D data set does not supply the user with ob-
ject boundaries or labels. However, for complex editing tasks
such a labeling is essential. Therefore, we introduce a graph-
cut based algorithm to associate such labels. We use the
3D paintbrush and the marquee selection tools introduced
in the previous section to specify the necessary constraints.
With the paintbrush the user can mark surface patches which
should be selected (red paint) and patches which should not
be selected (blue paint). The marquee selection tools (green
paint) are used to define a spatio-temporal region of inter-
est, thereby excluding large uninteresting regions and speed-
ing up the min-cut optimization significantly. Performing the
optimization on whole 3D video data streams is not feasible
interactively.

The status of all data samples marked with green paint
is then determined by invoking a min-cut optimization after
hitting a button in the interface. Upon completion, the user
can refine his markings using the selection tools and run the
optimization again. Figure 6 illustrates the object selection
operator.

Fig. 6 Object selection. Left: The user wants to select a person and
marks her with red paint, the floor with blue paint and the region of
interest with a rectangular marquee selection. Middle: Thefirst invo-
cation of the min-cut optimization wrongly marked samples on the wall
behind the person. Right: After specifying more paintbrushstrokes, the
optimization completes with a satisfying selection.

4.3 Graph Construction

The object selection problem can be interpreted as a graph
labeling problem. Each data sample is assigned a unique la-
belx ∈ {1(S),0(N)} where 1 means the data sample belongs
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to the selection(S) and 0 that it does not belong to the selec-
tion (N). We construct a 4D graphG = 〈V ,A 〉 on the 4D
hypervolume bounded by the region of interest. The node
setV are all data samples which have been defined as the
spatio-temporal region of interest. A nodeu represents a data
samplepi with labelxi, color ci, surface normalni, as well
as possibly a user assigned labelγi. Unassigned nodes are
tagged as /0. The position of the data sample is not consid-
ered in the graph directly. However, we require the positional
information to generate the graph arcs. Furthermore, we de-
fine St as the scene at a time instantt. Figure 7 illustrates
the 4D graph construction.

Fig. 7 When constructing the 4D graph, any data sample or data re-
gion contributes to the graph according to intra-frame and inter-frame
neighborhoods and energies, as well as to virtual nodes withdata ener-
gies.

We construct the intra-frame arcsAI by connectingspa-
tially adjacent data samples in the same time instantSt . The
data samples are irregularly sampled in spacetime and do not
feature connectivity. Hence, we have to calculate the spa-
tially adjacent samples by using range queries—quite con-
trary to similar approaches in 2D video cutout [9] which
have explicit neighborhoods on the pixel grid. We apply a 3D
Kd-tree (see section 6) for this purpose and generate arcs for
all data samples which lie inside a sphere with given radius
(orange sphere in figure 7), typically 0.02 m in our metric en-
vironment. We take the nearestk data samples and exclude
evidently unrelated samples with mean color or normal dif-
ferences over a certain threshold (usually 0.1).

Inter-frame arcsAT connecttemporally andspatially ad-
jacent point samples in adjacent time instantsSt±1 that are
located within a given 3D radius, typically 0.04 m. We also
use a Kd-tree for this purpose, created in the corresponding
time instantst ±1. We initialize the range query by project-
ing the data sample (orange point in figure 7) from timet to
t±1 (yellow points in figure 7). Note that the radius has to be
higher than for the intra-frame arcs due to non-regular sam-
pling and motion. Furthermore, we only take thek/2 nearest

data samples and exclude unrelated data samples too. In our
current implementation we setk to 8.

4.4 4D Graph-Cut Optimization

Similar to work on 2D video cutout [9,23] we define a cost
function E on the constructed graphG . The 4D graph-cut
algorithm then solves the object labeling problem by mini-
mizing the following energy:

E(P,Γ ) = ∑
u∈V

ED(pi,γi)+λI ∑
(u,v)∈AI

EI(pi, p j)

+λT ∑
(u,v)∈AT

ET (pi, p j)
(4)

The optimization assigns labelsxi for each data samplepi
in nodei. P denotes the solution to this problem with user
assigned labelsΓ . Figure 7 illustrates the different terms of
the energy function.ED is the likelihood energy whileEI
andET are the prior energies.ED measures the accordance
of the color of a data sample to the color models assembled
from the user-assigned labels.EI and ET assess the color
and geometry differences between spatially and temporally
adjacent samples. They penalize strong color and normal de-
viations and ensure spatial and temporal coherence in the se-
lection process. We employ the max-flow algorithm from [3]
to minimize the energyE(P) in Equation (4).

Likelihood Energy ED. We assemble two Gaussian Mixture
Models (GMM) by sampling the colorci of the data samples
with user-assigned labels [18]. One GMM is built for the
“selected” samplesγi = S and one for the samplesγi = N
marked as not to be selected. The likelihood energy can then
be defined as:

γi = S γi = N γi = /0

ED(pi = S) 0 ∞ DS
DS+DN

ED(pi = N) ∞ 0 DN
DN+DN

The energies in the first two columns ensure that the user-
assigned labels are not violated with the optimization pro-
cedure. Since most nodes have no label (γi = /0) we have to
calculate data costs for these nodesDS andDN . As in [18]
they are normalized for determining the final energy (third
column). To check whether the data samples belong to the
selected or unselected region we determine the negative log-
likelihoodDS andDN using the GMMs:

DS|N(pi = S | N) =

− log
K

∑
k=1

wk,S|Ne
− 1

2(ci−µk,S|N)T Σ−1
k,S|N (ci−µk,S|N)

(5)

µk and ∑k are the mean color and covariance of thek-th
component of the GMM andwk are the weights and consider
the number of samples closest to thek-th component of the
GMM. We useK = 5 Gaussians which provides satisfying
results in our editing framework.
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Prior Energies EI and ET . We adopt the global link costs
from [23] and extend them by geometry information. Be-
sides considering color differences we weight the normal
differences between adjacent data samples in a similar way.
The intra-frame and inter-frame energiesEI can then be de-
fined in a similar way:

EI|T = e
(−∇2

c/(2η2
c,I|T ))

+ e
(−∇2

n/(2η2
n,I|T )) (6)

The gradient∇ defines the color or normal difference be-
tween two nodesu andv which the link connects. Theη ’s
represent the intra-frame and inter-frame variance of the
color or normal gradients. In our current implementation we
do not calculate the variances but empirically setηc = 0.08
andηn = 0.12.

5 Editing

Editing operations are leveraged using the slicing and selec-
tion operators described in the previous sections. Our sup-
ported set of editing operations is simple yet becomes very
powerful in our framework and with the underlying 4D rep-
resentation.

Cut & Paste. After slicing and selection, the user can em-
ploy a clipboard to perform cut or copy operators for se-
lected regions or objects. The data in the clipboard can then
be used to paste objects to other hyperslices, other scenes
or to clone objects. Compositing of multiple scenes can be
done conveniently by first loading all the scenes together at
different places in the video hypervolume and then moving
their objects around. Objects can be easily removed without
leaving holes in the background scene if the acquisition sys-
tem was able to capture the background behind the object
from a suitable viewing angle. Note that compositing in the
spatial domain becomes very convenient because our repre-
sentation explicitly stores the scene geometry.

Transformations. We can apply arbitrary affine transforma-
tions to the selection. Transformations are straight-forward
and intuitive in the case of a hyperslice orthogonal to thet
axis. On the other hand, by using other hyperslices we con-
veniently perform translations in time. To this end, the user
simply generates a hyperslice non-orthogonal to the time
axis. The translation operator nicely shows the possibilities
of a uniform spacetime representation. Other transformation
operators include rotation and scaling. The user can rotate
objects freely in spacetime, even from the temporal into the
spatial domain, creating interesting novel effects like visual-
ization of movement trajectories. Note that in all cases, oc-
clusions are correctly resolved for free by our explicit 3D
geometry.

Compositing and Shadow Mapping. We provide various
compositing operators with other media, e.g. images, videos,
and virtual objects. They can be inserted into the video hy-
pervolume by conversion to point samples. Alternatively, we
allow for insertion of textured meshes during the final ren-
dering phase. To seamlessly blend objects with new back-
grounds we adopted a shadow mapping technique [26] to
cast shadows of inserted objects into the new background.
Again, this is leveraged by the underlying explicit 3D geom-
etry. More realistic compositing can be achieved by adapting
the scene’s illumination conditions. However, for this pur-
pose time-varying reflectance properties of the scene need
to be calculated. This is an interesting challenge for future
work.

6 Implementation Details

Data Structures. Interactive visualization and editing of the
video hypervolume requires data structures providing effi-
cient access to the samples. We implemented a two-level
approach that relates to the general structure of our editing
framework. The first level of the data structure represents
the entire four-dimensional video volume. As typical access
patterns do not select single points but whole sub-volumes,
a regular grid has proven to be very efficient, stored as a spa-
tial hash map for efficient access. Moreover, the grid can be
updated very quickly if the user adds, removes or transforms
points during the editing session. In our current implemen-
tation, the whole video volume still has to fit into the com-
puter’s main memory, but this structure is easily extendible
to out-of-core data structures that dynamically load the de-
sired grid cells into memory using efficient cashing strate-
gies [12]. The editing itself only takes place in the 3D pro-
jection of a selected hyperslice. For efficient rendering, the
3D points are stored as vertex arrays in main memory. Edit-
ing operations typically need fast access to single points.Kd-
trees are very efficient and widely used for that purpose in
traditional point processing frameworks [31]. In our imple-
mentation, we build and update a Kd-tree on the fly as soon
as a query for a specific point is performed. The Kd-tree can
be represented just as a reordering of the vertex arrays. Thus,
no additional storage is needed.

Rendering. Slices of the video hypervolume are rendered
using EWA splatting [31]. To generate smooth transitions
between foreground and background pixels we use a bound-
ary matting technique similar to [30]. It applies an alpha
ramp at the boundaries of all objects—edited and non-
edited—and renders those splats semi-transparent. Addi-
tionally we dynamically compute view-dependent textures
like in [4] by back-projecting the images of the color-camera
onto the geometry and applying unstructured lumigraph ren-
dering. To achieve correct projection for objects rotated dur-
ing editing, all changes in orientation are tracked by a trans-
formation attribute for each object.
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Fig. 8 Our 3D video studio consisting of four acquisition bricks. Structured light patterns illuminate the scene to support the 3D reconstruction.

7 Results and Discussion

Our input 3D video footage was generated using a sys-
tem similar to the one of [24]. It consists of several 3D
acquisition bricks that synchronously capture texture and
depth maps from their respective viewpoints. For each brick
depth information is acquired using a calibrated stereo pair
of grayscale cameras. The stereo matching algorithm is as-
sisted by projectors illuminating the scene with structured
light patterns. Instead of alternating the projection witha
pattern and its inverse as proposed in the original work, we
alternate between a pattern and a black frame to get homoge-
neously illuminated textures. Four bricks were used to cap-
ture a 3×3m2 scene with a convex horizontal viewing range
of about 90◦ (see figure 8). We recorded a number of 3D
videos and performed editing tasks on the 4D data. The in-
put consists of sequences with a flamenco dancer, an actor
juggling a ball and a shot with a plant, a sofa and a sitting
person. They were captured at 12 fps and their length was
between 80 and 150 frames. Figure 9 displays an example of
a reconstructed depth map. The accompanying video shows
an interactive editing session and a post-produced 3D video.
The latter took approximately one day of editing to com-
plete. For this purpose, our editing system allows for content
and viewpoint trajectory scripting.

Fig. 9 Example of an acquired color image (left) with corresponding
reconstructed depth map (right).

Figure 10 shows a scene with the flamenco dancer. The
dancer was cut out of the original background and inserted
into a new one. We used the object selection operator for this

purpose. The sequence shows the generation of a “clone” in
the same scene and subsequent scaling and transformation
to the sofa. Shadow mapping and matting ensures that the
dancer still blends in with the new background. Note the
shadow in the third image which nicely shows the under-
lying geometry with the cast shadow of the small dancer
onto the sofa. The poster is also inserted onto the wall using
the media import feature of our editor. Figure 11 shows an
edited 3D video of the juggle sequence cut & paste into the
environment with the sofa and the person. The plant shows
the limitation of the employed 3D capturing system. Thin
structures cannot be handled and the resulting geometry is
not captured well. Nevertheless, unstructured lumigraph ren-
dering and matting reduce the resulting artifacts. In this se-
quence we also replaced the ball with a teapot. The trajectory
was captured by cutting out the ball and calculating its cen-
ter of gravity. We generated spin artificially since we could
not capture this from the video footage. Figure 12 combines
most of the editing operators in one shot. On the wall we
placed a video trailer and applied the Pacific Graphics 2006
logo onto the other wall. Compositing between artificial and
real objects is handled very nicely with the boundary matting
approach. Some artifacts still remain on the boundaries of
objects due to limitations of the acquisition system. The em-
ployed stereo matching method has difficulties in accurately
reconstructing depth discontinuities. We plan to improve this
in the future by applying spatio-temporal segmentation and
matting algorithms on the acquired color and depth images.

8 Conclusion

We have demonstrated a system for interactive editing of
3D video footage. It is based on a 4D spatio-temporal rep-
resentation which allows for unified handling of space and
time. Using a three-staged processing loop we support var-
ious editing tasks for post-production of 3D video. For fu-
ture work we would like to improve our representation by
explicitly modeling time coherence [22]. A practical limi-
tation of our current implementation is the large amount of
data. We plan to integrate both in-core as well as out-of-
core data structures to handle longer 3D video sequences.
Furthermore, to speed up the graph-cut object selection,
mean-shift pre-segmentation could be employed. Although
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Fig. 10 The Flamenco dancer is inserted into a new environment and cloned. Shadow mapping is applied to seamlessly blend into thescene.

Fig. 11 The juggling actor is placed into a new environment. The ballcan be replaced by a virtual object following the same trajectory.

Fig. 12 The Pacific Graphics 2006 logo and a video trailer are placed onto the walls.

the presented editing operators allow for the most common
editing tasks, others can be envisioned, e.g. altering the mo-
tion of actors or re-targeting of motion from one actor to
another [6]. In addition, illumination adaptation needs tobe
solved for application in productive environments. Finally,
our system is only as good as the employed 3D video cap-
turing system. We hope that the years to come will provide
us with high-quality, commercial depth video scanning sys-
tems.
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