
Untangling Cloth With Boundaries

Martin Wicke Hermes Lanker Markus Gross

Computer Graphics Laboratory, ETH Zurich

Abstract

This paper presents a history-free collision handling
algorithm for cloth. Without information about past
timesteps, our method resolves intersections on
cloth with boundaries. Using a global intersection
analysis, we determine interpenetrating regions of
the cloth. We analyze the possible intersection paths
on 2D manifolds with boundaries and present a
classification of intersection paths according to the
position of their endpoints and the number of de-
generated vertices on the path.

Radial basis function (RBF) fitting is used to
extrapolate correspondence information available
on the intersection paths to the surrounding cloth.
Attractive forces between corresponding points in
the interpenetrating cloth region resolve the in-
tersections. Our method can be applied as a pre-
processing step to ensure that modeling results are
suitable for animation. It can also be used during an-
imation to correct intersections introduced by con-
straints.

1 Introduction

Collision handling for cloth is a notoriously hard
problem in computer graphics. Due to the two-
dimensional nature of cloth, collision handling
methods for solids that typically rely on penetration
depth are not applicable.

A viable alternative to these approaches are al-
gorithms that prevent intersections based on con-
tinuous collision detection. Without external con-
straints, these methods can garantuee that if the last
timestep was intersection-free, the next timestep is
also interection-free. Continuous collision detection
identifies all primitives that crossed parts of the
cloth, such that those crossovers can be prevented.

Unfortunately, tangling during simulation is not
a purely academic possibility, but routinely happens
during animation. If the cloth simulation is subject
to external constraints such as collisions with solid

objects, these constraints might force the cloth into
an illegal state even in the presence of collision han-
dling.

Intersection prevention methods cannot recover
from these situations. If some part of the cloth ends
up on the wrong side, the collision handling algo-
rithm will prevent it from crossing over to the cor-
rect side.

All methods relying on a legal prior state fail
if such a state is not available. The history-free
method proposed in [2] works around this problem
by globally analyzing the current (potentially ille-
gal) state of a piece of cloth, and proposing actions
to resolve intersections based on the current state of
the simulation alone.

History-free methods solve some of the prob-
lems in collision detection for cloth, but they cannot
replace traditional collision detection. So far, the
available methods have not been general enough to
present an alternative to history-based collision de-
tection. Also, due to the inherently global nature of
the problem, history-free collision detection meth-
ods are slow compared to traditional approaches.

1.1 Contributions
Similar to [2], we use global intersection analysis
(GIA) to determine which regions of the cloth are
on the wrong side. We extend their path finding and
classification method to handle situations involving
boundaries. We analyze the possible intersections
and present a classification of all possible intersec-
tion paths considering boundaries.

We propose a method for finding point-to-point
correspondences between intersecting parts of the
cloth. Using radial basis function (RBF) fitting in
parameterization space, we extrapolate the corre-
spondence information available on the intersection
path to its surroundings. This technique enables ro-
bust collision response whenever parts of the cloth
are recognized to be on the wrong side.

When boundaries are considered, not all possi-
ble intersections result in parts of the cloth being

clearly on the wrong side. We propose methods for
collision response to such intersections.

The remainder of this paper is organized as fol-
lows: We discuss relevant prior research in Sec-
tion 2. After giving an overview of the proposed
method in Section 3, we describe our intersection
analysis and present a classification of possible in-
tersection paths in Section 4. Section 5 presents
our methods for collision handling. In Section 6,
we show results. Finally, we discuss strengths and
weaknesses and point out some directions for future
research in Section 7.

2 Related Work

Starting with the pioneering work of Terzopoulos
et al. [13], various approaches have been devel-
oped for computing the dynamic behaviour of two-
dimensional elastic objects [6, 12, 1, 9, 7, 8, 4, 15].

However, collisions between sheets of cloth have
proven to be more difficult to handle. Simple colli-
sion handling approaches imposing penalty forces
on vertices that lie inside objects are feasible for
cloth-object collisions but, due to the infinitesimal
thickness of cloth, they cannot be applied to cloth-
cloth collisions. A solution to this problem is con-
tinuous collision detection. Bridson et al. [3] avoid
crossovers entirely and guarantee that the cloth is
free of intersections at the end of a timestep if it
was free of intersections before.

The earlier work of Volino et al. [16, 17] first al-
lows collisions, and later corrects collisions based
on local criteria. They use a statistical approach to
determine which parts of the cloth need to be cor-
rected.

These approaches work well for unconstrained
cloth, however, the collision detection and response
has to be integrated into the simulation not only of
the cloth, but also of other objects in the scene. If
other objects do not behave physically, for exam-
ple because they are animated using motion capture
data, cloth might be forced into a tangled state de-
spite the efforts of collision handling schemes.

Baraff et al. [2] propose a history-free inter-
section handling method to remedy these issues.
However, they only treat intersections possible on
meshes without boundaries. Although some of their
results can be applied to meshes with boundaries,
they state that their method is not general enough to
“untangle boundary intersections”.

Recently, Volino and Magnenat-Thalmann [18]
proposed a method for resolving intersections based
on minimization of the intersection paths. Their al-
gorithm does not require a full GIA to resolve small
intersections, and it works for most cases involving
boundaries.

This paper generalizes the results of [2] to
meshes with boundaries and proposes strategies to
untangle cloth with boundaries. Our method makes
no assumptions on the current state of the cloth. It
can be integrated into any existing cloth animation
framework.

3 Algorithm Outline

Our algorithm uses global intersection analysis to
determine which parts of the cloth have crossed
over to the wrong side. This analysis computes all
intersections between cloth primitives, and assem-
bles them into intersection paths. In our discus-
sion, we will assume that the cloth is represented
by a triangle mesh. The results are equally valid for
other representations such as quadrangle meshes or
spline patches. After the intersection curves have
been computed (see for example [11]), the intersec-
tion handling can be applied unmodified.

For simplicity, only the case of self-intersections
is treated in this paper, however, our results general-
ize trivially to intersections between several pieces
of cloth.

We assume that the cloth is parameterized in
some two-dimensional space

�
. The parameteriza-

tion needs to be smooth, but the parameter space�
is arbitrary. Thus, a scarf might best be param-

eterized on a square, while a skirt can be parame-
terized on a cylinder. Conformal or area-preserving
parameterization is not necessary, but improves the
results of the correspondence computation (see Sec-
tion 5.1).

In world space, each intersection path is a sin-
gle curve. Since each part of the intersection path
is formed by the intersection of two triangles, each
point on the intersection path touches two points on
the cloth (except for loop vertices, see below). Thus,
each point on the intersection path has two param-
eterization values. A single intersection creates two
paths in the parameter domain, where most of the
intersection analysis takes place. Hence, paths are
arranged in pairs reflecting a common world space
position. See Figure 1 for examples. After the inter-

(a) (b) (c) (d) (e) (f) (g)

Figure 1: Different paths in world space (top row) and parameter domain
�

(bottom row). Loop ver-
tices are marked on the paths. (a) a pair of CLOSED paths. (b) EIGHT path. (c) loop-loop (LL) path. (d)
boundary-loop-inside (BLI) path. (e) CROSS path. (f) boundary-boundary/inside-inside (BB/II) path pair.
(g) boundary-inside (BI) path pair.

section paths are known, they are classified accord-
ing to intrinsic properties.

For each path separately, we partition the cloth
into regions that are inside, i. e. regions that have
crossed over and for which response is necessary,
and outside regions. Figure 2 shows inside regions
for different path types. Some paths involving a
boundary do not define an inside region.

Finally, intersection handling is performed on
each path. The goal in intersection handling is to
minimize the inside region of the path. To this end,
we compute target points for mesh vertices that are
inside. Moving the mesh vertices towards their tar-
get points resolves the intersection. For paths that
do not have an inside region, we push the intersec-
tion path to the nearest cloth boundary.

4 Global Intersection Analysis

We will first summarize the GIA before turning our
attention to the analysis of possible path types. As
a first step of the GIA, intersections between cloth
primitives (triangles) are computed. We use spatial
hashing [14] to speed up intersection computation.

Each triangle/triangle intersection yields two
corresponding intersection segments. These two
segments share a common position in world space,
but each segment has a different position on the
cloth, corresponding to one of the intersecting tri-
angles.

The set of intersection segments is assembled
into intersection paths. Baraff et al. [2] describe
how to trace the intersection paths given the inter-
section segments.

Paths that consist of corresponding segments are

called corresponding paths. Note that for some path
types, a path can be its own corresponding path.
Figure 1 shows intersections and the resulting paths
in the parameter domain

�
.

One case deserves special attention. If two inter-
secting triangles share a common vertex, this vertex
is called a loop vertex. Intersection paths that en-
counter a loop vertex reverse direction. The number
of loop vertices on a path is an important criterion
for path classification. A path with a loop vertex is
its own corresponding path. Intersection paths fold
back onto themselves in world space after reaching
a loop vertex (e. g. Figure 1 (d)). Since it is possi-
ble that several paths meet in a single loop vertex,
care has to be taken to follow the correct path upon
reaching a loop vertex.

4.1 Path Types
We found it useful to analyze the intersection paths
in the parameter space

�
. Criteria for path classi-

fication are whether the path is closed or where it
ends, as well as the number of loop vertices on the
path. Figure 1 shows the possible path types.

In the parameterization domain, a path can either
end on a boundary or somewhere inside, or the path
is closed. On 2D manifolds, a path can reverse di-
rection at most twice before forming a loop, hence
there cannot be more than two loop vertices in a sin-
gle path. The list below discusses all possible path
types.
CLOSED paths are the simplest intersection

paths. A CLOSED path contains no loop vertices. It
forms a loop in world space as well as in parameter
space. The corresponding path to a CLOSED path is
a CLOSED path.

EIGHT paths are closed paths with a single loop
vertex. This rare path occurs when two CLOSED
paths share exactly one common vertex, which be-
comes the loop vertex. EIGHT paths are a single
loop in world space, while they unfold to an 8-
shaped path in the parameterization domain

�
. If

we encounter such a path, we split it at its loop ver-
tex, creating two CLOSED paths.

Loop-Loop (LL) paths are closed and contain two
loop vertices. LL paths form a loop in the parameter
domain, but fold into a single line in world space.
In our framework, these paths can can be treated
exactly like CLOSED paths.

If the path is not closed, but has a loop vertex,
then at least one end of the path lies on the bound-
ary. We call this a boundary-loop-inside (BLI) path.
The case where both end points lie on the boundary
(boundary-loop-boundary, BLB path) is extremely
rare, and does not invalidate any of the discussion
concerning BLI paths. When we refer to BLI paths
below, we implicitly include BLB paths. A BLI path
can be thought of as half a LL path. BLI paths are
more difficult to handle than the closed path vari-
eties, since they to not partition the cloth mesh into
separate components.

There is the theoretical possibility of an open
path with two loop vertices. The path starts and ends
on a boundary, and the boundary vertices touch.
Following our naming convention, this path is
called boundary-loop-loop-boundary (BLLB) path.
The configuration leading to this path type is unsta-
ble, and the path will split into two BLI paths as
soon as the boundary vertices assume different po-
sitions. BLLB paths can be split into two BLI paths
for handling.

There is an open version of the EIGHT path,
which we will call CROSS path. It can also be seen
as two BLI paths sharing a common loop vertex.
Similar to the EIGHT path, we handle this path type
by splitting it at the loop vertex, yielding a BB/II
path pair (see below).

If there are no loop vertices on an open path, three
possible path types remain. The end points of a path
can either lie on the boundary or inside the cloth. If
both endpoints lie on the boundary, we call the path
a boundary-boundary (BB) path. Similarly, if only
one or no endpoint lies on the cloth boundary, it is
called boundary-inside (BI) or inside-inside (II)
path respectively. The corresponding path to an II
path is always a BB path, while a BB path can also

(a) (b) (c)

Figure 2: Inside regions (blue) and vertices of a (a)
CLOSED (b) LL (c) BB path are highlighted. Paral-
lel flood fill on both sides of the path is used to de-
termine the smaller part of the cloth, which is then
labelled as inside.

correspond to a BI path. The most common, how-
ever, are BB/II and BI/BI pairs. Of these open
path types, only BB paths partition the cloth mesh,
thus BI/BI path pairs are difficult to handle. We ad-
dress the problem in Section 5.3. BB/II and BB/BI
pairs can be handled in the same way. We will only
explicitly discuss the more common BB/II pair.

4.2 Determining Inide/Outside Regions
Once the path type is known, we can determine in-
side and outside regions on the cloth. For each in-
tersection path individually, we decide which part
of the cloth is on the wrong side. The inside regions
need to be corrected.

The CLOSED, LL, and BB paths are partitioning
paths, i. e. intersection paths that partition the mesh
into two components. Figure 2 shows inside regions
of these paths. Like [2], we use parallel flood-fill to
determine which of the two components is smaller.
That region is then labelled as inside with respect to
the path. This procedure is consistent with the goal
of using the smallest possible correction to resolve
the intersections. It is also a sensible choice if used
during a simulation. During a short period of time
(since the last untangling step), it is more likely that
small penetrations have occured.

The situation is more complicated for paths that
are not partitioning, i. e. BLI, BI, and II paths. For
BLI paths, we use a heuristic to determine an in-
side region. As can be seen in Figure 3 (a), the cloth
around a BLI path forms a roughly conical shape
with the loop vertex in its apex. Note that if the cone
is flattened, the intersection is resolved. In order to
define an inside region for BLI paths, we restrict
our attention to a circular patch of cloth around the
loop vertex, just large enough to contain at least one
of the end points of the BLI path. We then use the
parallel flood-fill algorithm as described above, re-

(a) (b)

Figure 3: (a) Cloth configuration around a BLI
path. The path is a seamline of a cone with the loop
vertex at its apex. Cloth vertices in the inside region
of the path are highlighted. (b) Inside region in the
parameter domain

�
. The circular region of interest

is highlighted, as well as the inside cloth vertices.

stricted to our region of interest. Figure 3 shows the
result of this method.

BI paths require special care. Although it would
be possible to assign inside regions for BI paths us-
ing heuristics, we have found these methods to be
too unreliable in a general setting. Section 5.3 de-
scribes a method for dealing with these paths.

No inside region is defined for II paths. How-
ever, since the corresponding path to an II path
is always a BB path, we can use the inside region
of the corresponding BB path for intersection han-
dling.

5 Intersection Handling

Intersection handling is based on the inside regions
defined during the GIA. The idea is to find a target
point ���� for each cloth vertex � � in the inside region,
such that if all � � are moved towards the respective� � � , the intersection is resolved.

Baraff et al. [2] used the closest point in the inside
region of the corresponding path as target point for
a vertex. This method only works for CLOSED path
pairs, since this is the only path type defining two
separate inside regions.

In constrast, our method works for all path pairs
where at least one path defines an inside region, i. e.
all path types except BI paths (BI paths are treated
in Section 5.3). Once the target points are known,
we can either apply penalty forces to resolve the in-
tersection or directly displace the cloth vertices.

5.1 Finding Target Points
Vertices in the inside regions of cloth have crossed
over to the wrong side. If we knew where exactly
they had penetrated the cloth, correcting the in-
tersections would be easy. Vertices could simply
be moved back to the point of initial contact. Ap-
proaches using continuous collision detection use
this idea to resolve collisions.

Information about the vertices’ history is not
available to us. However, the correspondences be-
tween the intersection paths contain the information
we need. We extrapolate this information to the in-
side region of the path.

Consider a parameterized surface ���	��
����� �
and intersection paths ������������
���� � , and its
corresponding path � � ����������
���� � , both pa-
rameterized in � �"! #$��%& such that �'����
 and �����(

are corresponding, i. e. ���	�'����
(
)�*���+������
(
 .

We are looking for a smooth function ,)-/. �10�
, mapping each point � in the inside region to its

corresponding target point � � �2, - �+�3
 . We know
the values of , - for all points on the path:4 �5,�-6�	������
(
)�1�����(
7 (1)

We use RBF fitting to construct such a smooth
function ,�- . For an introduction to the topic, we
refer the reader to [5]. RBF interpolation functions
are of the form:8 �+9:
��<;:�+9=
?>A@CBED BCF ��GH9JILK B GM
� (2)

where D B are weights, K B are the centers of the
RBF fit,

F
is the radial basis function, and ;:�+9=
N�O B=P B ; B �+9:
 is a polynomial. �(; B � is the set of

monomials. In our implementation, we use
F �+Q?
R�Q?SUTWVYX'Q and a bivariate polynomial of degree one.

For the RBF fit, we place equidistant samples on
the path � . These Z samples � � �[����� �
 are the
centers of the RBF. Their number Z is chosen ac-
cording to the path length. Typical values of Z range
from 5 to 30 centers. To obtain the weights D B and
polynomial coefficients

P B
, we solve the system of

equations given by
8 �	� �
\�]� � , where � � �]�'��� �

is the point on �^� corresponding to � � ._a` bbdc #"e _ D BP B e � _gf �# e (3)

Here,
` � B � F ��Gh� � I�� B Gh
 and

b � B �L; B �	� �
 (with
a polynomial of degree one,

b �ji6kmlon). Note that

(a) (b)

Figure 4: (a) A path pair consisting of a BB path� (top-right) and an II path � � (middle). Shown
are the inside vertices p � of � as well as their cor-
responding points ,�-q�+p �
 . (b) Inside vertices of �
and their target points in world space. Attractive
forces between corresponding points resolve the in-
tersection.

the matrix
b

is singular if the centers � � lie on a
straight line [10]. Adding random noise to the � �
solves the problem. We never use less than three
centers.

The function ,)- is two-dimensional and we
solve for weights for its components separately.
These weight can be used in (2) to construct a cor-
respondence function , - �r� 8ts � 8 S
 . Figure 4 il-
lustrates the fitting process.

5.2 Applying Corrections
In order to resolve the collisions, we apply a penalty
force to all vertices in the inside regions such that
the interpenetrating parts of the cloth are separated.
This force points in the direction of the target point.u �+�3
)� � � Iv�G� � Iv�$G\wyxCz �	{|G� � I}�oG��~C�����Y
 (4)

We use a force that linearly increases with the dis-
tance to the corresponding point (the equivalent of
penetration depth), up to a maximum value. Note
that in a physical simulation, the correction forces
should be applied symmetrically to p and p � to en-
sure conservation of linear and angular momentum.

For the untangling process to be successful, it is
necessary that the inside parts cross the cloth again.
If our untangling method runs alongside a tradi-
tional collision prevention algorithm such as [3],
we disable collision detection for inside parts of the
cloth, as well as a small region around the intersec-
tion lines, allowing for inside parts to cross over and
correct intersections.

In case an inside region does not contain any
mesh vertices, we randomly choose an inside point

on each triangle in the region, and compute the
penalty force for these points. The force is then ap-
plied to the vertices of the triangle containing the
point.

Note that it is also possible to directly resolve
an intersection by displacing the inside vertices. In
order to do so, correspondences are computed for
each path pair, and the inside vertices are moved
somewhat more than half-way to their target points.
Since this is done for both paths, this will separate
the sheets. This method does not resolve BLI inter-
sections in one step, although applying the correc-
tion in an iterative fashion will eventually resolve
the intersection.

While direct separation works well for small in-
tersections, there is no guarantee for success, even if
applied iteratively. For more complex intersections,
this method becomes unstable and may oscillate. In
practice, relaxation using penalty forces proved su-
perior in most situations.

5.3 Handling BI/BI Paths
Since BI paths do not define inside regions, BI/BI
path pairs cannot be handled as described above. In-
stead, we apply forces that push the intersection to-
wards the nearest boundary.

We define a distance field �:�	��
 in parameter
space, storing the distance to the nearest cloth
boundary for each point on the cloth. A force in the
direction of the closest boundary of the cloth acts in
the direction of the negative gradient of � .

To define this force in world space, we consider
the tangent space of the parameterized surface ���	�=

with parameterization coordinates ���E�+��� f
q� � .
The tangent space is spanned by the vectors ����C� and����C� , thus for each point 9j�����	�=
 , the ���j� matrix� �	��
�� _N� �� � � �� f e (5)

transforms vectors in
�

to their corresponding tan-
gent directions in world space. In our case, the sur-
face is defined as a mesh. Since both world space
coordinates and �+�:� f
 -coordinates are known for
all mesh vertices,

� �	��
 is straightforward to com-
pute.

Using
� �	��
 , we define a world space force fieldu\�(�h� ��i�� at each point on the cloth:u\�(�h� �	��
)�gI � �	��
(���:�	�=
G � �	��
(���:�	�=
MG�� wyx�z �	{o���	��
�H~�������

(6)

(a) (b)

Figure 5: (a) Id���:�+�U
 for points on a BI /BI path
pair. (b) Forces acting on one of the paths in world
space. The intersection is pushed outside the cloth.

Again, the force magnitude grows with penetration
depth, up to a maximum value ~C����� .

In order to push an intersection path outwards,
we average the forces over the entire path. Consider
a BI path �"�"��������
���� � and its corresponding
path ����������������
���� � . In order to resolve the
intersection, a correction force

u - is applied to all
points ������
 on the path � . Since the paths are piece-
wise linear, the average force can be expressed as a
sum over the path segments.

u -}��@ �¡ � -|¢
u\�(�h� �+� � � � � >L� �¤£ s�
(
 (7)

Here, � is the length of the path segment ¥ , and -?¢is the length of the path � � . We use one force sam-
ple per segment, i. e. at least one sample per trian-
gle. At each point, ¦ �(�h� is tangent to the surface
intersected by the piece of cloth around ������
 . The
path � is thus pushed over the surface around � � .
Note that similar to the correction proposed in Sec-
tion 5.2, the forces should be applied symmetrically
in order to conserve momentum.

Typically, there are no vertices on the intersection
path. We apply the correction force to all vertices of
triangles that contain an intersection segment. Fig-
ure 5 shows an illustration of the correction forces
for BI paths.

Note that this technique is quite similar to the
untangling method proposed in [18]. However, we
push the intersection towards the closest boundary,
while [18] move the intersection segments in the
direction that reduces their total length. Both ap-
proaches have their pathological cases. We believe
that for BI paths, our method leads to more natural
untangling behaviour.

6 Results

We have implemented the untangling method as de-
scribed above and applied it to cloth in various tan-
gled states. Figure 6 shows an example of a LL in-
tersection and its resolution after several steps of re-
laxation. Figures 7 and 8 on the color page show un-
tangling of a BB /II path pair and a LL path respec-
tively. Note that contrary to [2], we actively correct
LL intersections.

Table 1 summarizes computation times on a P4
3GHz. Our path finding code is in no way opti-
mized, and currently needs §��+Z:S�
 time instead of
the possible §��+Z^TWVYX'Z:
 , where Z is the number of
segments. We believe that cloth untangling should
be used to complement, not replace collision pre-
vention methods such as [3]. Our method can be
used to detect intersections and adjust the colli-
sion handling accordingly where collision preven-
tion has failed. Note that this also reduces the load
on collision detection, as small errors are now ac-
ceptable.

#Tri #Paths #Seg #In Seg Path RBF
2450 4 154 147 32 ¨ 1 ¨ 1

23 1976 827 78 281 32
31250 8 284 147 360 15 ¨ 1

30 4540 1515 656 7078 172

Table 1: Computation times of our algorithm. The
columns show the number of mesh triangles, the
number of intersection paths, the number of inter-
section segments, and the total number of inside
vertices, as well as computation times for finding
segments, assembling paths and RBF fits in mil-
liseconds.

7 Conclusion and Future Work

We have presented a thorough analysis of intersec-
tion types on 2D manifolds. Compared to [2], using
RBF fitting instead of closest point matching for
force computation greatly improves robustness of
the intersection handling, especially in the presence
of foldovers in the intersection region. It also en-
ables intersection handling for path types that were
previously impossible to correct. We have also pro-
posed a method for correcting intersections that do
not define any inside regions.

Thus, arbitrary intersections of cloth with bound-
aries can be resolved.

(a) (b) (c)

Figure 6: (a) A BLI intersection. (b) A view inside the BLI cone showing the correction forces. (c) As the
cone is flattened, the intersection is resolved (top view).

While our methods handles intersections reli-
ably, extremely complicated intersections can lead
to strange unfolding behaviors. On severely tangled
cloth, intersection paths can self-intersect, or come
extremely close to each other. While our algorithm
typically unfolds and resolves the intersections, it
might do so in a non-intuitive manner. We also can-
not give formal guarantees that the cloth will unfold
entirely, as there might be pathological configura-
tions leading to oscillations.

At the moment, most cloth simulations deal with
2D manifolds, thus our method is general enough in
these settings. Since most real-life garments are ac-
tually non-manifold, it would be interesting to gen-
eralize our analysis to nonmanifold surfaces.

Acknowledgements

This project was funded by the Swiss National
Commission for Technology and Innovation (CTI)
project no. 7560.1 ESPP-ES.

References
[1] D. Baraff and A. Witkin. Large Steps in Cloth Sim-

ulation. In Proceedings of Siggraph ’98, 43–54,
1998.

[2] D. Baraff, A. Witkin, and M. Kaas. Untangling
Cloth. In Proceedings of Siggraph ’03, 862–869,
2003.

[3] R. Bridson, R. Fedkiw, and J. Anderson. Robust
Treatment of Collisions, Contact, and Friction for
Cloth Animation. In Proceedings of Siggraph ’02,
594–603, 2002.

[4] R. Bridson, S. Marino, and R. Fedkiw. Simulation of
Clothing with Folds and Wrinkles. In Proceedings
of the Symposium on Computer Animation, 28–36,
2003.

[5] M. D. Buhmann. Radial Basis Functions. Cam-
bridge University Press, 2003.

[6] M. Carignan, Y. Yang, N. Magnenat-Thalmann, and
D. Thalmann. Dressing Animated Synthetic Actors

with Complex Deformable Clothes. In Proceedings
of Siggraph ’92, 99–104, 1992.

[7] K. Choi and H. Ko. Stable but Responsive Cloth. In
Proceedings of Siggraph ’02, 604–611, 2002.

[8] E. Grinspun, A. N. Hirani, M. Desbrun, and
P. Schröder. Discrete Shells. In Proceedings of
the Symposium on Computer Animation ’03, 62–67,
2003.

[9] M. Meyer, G. Debunne, M. Desbrun, and A. Barr.
Interactive Animation of Cloth-Like Objects in Vir-
tual Reality. J. of Visualization and Computer Ani-
mation, 12(1):1–12, 2001.

[10] C. A. Micchelli. Interpolation of Scattered Data:
Distance Matrices and Conditionally Positive Func-
tions. Constructive Approximation, 2(1):11–22,
1986.

[11] N. M. Patrikalakis. Surface-To-Surface Inter-
sections. Computer Graphics and Applications,
13(1):89–95, 1993.

[12] X. Provot. Deformation Constraints in a Mass-
Spring Model to Describe Rigid Cloth Behaviour.
In Proceedings of Graphics Interface ’95, 147–155,
1995.

[13] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer.
Elastically Deformable Models. In Proceedings of
Siggraph ’87, 205–214, 1987.

[14] M. Teschner, B. Heidelberger, M. Mueller,
D. Pomeranets, and M. Gross. Optimized Spatial
Hashing for Collision Detection of Deformable
Objects. In Proceedings of Vision, Modeling and
Visualization ’03, 47–54, 2003.

[15] M. Teschner, B. Heidelberger, M. Müller, and
M. Gross. A Versatile and Robust Model for Ge-
ometrically Complex Deformable Solids. In Pro-
ceedings of Computer Graphics International ’04,
312–319, 2004.

[16] P. Volino, M. Courchesne, and N. Magnenat-
Thalmann. Versatile and Efficient Techniques for
Simulating Cloth and Other Deformable Objects. In
Proceedings of Siggraph ’95, 137–144, 1995.

[17] P. Volino and N. Magnenat-Thalmann. Accurate
Collision Response on Polygonal Meshes. In Pro-
ceedings of Computer Animation ’00, 154–163,
2000.

[18] P. Volino and N. Magnenat-Thalmann. Resolving
surface collisions through intersection contour min-
imization. 1154–1159, 2006.

(a) (b) (c) (d) (e) (f) (g)

Figure 1: Different paths in world space (top row) and parameter domain
�

(bottom row). Loop ver-
tices are marked on the paths. (a) a pair of CLOSED paths. (b) EIGHT path. (c) loop-loop (LL) path. (d)
boundary-loop-inside (BLI) path. (e) CROSS path. (f) boundary-boundary/inside-inside (BB/II) path pair.
(g) boundary-inside (BI) path pair.

(a) (b)

Figure 7: (a) An intersection creating a BB /II path and the penalty forces applied in this situation. (b) After
several timesteps, the intersection is resolved.

(a) (b)

Figure 8: (a) A LL intersection path. (b) After several timesteps, the intersection is resolved.

