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Abstract

We present a novel framework for the multimodal display of words using topological, appearance, and auditory
representations. The methods are designed for effective language training and serve as a learning aid for individuals
with dyslexia. Our topological code decomposes the word into its syllables and displays it graphically as a tree
structure. The appearance code assigns color attributes and shape primitives to each letter and takes into account
conditional symbol probabilities, code ambiguities, and phonologically confusable letter combinations. An additional
auditory code assigns midi events to each symbol and thus generates a melody for each input string. The entire
framework is based on information theory and utilizes a Markovian language model derived from linguistic analysis
of language corpora for English, French, and German. For effective word repetition a selection controller adapts to
the user’s state and optimizes the learning process by minimizing error entropy. The performance of the method
was evaluated in a large scale experimental study involving 80 dyslexic and non-dyslexic children. The results show
significant improvements in writing skills in both groups after small amounts of daily training. Our approach combines
findings from 3D computer graphics, visualization, linguistics, perception, psychology, and information theory.
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1. Introduction

Dyslexia is traditionally defined as the inability
of otherwise intelligent individuals to acquire flu-
ent reading and/or orthographically correct writ-
ing skills [1]. The socio-economical implications of
dyslexia are significant and often devastating for the
individual, who, in many cases, dramatically under-
performs in school and profession. Dyslexia occurs

1 Supplemental materials submitted to Elsevier contain two
videos demonstrating the system in action and a video report
from a German TV station about the system and the user
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cvoegeli@dybuster.com

predominantly in Western world languages, includ-
ing English, French, German, or Spanish [1]. It is
estimated that about 5-7% of the Western world
population suffers from minor or major forms of
dyslexia [2].

Dyslexia appears in various forms, such as deep
or surface, and developmental or acquired dyslexia
and at different levels of severity and strength.
There are multiple causes for dyslexia, which, as
of today, are not fully researched yet. Most often,
dyslexia develops in early childhood and adoles-
cence [3]. The irregularities in cerebral information
processing underlying dyslexia are not fully under-
stood yet and still subject of intensive research in
psychology, medicine, neuroscience, linguistics, and
other disciplines. A full overview of the exhaustive
scientific literature on this subject is beyond the
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(a) Case I (b) Case II (c) Case III

Fig. 1. The string “the father” is displayed using a topological, color, shape, and auditory representation. The recoding retains

information in that its overall entropy rate matches the entropy rate of the input symbols. The color code is language specific
and the result of an optimization. We depict the codes for English, French, and German.

scope of this paper. We will confine ourselves to a
summary of the most important findings relevant
to our own work.

Researchers have proposed various models for the
acquisition of human reading and writing skills. It is
widely believed that orthographically correct writ-
ing is acquired over three phases: a visual phase, a
phonetic phase, and a final semantic phase [2]. A
traditional theory for reading is the dual route model
distinguishing between a phonological and a lexical
route [4].

More recent theories attribute dyslexia to a neuro-
logical disorder with a genetic origin and one school
of thought explains dyslexia as a consequence of
deficits in the phonological processing of the brain
[5]. Scientists [6] also observed correlations between
the occurrence of dyslexia and low level transient in-
formation processing in the human brain. Another
school of thought [7] suggests that dyslexia is caused
by specific weaknesses in visual and attentional pro-
cesses. In particular, there is evidence for deficits in
the transient, visual-temporal information process-
ing - as opposed to visual-spatial perception, which
is usually well developed in people with dyslexia.
Such transient visual activity can be affected by the
use of color [8]. A further theory [9] suggests that
normal development and disorders of speech per-
ception are both linked to temporospectral auditory
processing speed. This key observation has been con-
firmed by various other authors [10].

Lately neurobiological evidence for reading and
writing disorders has been given [11], [12], [13].
These researchers found abnormalities in the struc-

ture of the temporal cortex of dyslexic children
using diffusion tensor imaging. Overall, these re-
cent neurobiological studies seem to confirm the
hypothesis that the difficulty in precise auditory
timing has a link to language acquisition and com-
prehension [14]. It has also been hypothesized [15]
that musical training may be able to remedy such
timing difficulties. Our method compiles all these
experimental findings into a novel, multimodal word
recoding scheme.

1.1. Therapy and Training Programs

Numerous therapies of dyslexia have been pro-
posed and applied so far. For instance, a French
team showed [16] that a focused and abstract audio-
visual training can lead to plastic neural changes in
the cortex and thus improve cerebral language pro-
cessing. Another very successful and scientifically
well-founded therapy [9] utilizes the results from
above. They developed a series of neuroplasiticity-
based training programs that are designed to im-
prove fundamental aspects of oral and written
language comprehension and fluency. A further ex-
ample for dyslexia treatment is LEXY [17], a Dutch
therapy. This concept focuses on lexico-phonological
deficits and employs the syllabic structure of words
as its central element. Besides such scientifically
well-founded approaches, there is a wealth of more
or less heuristic therapies and learning aids. A
comprehensive survey is given in [18], [19]. Various
commercial multimedia e-learning systems [20] offer
computer-based exercises to link words to their se-
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mantics and to pictorial information. Strydom and
du Plessis [21], for example, present a compendium
of cognitive exercises aimed at the development of
reading, writing, and other skills partly using color
to support learning. Davis and Brown [22] depict
words as 3-dimensional associations or as scenes
sculpted by the user with play dough. While this
method associates each word with a spatial rep-
resentation, it is very cumbersome and of limited
success. Overall and while significant progress has
been made [9], there is no single commonly agreed-
upon therapy for dyslexia to the present day.

1.2. Our Approach

The approach presented in this paper is funda-
mentally different from earlier ones in that it com-
bines concepts from visualization and perception (in
parts also used by e.g. [21] and [22]) with enhanced
concepts from 3D graphics, statistical modeling of
language, and information theory to design an ad-
vanced learning and language acquisition aid for in-
dividuals with dyslexia. The heart of our method is
an abstract, graphical recoding of the input word.
The code consists of a spatio-topological code, an ap-
pearance code (color, shape), and an auditory code,
as displayed in Fig. 1. This coding transforms the in-
put into a multimodal representation that supports
phoneme-grapheme associations. It thus bypasses
the distorted cognitive cues of people with dyslexia
and builds alternative cerebral retrieval structures.
A central feature of our recoding is its ability to mea-
sure and retain information through entropy. We
take into account language statistics, code ambigui-
ties, dyslexic letter pairs, and entropy maximization.

Our main contribution to computer graphics and
visualization is a class of codes, which, to our knowl-
edge, for the first time quantifies the visual recoding
of information, the central processing stage in the
visual display of data. The presented mathemati-
cal framework is versatile and can be generalized to
other problems in graphics and visualization.

Besides dyslexia research there is a number of re-
lated scientific fields relevant to our work. The state-
of-the art in those areas cannot be covered in this pa-
per. Instead, we will refer to textbook literature. Our
method relies heavily on statistical analysis of lan-
guage such as being well-studied in linguistics [23].
The underlying mathematical models and coding al-
gorithms draw upon Shannonian information theory
and we refer to the textbook of [24]. Our core visual

recoding algorithms can be considered as metaphors
for the visual display of abstract information and
thus relate to information visualization. The text-
books by Ware [25] and Tufte [26] are both very
good examples in this area. The design of the pre-
sented method was influenced by our experience in
perceptual aspects of data visualization [27]. Finally,
the technical essence of the paper encompasses the
quantification of multimodal information and thus
stands in line with some significant recent research
regarding visual importance [28], saliency [29], and
others.

The paper is organized as follows: Section 2 sum-
marizes the most important results of our statistical
language analysis. We also give a short overview of
entropy computation. Section 3 focuses on the de-
sign of the topological, shape, color, and auditory
codes. Section 4 is devoted to the computational al-
gorithms underlying the color and shape codes. Sec-
tion 5 elaborates on the word selection controller,
the core control unit of our learning system. The re-
sults of the experimental studies and evaluations of
our method are detailed in Section 6.

2. Language Statistics and Entropy

Our paradigms for recoding are based on fun-
damental statistical properties of languages. These
statistics were computed by linguistic analysis using
commonly accepted language corpora, such as the
British National Corpus for English (BNC) [30] and
the European Corpus Initiative Multilingual Cor-
pus [31] for German (ECIGer) and French (ECIFr).
The BNC, for instance, comprises statistically rele-
vant text fragments of contemporary language con-
taining more than 95 Mio. words and 334,914 differ-
ent English words. We will confine our summary of
this analysis to some fundamentals as well as to the
main findings that are relevant to understand and
replicate the design of our codes. For the reader’s
convenience, we will focus on English.

2.1. Word Frequency

One of the fundamental laws in language statis-
tics describes the frequency distribution of words.
Zipf observed in 1949 [32] that the relationship be-
tween the rank of a word and its frequency follows a
hyperbolic characteristic. Zipf’s law states that the
relationship between the rank r of a word and its
frequency remains constant. Table 1 presents some
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Table 1
Examples of word frequencies in % for English (BNC),

French (ECIFre), and German (ECIGer) as found in our

analysis.

Rank English French German

Word Freq. Word Freq. Word Freq.

1 the 5.68 de 5.51 der 3.31

2 of 3.17 la 2.81 die 2.96

3 to 2.69 l´ 2.19 und 2.29

4 and 2.63 à 2.03 in 1.73

5 a 2.14 le 2.01 den 1.17

10 for 0.87 en 1.32 im 0.80

100 after 0.099 francs 0.086 gibt 0.083

1000 win 0.010 principal 0.010 Nähe 0.0091

of the most frequent words in English, French, and
German.

To design the word selection controller (section
5.4) and training database for our learning system
(section 5.2) it is necessary to rank the most frequent
words. In practice, of course, we have to limit the
database to about 70%-90% of the most frequent
words of a language. It turns out, for instance, that
the 8000 most frequently used words in English and
French cover 90% of the corpora while 34000 words
of German are needed to achieve 90% coverage. This
is due to the typical compound noun constructions
of German language. “Kinder-garten” is a simple
example.

2.2. Word Length Distribution

A further important statistics of a natural lan-
guage is its distribution Pw(J) of the word length J .
For our purposes, specific word length distributions
are required, both as a function of the word’s number
of letters and as a function of the number of its syl-
lables. It has been noted by several authors [33] that
Poisson distributions and binomial distributions are
well suited to model this language property.

A refined fit can be obtained by log-Weibull dis-
tributions. For practical use, we limit the number of
letters of a word to a maximum max(J) = 25. The
normalized log-Weibull distribution Pwweib yields as

Pwweib(J) =
e(a−J)/b−e(a−J)/b

b
max(J)∑

i=1

Pweib(i)

, J ∈ {1, ...,max(J)}.(1)

a and b are language specific parameters. Fig. 2
depicts the results of our analysis, where we compare
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Fig. 2. Word length distribution of the BNC. We compare

the empirical data with the Poisson distribution (µ = 3.99,

mean 4.065) as well as the log-Weibull distribution (a = 3.22
and b = 1.89).

Poisson and log-Weibull statistics for word length
distributions fitted to the BNC data. Model and
data match very well.

It is very instructive to compare the average
word lengths for different languages. Our analysis
revealed that the average word length for English is
4.73 letters per word, compared to 6.17 for German
and 4.88 for French.

2.3. Syllable per Word Distribution

Another important linguistic statistics consti-
tutes the distribution Py(K) of the number K of
syllables y per word. It is important to note that
not all researchers count syllables the same way.
For our purpose we utilized an implementation of
Knuth’s hyphenation algorithm [34] which is also
employed to construct the syllable tree in Section
3.2. For our analysis we limit the maximum number
of syllables per word to max(K) = 10.

2.4. Syllable Length Distribution

A further important input to our recoding method
is the distribution Ps(L) of syllable lengths L. While
this statistics can be modeled using Poisson distri-
butions as well, we found that the Conway-Maxwell
distribution provides a much better fit. For practi-
cal utility we limit the maximum number of letters
per syllable to max(L) = 15 and yield

Ps(L) =
aL

L!b
C1, L ∈ {1, ...,max(L)}, (2)

with a, b being language specific parameters and C1

being a normalizing term.
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Fig. 3. Syllable length distribution of the BNC. We compare

again the empirical data to fits of a Poisson distribution with

µ = 3.99 and a Conway-Maxwell distribution with a = 19.53,
b = 2.37 and C1 = 0.0031.

Table 2
Probabilities of the 3 types of symbols employed by the

topological encoder of Section 3.2 and their entropy.

Statistics English German French

P(◦) 0.2115 0.1619 0.2046

P(−) 0.0812 0.1661 0.1142

P(∗) 0.7073 0.6770 0.6812

H (Y ) 1.121 1.231 1.203

Fig. 3 compares the model to the data of the BNC
and illustrates the quality of this distribution. The
average length of a syllable in English is computed
as 3.40, while we obtain 3.08 for German and 3.13
for French.

2.5. Special Symbols

As we will explain in more detail in Section 3.2 our
topological code distinguishes between the following
three different types of symbols:
° : symbol for letter marking the end of a word
- : symbol for letter marking the end of a syllable,

but not the end of a word
* : symbol for a regular letter

The computed probabilities for these symbols are
listed in Table 2.

2.6. Symbol Probability and Markov Models

A key ingredient for the design of any text coding
method is the symbol statistics [35], where the se-
quence of symbols is represented by a random vari-
able X. Depending on the order of the underlying
Markov model we have to compute more or less com-
plex conditional symbol probabilities.

Table 3
Probabilities of capital letters and umlauts/accents for En-

glish, German, and French, as well as the entropy of their

distribution.

Statistics English German French

capital letters 2.949% 6.675% 2.169%

umlauts 0% 1.600% 3.030%

small umlauts 0% 1.560% 3.028%

H (S) 0.1918 bits 0.4681 bits 0.3456 bits

Let A be an alphabet of size |A|with |A| being the
number of symbols (letters) xi ∈ A. The Markov-0
model is fully described by the probabilities of oc-
currence P (xi) of symbol xi. In this model, a string
s = (a1, ..., aJ) of symbols aj and length J is con-
sidered as a random sequence and the occurrence of
a symbol aj = xi is statistically independent of pre-
ceding symbols of that string.

A somewhat more elaborate model is Markov-1,
where the occurrence of a symbol aj in the string s is
statistically dependent on the preceding symbol of
the sequence. This dependency is expressed by the
conditional probability P (aj+1 = xi|aj = xk). Such
conditional pairs are called digrams. Higher order
Markov models utilize trigrams, quadgrams and so
forth [35].

For the computation of conditional probabilities
all special characters were omitted except the space
character to separate words. We also distinguish
capitalized letters. For German and French, um-
lauts, such as {ö, ü, ä, è, à...}were taken into account
as well. Our analysis showed that the most frequent
digram in the BNC is actually “e ” which symbol-
izes an “e” at the end of a word. The second most
frequent digram is “ t”, or a “t” at the beginning of
a word.

It is clear that the symbol probabilities differ
significantly between languages. For instance when
considering the space character “ ” as part of the
alphabet, the probability of “e/E” is 12.4% for
English, 13.6% for German and 11.8% for French
including all accents.

The shape code (section 3.3), which is part of the
appearance encoder, assigns different shape primi-
tives to capitalized, umlauted, or accented letters.
The probabilities for such letters are listed in Table
3.

The results confirm that German contains more
capital letters (all nouns) while French comprises
most accents. The number of capitalized umlauts
and accents is negligible for the design of the code.
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2.7. Information and Entropy

The random process described by the variable X
is considered as an information source. To measure
this information, we employ the concept of entropy
H [36]. We assume that the random process X is
stationary and memoryless allowing us to compute
entropy rates. For convenience of notation, we will
utilize the term entropy in subsequent analysis. H
measures the entropy rate of the associated Markov
source, that is, the average number of bits needed to
encode a single symbol xi and can be computed as

HM0(X) = −
|A|∑

i=1,PX(xi) 6=0

PX(xi) log(PX(xi)) (3)

measured in bits/symbol.
In our analysis, we obtain an entropy for English

of about 4.18 bits/symbol if we do not consider the
space character x0, of 4.11 bits/symbol if we do,
and of 4.29 bits/symbol if we additionally discern
small and capital letters. For German we get 4.50
bits/symbol including x0, umlauts and capital let-
ters and 4.12 bits/symbol without including them.
French results in 4.29 and 4.03 bits/symbol respec-
tively. To encode an English text string s of length
J using a Markov-0 model we thus need on aver-
age JH(X) bits. In a similar fashion entropy can be
computed in a Markov-1 model.

Our analysis of the BNC yields a Markov-1 symbol
entropy of H(X) = 3.48 bits for English, H(X) =
3.51 for German, and H(X) = 3.40 for French, all
including capital letters. As expected, the rates for
Markov-1 models are lower, since such models com-
prise less uncertainty due to the improved condi-
tional symbol statistics. The string entropy for a
Markov-1 model can be computed accordingly. For
more fundamentals on information theory and im-
portant theorems related to entropy we refer the
reader to textbooks, such as [24], [35].

From now on, we will refer to H(X) as the symbol
entropy.

3. The Design of Visual and Auditory Codes

In this section, we will describe the design and
computation of the individual codes we utilize for
the recoding of a given input string s. Central to our
design is to retain entropy during the recoding. For
this purpose, we quantify the visual and auditory
information by estimating their entropies.

Musical
coder

Appearance
coder

Topological
coder

Word 
selection
controler

Fig. 4. Conceptual components of our method and frame-
work.

3.1. Overview of the Recoding Method

Fig. 4 shows the general concept. An input string
s (e.g. a word) is taken from a training dictionary
by a word selection controller. The controller adapts
to the user’s learning state and minimizes error en-
tropy (section 5). The recoding of s is accomplished
by three different encoders: the topological encoder
(section 3.2), the appearance encoder (section 3.3),
and the auditory encoder (section 3.4), which all to-
gether create a multimodal representation of s.

Fig. 5 depicts a result. In a first step we parse the
string recursively and decompose it into a syllable
tree. This tree generates a topological representa-
tion of the syllable structure of the string. We refer
to it as the topological code of s. Wherever a blank
occurs the string is separated into a set of words.
Next, each word is decomposed into a set of syllables.
To accomplish this, we use a hyphenation algorithm
similar to the one suggested by Knuth [34], and in-
sert hyphens into the original string. Each syllable
is regarded as a set of letters. From this decomposi-
tion, a tree is constructed, where the string s is as-
sociated with the root. The internal nodes represent
all syllables of s. If two syllables belong to the same
word, their nodes are joined by a horizontal bar (see
Fig. 5). Also, we assign a number to each internal
node depicting the number of letters of the syllable.
In addition, a unique color is used to encode the syl-
lable length. The letters are represented by the leave
nodes. This representation is a fully interactive and
animated 3-D structure. We will explain interaction
in more detail in Section 5.

The leaf nodes are represented by the appearance
codes of s. To this end each letter xi ∈ A, is assigned
a color value ck ∈ C from the color alphabet C. The
map c(xi) projecting each letter to color values will
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Fig. 5. Representation of the string “My Zürich” including

the color code, the shape code, the topological code and the
auditory code.

be elaborated below. Similarly, we assign a shape
primitive sn from a shape alphabet S to each let-
ter xi using a map s(xi). While our implementation
and analysis confines appearance to shape and color,
other features, such as transparency, reflection, sur-
face microstructure, texture, or changes thereof over
time can be included easily. The current setting uti-
lizes the shape code to distinguish between regular
letters (sphere), capital letters (cylinder), and um-
lauts (tetra).

Finally, we assign an auditory code to the rep-
resentation. In the current approach, the auditory
code translates the visual representation, i.e. its
topological and appearance code, into a set of midi
events. The musical attributes we use include pitch
for color and instrument for shape, as well as du-
ration and rhythm for syllable lengths. Thus, the
auditory code eventually creates a melody for s,
which is played by the computer’s midi synthesizer
to reinforce the visual codes. Fig. 5 displays the
score of “My Zürich” as assigned by the auditory
encoder. Any aspects of a musical or auditory event
that enables the human auditory system to distin-
guish two, otherwise similar musical events from
each other could be included. Examples are volume,
scale, reverb, style elements, chords, harmony, and
the like.

While the topological and shape codes are deter-
mined by s by construction, the color code leaves
some degrees of freedom such as the number of col-
ors and the actual color values. We will first present
the codes in more detail, show how they are linked

*      °   *     -    *    *    *    °         °    *    *    °

My Zü-rich A car

Fig. 6. topological code for the strings “My Zürich” and “A

car”.

to each other by entropy and then elaborate on the
optimal choice of the free parameters of the color
code.

3.2. Topological Coding

Our goal is to measure the entropy of the graph.
In graph theory, a well-known result [37] states that
a general tree T (V,E) with V nodes and E edges can
be encoded in 2(V + 1) bits, where V is the number
of nodes. For our purposes, we designed an efficient
code to approximate the tree entropy taking advan-
tage of the inherent tree structure. For instance, our
syllable tree always features three levels. The central
idea is to construct a ternary code with the associ-
ated entropy H(Y ). As explained in section 2.5 we
utilize a distinct symbol “°” for letters at the end of
a word, “-” for letters at the end of a syllable which
do not mark the end of a word, and “*” for all other
letters.

The resulting alphabet of the code yields as Y =
{◦,−, ∗}. Fig. 6 gives an example. As can be seen,
the code string “ * ° * - * * * ° ” e.g. encodes the
topological information of the tree including the hor-
izontal bar.

The associated symbol probabilities are given in
Table 2. Y is a Markovian random variable and its
entropy can be computed from the symbol probabili-
ties of the ternary alphabet. Since Y unambiguously
encodes T , the entropy of T is bound by the entropy
of Y . We have not proven the optimality of this code
yet. However, since syllable ends and word ends have
to be distinguishable, other Markov-0 codes will not
be much more efficient. Hence, H(Y ) is a conser-
vative estimate for the entropy of T . Our analysis
gives H(Y ) = 1.12 for English, H(Y ) = 1.23 for
German, and H(Y ) = 1.20 for French. We multiply
H(Y ) with the average word length as given in Sec-
tion 2.2 and thus obtain 1.12 · 4.73 = 5.30 bits as a
tree entropy for English.

To formalize the information of the numbers as-
sociated with each internal node (see Fig. 5), we
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introduce the random variable N and the number
entropy H(N). Since the tree can be decoded from
the ternary code, the basic theorems of information
theory state that the conditional information

H(N |Y ) = 0. (4)

The Markovian source N generates a number per
syllable representing its length. Knowing the sylla-
ble length distribution Ps(L) from Section 2.4 we
compute H(N) = 0.692 bits per symbol for English,
0.605 b/s for German and 0.715 b/s for French.

3.3. Appearance Coding

The appearance coder includes a color code to
represent a letter and a shape code to distinguish
between regular letters, capital letters and umlauts.
The mathematical details of the computation of the
color code are deferred to Section 4.

Let c(xi) be the color code that maps each sym-
bol xi onto a color ck, where ck belongs to the set
C = {c1, ..., c|C|}. We compute the probability of
occurrence of a color ck in A by summing up over
the probabilities of all symbols xi mapped to ck

P (ck) =
N∑

i=1

P (xi|c(xi) = ck). (5)

Again, we assume C being a random Markovian
process and compute the color entropy H(C) as

H(C) = −
|C|∑
k=1

P (ck) log(P (ck)), (6)

where |C| stands for the number of colors.
Note that maximizing H(C) implies

P (ck) =
1
|C|

⇔ H(C) = log(|C|), (7)

i.e. a uniform probability distribution of P (ck) for
the occurrence of a color. This property will be ex-
ploited in Section 4 to compute the color code.

In a similar fashion we can compute the shape en-
tropy. Fig. 7 depicts the three different shape prim-
itives we apply. A sphere represents a regular, non-
capitalized letter, a cylinder stands for a capitalized
letter, and the tetrahedron encodes a special letter,
in particular an umlaut in German or an accent in
French. The rationale for choosing spheres, cylin-
ders, and cones is their symmetry and simplicity re-
sulting in low shape entropy.

Fig. 7. Three different shapes and instruments used to encode

special letters.

Fig. 8. Auditory code using pitch to reinforce the color code.

Let S = {s1 = sphere, s2 = cylinder, s3 = tetra}
be the set of shape primitives and let S be the
Markovian random process describing the occur-
rence of such shapes. Hence the shape entropy H(S)
is given by the shape probabilities P (si) listed in
Table 3. Our analysis resulted in H(S) = 0.192 for
English, H(S) = 0.468 for German and H(S) =
0.346 for French. These results confirm our intu-
ition, that special letters occur on average more
frequently in French and German.

3.4. Auditory Encoding

The auditory coder first assigns a musical note
with a distinct pitch to each color generated by
the color coder. Fig. 8 shows the current assign-
ment. We experimented with different pitches, keys,
and scales, including major, minor, chromatic, Jazz,
Klatzmer, and others, but found that a pentatonic
scale is the most simple one. It is known that random
combinations of notes of a pentatonic scale lead to
aesthetically pleasing melodies, which leads to the
creation of the most pleasing word melodies.

Furthermore, the coder assigns note length to syl-
lable length. For instance, a two-letter syllable is
mapped to half notes, a three-letter syllable to a
triplet, a four-letter syllable to a quarter, and so
forth. This scheme replays syllables with more let-
ters faster and enables the user’s auditory system
to distinguish between longer and shorter syllables.
Fig. 9 presents the assignment.

Finally, we represent the shape code by means
of different musical instruments. Table 4 summa-
rizes how the color, topological, and shape codes are
translated to midi events.

In order to formalize the entropy of the auditory
code we introduce the Markovian random variable
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1 2 3 4

Fig. 9. Auditory code using note length to encode syllable
length and to reinforce the topological code.

Table 4
Midi events assigned to the color, topological and shape

codes.

Code Event

Color pitch(pentatonic)

Shape (small cap) guitar

Shape (large cap) piano

Shape (umlaut) flute

Tree note length

M denoting the random process which creates a
triplet {instrument, pitch, length} for each letter.
By construction the following relation holds for the
conditional entropy of the auditory code:

H(M |Y CS) = 0. (8)

This equation can be summarized as follows:
while the auditory code reinforces the visual codes
through an additional perceptual cue, it does not
provide additional information in a Shannonian,
information theoretical sense. Note also that the
above analysis is confined to information related
to the random process that creates the string s. In
practice, the generated midi sounds contain other
information as well, such as touch etc., but such
information is irrelevant for our purposes.

The assignments of musical attributes to visual
elements were done empirically. Word rhythm, for
instance, is reflected by a words syllabic structure,
whereas color corresponds to different spectral fre-
quencies and is thus mapped to pitch. As for the
instruments, we picked the ones that pleased a ma-
jority of individuals testing our software.

3.5. Retaining Letter Entropy

One of the free parameters of the color code is
the total number of colors |C|. We need to compute
this number in order to design the color code in Sec-
tion 4. Central to this computation is to retain the
information of the word. This means that the to-
tal information represented by the topological, ap-
pearance, and auditory encodings should be no less
than the Markov information of the original string

s and should allow to unambigously reconstruct s.
In terms of entropy, this requirement translates into
the condition

H(X|Y NMCS) = 0, (9)

which implies by the laws of information theory [36]
that

H(Y NMCS) ≥ H(X). (10)

N is determined by Y in the same way as M
is defined by Y , C and S, see (8). Hence we get
H(Y NCMS) = H(Y CS). For our practical com-
putation of |C| we reformulate (10) as

H(Y CS) = H(Y NMCS) = λH(X), (11)

λ ≥ 1.

This equation actually compares the information of
a letter H(X) with our recoding assuming Y , C, and
S are statistically independent, which is not the case.
The fundamental theorems, however, state that

H(Y CS) ≤ H(Y ) + H(C) + H(S) (12)

and make the right-hand side sum a conservative
estimate of H(Y CS). While the sum contains addi-
tional redundancy,

H(Y ) + H(C) + H(S) = λH(X) (13)

is a good design choice.
The maximum of H(C) is given by (7). Inserting

it yields

log(|C|) = H(C) = λH(X)−H(Y )−H(S)

⇒ |C|= 2λH(X)−H(Y )−H(S). (14)

The results of our analysis are summarized in Ta-
ble 5. We present all involved entropies. Requiring
λ = 1 provides a fractional result for the number
of colors denoted by |C1|. In practice, we have to
round up or down to the next integer number, choos-
ing |C| = 7 for German and French and |C| = 8 for
English. However, since our code introduces redun-
dancy (12), we factor in some safety and set |C| = 8
for all three languages.

It deserves discussion that this choice |C| = 8
does not guarantee that our recoding is lossless, but
it gives a lower bound for guaranteed information
loss if we chose less than |C1| colors. It is notewor-
thy that a precise computation of the joint entropy
H(Y CS) could be accomplished using the chain rule
for entropies,

H(Y CS) = H(Y ) + H(C|Y ) + H(S|Y C), (15)

9



Table 5
Summary of the model related entropies for English, Ger-

man, and French.

English German French

H(X) 4.29 4.50 4.29

H(Y ) 1.121 1.231 1.203

H(S) 0.192 0.468 0.346

H(C) if λ = 1 2.976 2.802 2.741

|C1| 7.867 6.972 6.686

λ if |C| = 8 1.006 1.044 1.060

H(N) 0.692 0.605 0.715

but the conditional entropies involved are very hard
to compute. Again, the lack of information loss is
a necessary condition for the existence of a unique
code. We will get back to this issue in the following
section.

4. Computation of Color Codes

To compute the color code we recall that
H(M |Y CS) = 0 so that the auditory code does not
provide any additional information and that the
topological and shape codes are given by s. Hence
we are left to optimize the color code c(xi). c(xi)
defines the assignment of a color ck to each symbol
xi ∈ A. This code can be viewed as a discrete map.
As we will explain in detail below, the code is the
result of a discrete optimization procedure mini-
mizing a multi-objective function E. This function
takes into account the following terms:

4.1. Uniform Color Distribution

First, we want to assign the colors to individual
symbols in such a way that the color entropy is max-
imized. As discussed in Section 3.3, this is achieved
by a uniform distribution of P (ck). To this end, we
define a so-called color energy EC as part of the ob-
jective function

EC = ωC

|C|∑
i=1

|C|∑
j=1

|P (ci)− P (cj)|, (16)

with ωC being a weight. It is easy to see that this
energy is minimized for P (ck) = 1/|C|. It turns out
that for highly uneven symbol probabilities P (xi)
too many symbols are potentially mapped to the
same color. Therefore, it is useful to try to limit
the number of symbols mapped to a color between
b|A|/|C|c and b|A|/|C|c + 1. This can be achieved

b     q     m    c      v      k     e      h

d     p     n     z      f     g     a

 t                 o

Fig. 10. Dyslexic pair constraints used to compute the color
code.

by choosing the weight ωC as the following soft con-
straint:

ωC =


1, cmin ≤

N∑
k=1,c(xk)=ci

1 ≤ cmax, ∀ci

csoft, else

,(17)

where cmin is a lower bound for the number of sym-
bols per color, cmax is an upper bound for number
of symbols per colors and csoft is a user penalty.
It should be noted, however, that these constraints
have to be set with care. In German and French, for
example, the probability of “e” is more than 15%, if
the space character is not considered as a part of the
alphabet. In our simulations, we set csoft = 2. This
way the constraint affects the final solution by about
15% in German, such that assignments violating the
lower and upper bounds are hardly possible.

4.2. Dyslexic Pairs

It is well-known in dyslexia research and ther-
apy that phonetically similar symbols pose specific
difficulties for people with dyslexia. Such “dyslexic
pairs” include “d-t”, “p-b”, “m-n” and others, as
well as silent consonants, such as “h”. Fig. 10 shows
all the symbol pairs we consider. They comprise stop
sounds, symmetric pairs, and triplets as well. This
set is partly language specific and can be altered and
extended.

For optimization, we first define a so-called
dyslexic map dys(xi, xj) for any symbol pair
(xi, xj) ∈ A2. This map takes a value of 1 for
dyslexic pairs, and 0 otherwise. Hence

dys(xi, xj) =

 1, if (xi, xj) dyslexic pair

0, else
. (18)

Our goal is to map such pairs onto appearance
attributes with a large perceptual distance, denoted
by the norm dP (·, ·). We want to map, for instance,
the pair “t” - “d” onto the colors red and green,
respectively. To quantify the quality of our mapping,
we define a dyslexic energy ED with
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ED = ωD

N∑
k=1

N∑
l=1

dys(xk, xl)
1 + dP (c(xk)− c(xl))

(19)

While the above formulation sets a soft constraint
on dyslexic pairs, dP allows us to control its impor-
tance. We will address the perceptual color norm in
Section 4.5.

4.3. Frequent Letter Pairs

In recent years, scientific evidence has hardened
that people with dyslexia exhibit significant distor-
tion in the perception of rapid temporal informa-
tion [9]. Very often, they read letters in the wrong or-
der, i.e. “hopsital” instead of “hospital”. To address
this phenomenon, we try to avoid frequent symbol
pairs, such as “h-o”, “o-s”, “s-i” being mapped to
the same color. Of course, since |C| < N , there is
no way to eliminate color repetition entirely. Yet,
our Markov-1 statistics gives us means to include
frequent symbol pairs into our cost function.

We define a Markov-1 energy EM1 that assigns
frequent letter pairs to different colors. This energy
is similar to ED, but pairs are weighted with their
joint probability. We set

EM1 = ωM1

N∑
k=1

N∑
l=1,l 6=k

P (xl|xk)P (xk)
1 + dP (c(xk), c(xl))

, (20)

where P (xl|xk) is the conditional probability that
symbol xl follows after symbol xk (digram proba-
bility). Note that pairs of the same symbols (“aa”,
“bb”,...) are mapped to the same color and are there-
fore omitted in (20). It has turned out that the above
soft constraint formulation retains more flexibility
for the optimization than setting hard constraints
for ED and EM1 .

4.4. Unique Coding

We assume for convenience that the input string
s consists of a single word, hence s = w. Ideally,
we want to recode each word w from the dictio-
nary D such that no two words are mapped to the
same code. It is important to emphasize that the en-
tropy computations of (11) – (14) state that such a
code can exist, but not all possible codes are unique.
Therefore, we incorporate a uniqueness constraint
into the optimization. In addition, some words are
more difficult to learn than others. It is important
to ensure that difficult words in D are assigned to

unique code words, as opposed to simple ones. Like-
wise, more frequent words should be mapped to
unique code words for better distinction. For this
purpose, we define a coding energy EU that strives to
minimize code ambiguity while putting weight onto
frequent and difficult words.

Let P (w) be the word probability as given in Ta-
ble 1 and let diff(w) be a function returning the dif-
ficulty level of a word. We first define a word weight
function W (w) as

W (w) = P (w)diff(w) = P (w)dys(w) · |w|H(X).(21)

diff(w) is basically the product of the length of
the word w, the symbol entropy, and the number
of dyslexic pairs dys(w) in w. Using this definition,
the coding energy yields to

EU = ωU

∑
w∈D

W̃ (w) (22)

where

W̃ (w) =

 0, if w is uniquely coded

W (w), else
(23)

We will utilize diff(w) again for the design of the
word selection controller in Section 5.4.

4.5. Color Attributes

ED and EM1 include the evaluation of a color
distance. Perceptual color spaces have been re-
searched extensively in color science [38] and litera-
ture provides a variety of perceptually uniform color
spaces, such as L*u*v*, L*a*b*, Y MS or lαβ [27].
These color spaces perform a nonlinear distortion
of R,G,B or X, Y, Z in such a way that distances
become nearly perceptually uniform and measure
color distances using Euclidean norms.

Let ck and cl be two color attributes with coordi-
nates (ckR, ckG, ckB) and (clR, clG, clB) in some color
space respectively. We define the distance dP (ck, cl)
simply as the Euclidean distance between the coor-
dinates of two color attributes, with

dP (ck, cl) = ||ck − cl|| (24)

=
√

(ckR−clR)2+(ckG−clG)2+(ckB−clB)2.

Given the total number of colors |C| the compu-
tation of the coordinates in color space involves the
following optimization.

max(min(dP (ck, cl))), ∀k, l. (25)
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We experimented with different color spaces and
maximized the above expression using simulated an-
nealing. The visual results for the perceptually uni-
form spaces, however, are not substantially supe-
rior to the trivial solution in the R,G,B space. For
|C| = 8 we obtain slight variations of the corners
of the RGB-cube. Similar computations were per-
formed by [39].

4.6. Minimizing the Cost Function E

Minimizing E is a multi-objective discrete op-
timization problem, or a so-called Pareto problem
[40]. Since the individual terms of E cannot be com-
pared to each other, multiple “optimal” solutions
exist in the search space. The set of all solutions that
are not dominated by others are called the Pareto
front. A general solution strategy for such problems
is to aggregate the objectives into a weighted sum
and to minimize it. Applied to our problem the over-
all cost E(c(x)) of a given color assignment c(x) is
computed by

E(c(x)) = ωCEC + ωDED + ωM1EM1 + ωUEU (26)

with ωD, ωC , ωU , ωM1 being the weights.
Minimizing the cost function is highly nontrivial,

since the search space encompasses |C|N different
mappings for c(x). We designed various randomized
assignment and search algorithms that run in com-
bination to guarantee robust Pareto solutions. In or-
der to compare the quality of the solutions on the
Pareto front, we ran additional optimizations with
only one of the four objectives each. The discrete
randomized search is a two-pass method, where in a
first step an initial symbol to color assignment c(x)
is computed. This initial guess is improved subse-
quently by randomized optimization.

In order to avoid the search getting stuck in lo-
cal minima we ran the optimization with different
strategies for the initial assignments. The idea is
to distribute these initial values across the search
space. We developed various initial assignment algo-
rithms whose discussion is beyond the scope of this
paper.

After the initial assignment a randomized dis-
crete search algorithm computes permutations of
c(x) while minimizing the objective function. We de-
signed four different methods which distinguish in
the size of the neighborhood they search per itera-
tion. All algorithms share the following sequence of
operations: i) select a color, ii) select a letter, iii) as-

F  L  R
D  K  O  X
E  Z
A  G  M

C  J  S  UC  J  S  U
B  I  W  Y

P  T  V
H  N  Q  

-
-
-
-

Fig. 11. Optimized color code for English.

sign color to letter. We combine all these algorithms
to achieve best results. In practice, we compute an
initial assignment and run two of the random search
methods alternately until the solution is stable.

It is noteworthy that efficient updates and eval-
uations of the objective function require efficient
data structures. In particular, EU poses great chal-
lenges, because it involves a check for unique coding.
Naively, such checks require to compare all words in
D and are hence O(|D|2). By definition, however,
the topological code of each word is determined by
its syllabic structure and hence does not change dur-
ing optimization. Thus, it is sufficient to compare
only words with the same topological code.

For example, the 8000 word English dictionary
covering 90% of the corpus comprises 244 different
topological codes so that on average 32.8 words are
mapped to the same syllable tree. Fig. 11 displays
the computed color code for English. A more de-
tailed discussion of the results can be found in Sec-
tion 6.

5. Interactive Learning and Word Selection

In this section we will explain how the described
recoding is utilized in an interactive multimodal lan-
guage training system for individuals with dyslexia.
After a summary description of the setup we will fo-
cus on the word selection controller which adapts to
the user’s actual state and guarantees optimal learn-
ing rates.

5.1. System Concept and Interaction

Our interactive language training system (“Dy-
buster” [41]) is a Windows based software that
runs on conventional PCs with 3D graphics accel-
eration. While the system is designed for people
with dyslexia, our user study proves that it can also
be employed for effective training of non-dyslexic
users. The software consists of three simple games:
a color game, a graph game, and a word learn game.
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Fig. 12. Screen shot of the color game. The color buttons in

the lower part of the screen are to prompt the color of the
displayed symbol.

The purpose of the color game is to learn the color
and auditory codes. To this end the system initially
selects random symbols from A and presents them
to the user who has to confirm the right color by
mouse click. A screen shot of this game is shown in
Fig. 12. As the user progresses, the color saturation
of the presented symbol fades to white requiring the
user to memorize and recall the color. A midi event
playing the auditory code confirms a correct click. A
score counter provides feedback on the actual learn-
ing state. During learning, the system computes a
color confusion matrix and selects symbols based on
prior error probabilities.

Likewise, the user learns the concept of topolog-
ical encoding using a graph game, as shown in Fig.
13. In this game, the user must draw the correct
tree of a given word by clicking onto arrays of nodes
and by drawing a rubber band. Acoustic signals and
musical events confirm correct clicks. The words are
taken from our database D.

The most important system component is the
word learn game. Here, the system displays the
spatial and color codes of a word selected from D.
The system also replays the auditory code (word
melody) as well as a prerecorded wave-file of the
pronunciation. The user must type in the word
through the keyboard. Upon each keystroke, the au-
ditory code of the typed symbol is played. A special
acoustic signal indicates a spelling error. A score
counter provides feedback on learning performance.
Orthographic errors are tabulated and utilized to
compute word error probability and other perfor-
mance measures. The details of how to build D and
how to select individual words will be given below.

The system also offers an input mode, allowing
the user to feed new words into the database. A very
large dictionary can optionally assist her to auto-

Fig. 13. Screen shot of the graph game. The array of nodes

allows users to construct the topological encoding of the
prompted word.

matically complete words and to check for correct
spelling. In addition, the user can choose an auto-
matic hyphenation algorithm or alternatively hy-
phenate the words manually by adding hyphen sym-
bols. Optionally, articles or longer strings with mul-
tiple words can be processed as well. A digital voice
recorder facilitates the addition of pronunciations.
The system also supports a dual language mode for
vocabulary training.

5.2. The Dictionary

As discussed in Section 2.1, words can be or-
dered by their probability of occurrence in the
corpus. Let |D| be the total number of words in the
training set. We want to partition the dictionary
D = {w1, ...,w|D|} into a set M = {M1, ...,M|M|},
Mm = {wm1, ...,wm|Mm|} of modules, such that
M1 ∪ M2 ∪ ... ∪ M|M| = D and the modules are
disjoint. Also, the modules should be ordered by
difficulty and probability with module M1 contain-
ing the most simple and most frequent words. For
this purpose, we assign a difficulty LD(wj) to each
word wj and define a first ordering criterion for
each word wmi and wlj in modules Mm and Ml

m ≥ l ⇔ LD(wmi) ≥ LD(wlj). (27)

To guarantee optimal progress during training
the second ordering criterion follows probability.
Let P (wj) denote the probability of occurrence of
word wj (see Table 1). We sort by

m ≥ l ⇔ P (wmi) ≤ P (wlj). (28)

Our analysis also found that these two objectives
are correlated, because on average, more frequently
used words are less difficult. We tried different com-
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binations of the two objectives for the final sorting
criterion L̃D(wj) of our dictionaries and settled on

L̃D(wj) =
LD(wj)2

P (wj)
. (29)

The sizes of our modules range from 100 words for
the simple ones and 250 words for the more advanced
modules.

5.3. Word Difficulty

Our measure of the word difficulty LD(wj) is
based on the following considerations: First, we
know from previous sections that, if |wj | is the
length of the word measured in letters, the average
minimum number of bits needed to code this word
is H(X)|wj |. Since the symbol entropy H(X) is
constant, it is safe to assume that the word difficulty
is proportional to its length, that is

LD(wj) ∝ |wj |. (30)

Second and similar to color code optimization,
there are dyslexic pairs which make certain words
more difficult to learn for people with dyslexia. We
call the letters belonging to a dyslexic pair a dyslexic
pitfall. We define a function pit(xi) for the letters xi

as

pit(xi) =

 1, if xi is dyslexic pitfall

0, else
, (31)

xi ∈ A. Finally, “silent letters”, which are written
but not pronounced, pose an additional difficulty.
They appear very frequently and in different com-
binations in English and French (see [42]), but can
mostly be represented well by digrams. The function
sil(xk, xl) defines a weight for these pairs

sil(xk, xl) =

 1, if (xk, xl) is silent letter pair

0, else
,(32)

∀(xk, xl) ∈ A2. We calculate the difficulty LD(wj)
as

LD(wj) = |wj |+
|wj |∑
i=1

pit(xi,j) +
|wj |−1∑

i=1

sil(xi,j , xi+1,j).(33)

Thus, the occurrence of a silent pair or dyslexic
pitfall letter simply increases the perceived length of
a word and eventually the number of bits to encode
it, because a larger effort is needed to learn and
remember the word.

5.4. Word Selection and Error Entropy

The purpose of the word selection controller is to
select a word wj from a module Mm in such a way
that the user makes most progress. Progress, in turn,
means to reduce the uncertainty of the knowledge
about the words in Mm. To this end, we define and
utilize error entropy as a measure for the user’s un-
certainty and progress. An error entropy of 0 thus
means that the user has learned the entire module.
The objective of the controller is hence to minimize
error entropy. To this end, we distinguish between
symbol error entropy and word error entropy.

Symbol error entropy: We define a symbol er-
ror matrix or symbol confusion matrix PC to mon-
itor the symbol error probability. PC is a N × N -
matrix, where N = |A|. P (xk|xl), xk, xl ∈ A, is the
conditional probability that a user enters erroneously
xk instead of xl.

PC =


... ... ...

... P (xk|xl) ...

... ... ...

 , xk, xl ∈ A. (34)

The columns of PC partition unity. When the user
decreases the number of errors over time through
proper learning, PC becomes the identity matrix.
We initialize it with random numbers and a bias
towards P (xl|xl) = bias ≤ 1.

Let E be a binary random variable with E = e1

indicating an error and E = e0 being the correct
answer. We define the error probability PE(xl) for
xl as the probability that a user does not enter the
correct letter xl

PE(xl) = P (e1|xl) =
N∑

k=1,k 6=l

P (xk|xl) (35)

= 1− P (xl|xl).

Now, the global symbol error probability PE(X)
can be calculated as a weighted sum of the condi-
tional errors.

PE(X) = P (E = 1|X) =
N∑

l=1

P (xl)PE(xl) (36)

= 1−
N∑

l=1

P (xl)P (xl|xl).

We are now in place to define a conditional sym-
bol error entropy H(E|X). It measures the residual
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Fig. 14. Optimized color code for German.

uncertainty of any symbol of A. H(E|X) can be ex-
pressed as the weighted sum of conditional entropies,
where the conditional entropy is the error entropy
of an individual symbol:

H(E|X) = −
N∑

l=1

P (xl)
N∑

k=1

P (xk|xl) log(P (xk|xl)).(37)

The maximum H(E|X) = log(N) is reached
when each column of PC is uniformly distributed.
The minimum H(E|X) = 0 is obtained if for each
l there is a k such that P (xk|xl) = 1. Theoreti-
cally, this state can be achieved if a user constantly
confuses a letter with another one. In this case,
we know the confusion and no uncertainty is left.
In practice, however, the minimum is reached for
P (xl|xl) = 1, ∀l. The fastest progress in learning is
thus achieved by efficiently minimizing H(E|X).

Word error entropy: A second important as-
pect of error is related to words. For instance, the
anagrams “heart” and “earth” will have equal influ-
ence on H(E|X) while they pose different difficulties
at the word level. There is extensive literature about
word error probabilities from computational linguis-
tics, speech recognition, automatic spell checking,
etc (e.g. [43]). Most of them employ some sort of
letter confusion, similar to H(E|X). Therefore, we
define word error entropy by the following variables.

Let D be the random variable accounting for
events (words) from D and let the word error be
a binary random variable E, as before. PE(D) =
P (E|D) is the probability of a spelling error in a
word of D. Thus ∀wj ∈ D

P (E = e1|D = wj) = P (e1|wj) = 1− P (e0|wj).(38)

We initialize P (e1|wj) for every word wj =
{x1j , ..., x|wj |j}. When a user enters an answer
w̃j = {x̃1j , ..., x̃|wj |j} to the prompted wj , we com-
pare w̃j to wj to obtain the number NE(wj , w̃j) of
misspellings

C  Y  F  R
O  T
A  M  Q  Z
E  W

H  L  UH  L  U
D  I  X
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-
-
-

à   -   é   -   ò   -   úú   -   ç
Fig. 15. Optimized color code for French.

NE(wj , w̃j) =
|wj |∑
i=1

1{xij 6=x̃ij}. (39)

We essentially count the misspellings when the
user types the word. P (e1|wj) is approximated by
NE(wj , w̃j)

P (e1|wj) ≈
NE(wj , w̃j)

|wj |
. (40)

We finally define a conditional word error entropy
H(E|D) which measures the uncertainty of a word
error over the dictionary D by

H(E|D) = −
|D|∑
j=1

P (wj)
1∑

i=0

P (ei|wj) log(P (ei|wj)).(41)

The maximum entropy H(E|D) = 1 is reached
when P (e0|wj) = P (e1|wj) = 0.5, ∀j. It is mini-
mal, i.e. H(E|D) = 0, if either all letters are wrong
or all are correct. In practice, of course, the former
does not occur. As before, efficient minimization of
H(E|D) guarantees fastest progress in learning.

Cost function: The considerations from above
suggest a cost function containing some linear com-
bination of H(E|X) and H(E|D). To this end, we
define

fH = H(E|X) + λhH(E|D). (42)

While conceptually more elegant, it has turned
out in practice that a controller minimizing error en-
tropy can occasionally delay the prompting of poorly
learnt words. To this end we recommend to mini-
mize a linear combination of P (E|X) and P (E|D)
instead. The goal of the controller is to select the
word that leads to a maximum decrease in the cost
function - measured in the number of words and
symbols to be prompted. Our implementation uti-
lizes a greedy-style approach and defines a weight
α(wj) for each word accounting for the symbol and
word level errors:
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α(wj) = λjP (e1|wj) +
1

|wj |

|wj |∑
i=1

(1− P (xij |xij))(43)

λj = |D| · P (wj). (44)

Using P (wj) in λj enforces more frequent words
to be prompted earlier, while employing |D| normal-
izes the two terms adequately. Again, in practice we
minimize word error within the module Mm while
the symbol error is minimized across all modules.
The selection criterion for the next word wi thus
yields to

α(wi) = max{α(wj)|wj ∈ Mm = current module}.(45)

The modules are switched when P (E|D) falls be-
low a threshold.

6. Results

This section presents a summary of the most im-
portant results achieved with our method and train-
ing system. We will give more examples for color
codes we computed for German and French and
summarize the experimental evaluation we have car-
ried out to validate the effectiveness of the training.
A detailed presentation of the results as well as a
psychological interpretation is given in [44].

6.1. Computation of Color Codes

Fig. 14 and Fig. 15 present the results of our color
code optimizations for German and French. We ob-
serve that the mappings are quite different for both
languages. To validate the quality of the results we
optimized codes for each of the four objectives of E
separately and compared the residual energies with
the results of the Pareto optimization. For instance
the uniform color cost EC is optimized up to about
2.98 bits entropy for each language compared to the
maximum of 3 bits for a fully uniform color distri-
bution. The frequent letter pairs cost EM1 is such
that in English, for instance, the 35 most frequent
letter pairs are mapped to different colors and that
for all three languages, less than 4.7% of all occur-
ring pairs have the same color. The dyslexic pair
cost ED of the examples considers all dyslexic pairs
in all three languages and their color distances are
considerably larger than the average color distance
of all symbols. For English we achieved 207.9 com-
pared to 159.4 on average. Finally as for EU , 896
out of 8000 words are mapped to the same code in

Fig. 16. A training session at ETH.

English. On average, 2.25 words are assigned to the
same code and no more than 6 words.

6.2. Experimental Evaluation and Psychological
Study

In order to validate the presented recoding
method, we carried out an extensive user study at
ETH Zurich over a period of 6 months in collabora-
tion with the Institute for Neuropsychology of the
University of Zurich. The goal was to prove the ef-
fectiveness of our method. The user groups involved
43 German speaking children aged 9 to 11 with de-
velopmental dyslexia and 37 matched children with
normal reading and writing skills.

We divided them into 4 different groups. A group
of children with developmental dyslexia (DW) and a
control group (CW) both practiced with the training
software during a first period of 3 months and for
15-20 minutes four times a week amounting to a
total of about 800 minutes of interactive training.
The second dyslexic group (DO) and control group
(CO) received no training. During a second, cross-
over period the conditions were swapped and the
groups DW and CW had to suspend training.

We selected a subset of 1500 words from our dic-
tionary D based on our definition of importance.
The set was additionally tuned by elementary school
teachers and psychologists. We measured the chil-
dren’s writing amelioration by a dictation contain-
ing 100 words. A random half of the words were
used during the training session and the second half
served for testing the children’s ability to general-
ize to novel words. The two word sets were care-
fully matched according to frequency and difficulty,
as determined by the ECI German 3 corpora. In ad-
dition, they were matched with respect to the num-
ber of syllables. Our analysis showed that the errors
between the learned and the new words correlated
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Table 6
Relative improvements in dictation error. (p = paired T-Test

for error-sum from spring to winter.)

spring to summer spring to winter

all

words

learned

words

new
words

all

words

learned

words

new
words

p

CO 17 50 56 57 0.047

CW 27 27 26 34 31 34 0.000

DO 4 31 38 26 0.000

DW 27 32 23 25 23 24 0.000
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Fig. 17. Improvements in dictation error for all participating

groups.

with r=0.93. All children had to pass our writing
test before training, after three months and at the
end of the study.

The system was utilized exactly as described in
the paper, but we added a simple aging term to
the controller to guarantee long term repetition of
learnt words. In the used implementation, the words
were put into a repetition module MR and prompted
again after a certain period. In addition, the color
game had to be played during the first 5 minutes of
training for the first two weeks. We also extended
the software to launch with memory stick only and
to write each interaction to the stick along with a
time stamp.

At the beginning of the study, each child under-
went a series of standard psychological tests. These
included classical German writing (Salzburger-
Lese und Rechtschreibtest SLRT, Diagnostischer
Rechtschreibtest für fünfte Klassen DRT5 and a
German reading test (Zürcher Lesetest ZLT) to
quantify writing and reading errors, and a standard
German intelligence test HAWIK III to exclude
children with an IQ lower than 85. In addition, we
carried out an attention test to exclude children
suffering from attention-deficit-hyperactivity dis-
orders (ADHD/ODD-Elternfragebogen), a catego-
rization test to measure possible planning problems
(MWCST) and a handedness performance test to
measure hand performance skill (Hand-Dominanz-
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Fig. 18. Error entropy H(E,X) of one of the subjects of DW

as a function of training time.

Test). The average IQ of all children was 107 and
ranged from 87 to 132. The children used their
home PCs for training, but convened weekly in a
computer laboratory at ETH for supervision by
student helpers, to download data, and to ask ques-
tions. Fig. 16 shows a snapshot of a training session
at ETH.

The results of our study are summarized in Ta-
ble 6 which presents the achieved error reduction
of the groups between the dictations before and af-
ter training. We observed a significant improvement
of 27% on average of the writing skills of the chil-
dren with dyslexia DW after training as opposed to
the 4% achieved by their counterparts DO without
training. 1/3 of the DO group did not improve at
all. This proves the effectiveness of our method.

As a further significant finding, the DW group
improved by 32% on words from the learnt subset,
but also about 23% on the generalization dataset.
This result leads to the conclusion that the recoding
can effectively generalize to new, unknown words, a
highly desired property. Finally, compared to non-
dyslexic children, the groups CW and CO improved
by 27% and 17% respectively. Fig. 17 gives a graph-
ical summary of the results.

Especially the similar results of CW and DW
evidence that children with dyslexia can on aver-
age achieve similar learning performance than their
counterparts, if the presented information is con-
veyed through undistorted perceptual pathways —
which is the very design principle of our method.
Finally, Fig. 18 exemplifies how the error entropy
according (37) of one subject of the group DW de-
clines as a function of training time.

7. Discussion

We presented a novel framework for the multi-
modal representation of words and demonstrated
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its utility as an effective learning aid for people
with dyslexia. The method recodes an input string
into a set of spatial, color, shape, and auditory
codes which altogether reroute information through
multiple perceptual cues. The entire framework is
based on statistical modeling of language and on the
fundamental principles of information theory. The
experimental validation of our method has clearly
shown its high effectiveness and gives empirical
evidence for the suitability of the chosen model.

An apparent limitation of the current concept is
the limited emphasis of the phonological structure
of a word and of explicit phoneme-grapheme map-
pings. In particular results from speech processing
suggest, for instance, that such mappings are central
to reliable speech recognition. In dyslexia research,
however, the mental processes and mappings under-
lying language acquisition are still less well under-
stood. While phoneme-grapheme mapping is gener-
ally considered a central problem in dyslexia, it is
less clear to what extent explicit representations of
phoneme-grapheme mappings will lead to superior
results than our current syllable-based topological
structures. In addition, the improvements achieved
in our study give sufficient empirical evidence that
the current scheme works very well.

We are currently performing a major data anal-
ysis of all data records of our experimental evalua-
tion. Early results suggest a mildly better correla-
tion between word difficulty and number of errors in
a word when considering phoneme-grapheme sepa-
rations explicitly. Whether this will eventually re-
sult in a refined learning scheme is currently not
clear. Initial considerations, however, have turned
out that phoneme-based word decomposition does
not necessarily play well with the concept of topo-
logical coding and would require a major redesign
of the method. We will definitely explore this issue
further in future scientific work.

We also have to investigate synchronization of the
musical and acoustic representations to better ad-
dress potential timing deficits in dyslexics. Another
potential limitation relates to the control condition
of the experiment. Ideally, one would want to com-
pare the achieved results to a control group with con-
ventional additional training. However, since such
conditions are virtually impossible to realize, com-
parison to untrained groups have become a widely
accepted scientific standard in dyslexia research.

The data analysis of the user interactions will also
provide more insight into the process of learning and
into the rate-distortion behavior of our model. In

addition, we plan to design Bayesian networks to in-
fer different types of error, such as typo, color error,
etc, and to automatically switch between individual
games.
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