
Algebraic Point Set Surfaces

Gaël Guennebaud Markus Gross
ETH Zurich

Figure 1: Illustration of the central features of our algebraic MLS framework. From left to right: efficient handling of very complex point
sets, fast mean curvature evaluation and shading, significantly increased stability in regions of high curvature, sharp features with controlled
sharpness. Sample positions are partly highlighted.

Abstract

In this paper we present a new Point Set Surface (PSS) definition
based on moving least squares (MLS) fitting of algebraic spheres.
Our surface representation can be expressed by either a projection
procedure or in implicit form. The central advantages of our ap-
proach compared to existing planar MLS include significantly im-
proved stability of the projection under low sampling rates and in
the presence of high curvature. The method can approximate or
interpolate the input point set and naturally handles planar point
clouds. In addition, our approach provides a reliable estimate of the
mean curvature of the surface at no additional cost and allows for
the robust handling of sharp features and boundaries. It processes
a simple point set as input, but can also take significant advantage
of surface normals to improve robustness, quality and performance.
We also present an novel normal estimation procedure which ex-
ploits the properties of the spherical fit for both direction estima-
tion and orientation propagation. Very efficient computational pro-
cedures enable us to compute the algebraic sphere fitting with up to
40 million points per second on latest generation GPUs.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve and surface representations

Keywords: point based graphics, surface representation, moving
least square surfaces, sharp features.

1 Introduction
A key ingredient of most methods in point based graphics is the un-
derlying meshless surface representation which computes a contin-
uous approximation or interpolation of the input point set. The by
far most important and successful class of such meshless represen-
tations are point set surfaces (PSS) [Alexa et al. 2003] combining

high flexibility with ease of implementation. PSS generally define
a smooth surface using local moving least-squares (MLS) approxi-
mations of the data [Levin 2003]. The degree of the approximation
can easily be controlled, making the approach naturally well suited
to filter noisy input data. In addition, the semi-implicit nature of
the representation makes PSS an excellent compromise combining
advantages both of explicit representations, such as parametric sur-
faces, and of implicit surfaces [Ohtake et al. 2003].

Since its inception, significant progress has been made to better
understand the properties and limitations of MLS [Amenta and
Kil 2004a,2004b] and to develop efficient computational schemes
[Adamson and Alexa 2004]. A central limitation of the robustness
of PSS, however, comes from the plane fit operation that is highly
unstable in regions of high curvature if the sampling rate drops be-
low a threshold. Such instabilities include erroneous fits or the lim-
ited ability to perform tight approximations of the data. This be-
havior sets tight limits to the minimum admissible sampling rates
for PSS [Amenta and Kil 2004b; Dey et al. 2005].

In this paper we present a novel definition of moving least squares
surfaces called algebraic point set surfaces (APSS). The key idea
is to directly fit a higher order algebraic surface [Pratt 1987] rather
than a plane. For computational efficiency all methods in this paper
focus on algebraic sphere fitting, but the general concept could be
applied to higher order surfaces as well. The main advantage of
the sphere fitting is its significantly improved stability in situations
where planar MLS fails. For instance, tight data approximation is
accomplished, spheres perform much better in the correct handling
of sheet separation (figure 3) and exhibit a high degree of stability
both in cases of undersampling (figure 2) and for very large weight
functions. The specific properties of algebraic spheres make APSS
superior to simple geometric sphere fitting. It allows us to elegantly
handle planar areas or regions around inflection points as limits in
which the algebraic sphere naturally degenerates to a plane.

Furthermore, the spherical fitting enables us to design interpolatory
weighting schemes by using weight functions with singularities at
zero while overcoming the fairness issue of previous MLS surfaces.
The sphere radius naturally serves as a for-free and reliable esti-
mate of the mean curvature of the surface. This enables us, for
instance, to compute realtime accessibility shading on large input
objects (figure 1).

Central to our framework are the numerical procedures to efficiently
perform the sphere fit. For point sets with normals we designed

(a) (b) (c)
Figure 2: The undersampled ear of the Stanford bunny (a) using
normal averaging plane fit (SPSS) with h = 1.8 (b) and our new
APSS with h = 1.7 (c).

a greatly simplified and accelerated algorithm whose core part re-
duces to linear least squares. For point sets without normals, we
employ a slightly more expensive fitting scheme to estimate the
surface normals of the input data. In particular, this method al-
lows us to improve the normal estimation by [Hoppe et al. 1992].
The tighter fit of the sphere requires on average less projection it-
erations to achieve the same precision making the approach even
faster than the most simple plane fit MLS. Our implementation on
the latest generation GPUs features a performance up to 45 millions
of points per second, sufficient to compute a variety of operations
on large point sets in realtime.

Finally, we developed a simple and powerful extension of [Fleish-
man et al. 2005] to robustly handle sharp features, such as bound-
aries and creases, with a built-in sharpness control (figure 1).

2 Related Work
Point set surfaces were introduced to computer graphics by [Alexa
et al. 2003]. The initial definition is based on the stationary set
of Levin’s moving least squares (MLS) projection operator [Levin
2003]. The iterative projection involves a non-linear optimization
to find the local reference plane, a bivariate polynomial fit and it-
eration. By omitting the polynomial fitting step, Amenta and Kil
[2004a] showed that the same surface can be defined and computed
by weighted centroids and a smooth gradient field. This leads to
a significantly simplified implicit surface definition [Adamson and
Alexa 2004] and faster algorithms, especially in the presence of
normals [Alexa and Adamson 2004]. In particular, the projection
can be accomplished on a plane passing through the weighted av-
erage of the neighboring samples with a normal computed from the
weighted average of the adjacent normals. In the following we will
refer to this efficient variant as SPSS for Simple PSS.

Boissonnat and Cazals [2000] and more specifically Shen et al.
[2004] proposed a similar, purely implicit MLS (IMLS) surface

(a) (b) (c)

Figure 3: Sheet separation with conventional PSS compared to our
new spherical fit: (a) Standard PSS with covariance analysis (or-
ange) and normal averaging (green). (b) Our APSS without (or-
ange) and with (green) normal constraints. The best plane and best
algebraic sphere fits for the blue point in the middle are drawn in
blue. For this example the normals were computed using our tech-
nique from section 5 which can safely propagate the orientation
between the two sheets (c).

Figure 4: A 2D oriented point set is approximated (left) and in-
terpolated (right) using various PSS variants: SPSS (blue), IMLS
(red), HPSS (magenta) and our APSS (green).

representation defined by a local weighted average of tangential im-
plicit planes attached to each input sample. This implicit surface
definition was initially designed to reconstruct polygon soups, but
the point cloud case was recently analyzed by Kolluri [2005] and
made adaptive to the local feature size by Dey et al. [2005]. Note
that in this paper IMLS refers to the simple definition given in [Kol-
luri 2005]. If applied without polygon constraints and in the case
of sparse sampling, we found that the surface can grow or shrink
significantly as a function of the convexity or concavity of the point
cloud. To alleviate this problem, Alexa and Adamson [2006] en-
forced convex interpolation of an oriented point set using singular
weight functions and Hermite centroid evaluations (HPSS).

Likewise relevant to our research is prior art on normal estimation.
Many point based algorithms, including some of the aforedescribed
PSS variants, require surface normals. A standard procedure pro-
posed by [Hoppe et al. 1992] is to estimate their directions using
a local plane fit followed by a propagation of the orientations us-
ing a minimum spanning tree (MST) strategy and a transfer heuris-
tic based on normal angles. Extending this technique, Mitra and
Nguyen [2003] take into account the local curvature and the amount
of noise in order to estimate the optimal size of the neighborhood
for the plane fit step. However, the inherent limitations of the plane
fit step and the propagation heuristic require a very dense sampling
rate in regions of high curvature.

Intrinsically, a PSS can only define a smooth closed manifold sur-
face. Even though boundaries could be handled by thresholding an
off-center distance [Adamson and Alexa 2004], obtaining satisfac-
tory boundary curves with such an approach is usually difficult or
even impossible. In order to detect and reconstruct sharp creases
and corners in a possibly noisy point cloud, Fleishman et al. [2005]
proposed a refitting algorithm that locally classifies the samples
into multiple pieces of surfaces according to discontinuities of the
derivative of the surface. While constituting an important progress,
the method requires very dense point clouds, it is rather expensive,
and it offers only limited flexibility to the user. Also, potential insta-
bilities in the classification can create discontinuous surface parts.
A second important approach is the Point-Sampled Cell Complexes
[Adamson and Alexa 2006b] which allows to explicitly represent
sharp features by decomposing the object into cells of different di-
mensions. While this approach allows to handle a wide variety of
cases (e.g., non-manifoldness), the decomposition and the balanc-
ing of the cells’ influence on the shape of the surface demands effort
by the user, making the method unsuitable for some applications.

As we will elaborate in the following sections, the algebraic sphere
fitting overcomes many of the aforedescribed limitations by the sig-
nificantly increased robustness of the fit in the presence of low sam-
pling rates and high curvature.

3 Overview of the APSS framework

Given a set of points P = {pi ∈ Rd}, we define a smooth surface
SP approximating P using a moving least squares spherical fit to
the data. Our approach handles both simple point clouds and point

c

p
i

p
i

p
j

c c

u(p)
i

u(x)u(m)

m
x=q

0

q
1

(a) (b) (c) (d)

N
or

m
al

 d
ir

ec
tio

n
es

tim
at

io
n

(5
.1

)
us

in
g

a
sp

he
re

 f
itt

in
g

w
ith

ou
t n

or
m

al
 (

4.
2)

N
or

m
al

 o
ri

en
ta

tio
n

pr
op

ag
at

io
n

(5
.2

)
us

in
g

a
sp

he
re

 f
itt

in
g

w
ith

ou
t n

or
m

al
 (

4.
2)

Pr
oj

ec
tio

n
op

er
at

or
 (

4.
4)

us

in
g

no
rm

al
 c

on
st

ra
in

t
sp

he
re

 f
itt

in
g

(4
.3

)

Im
pl

ic
it

de
fi

ni
tio

n
(4

.4
)

Figure 5: Overview of our APSS framework. (a) Evaluation of the normal direction at point pi. (b) Propagation of a consistent normal
orientation from pi to p j. (c) First iteration of the projection of the point x onto the APSS. (d) Illustration of the scalar field defined by APSS.

clouds with normals. The presence of surface normals leads to sim-
plified, more efficient, and more robust fitting algorithms (see sec-
tion 4.3). We recommend to estimate them from the input point set
using the procedures of section 5 and section 4.2 as a preprocessing
step.

Figure 5 presents the procedural flow using a 2D example. Starting
from a simple point cloud, we first evaluate the normal directions
by locally fitting an algebraic sphere u at each point pi (figure 5a).
Next, a consistent normal orientation is robustly propagated from
the point pi to its neighbor p j by approximating the surface in-
between using an approximating sphere (figure 5b). Given the es-
timated normals, a simplified spherical fitting technique can be ap-
plied to compute our final APSS SP which can be defined as the
set of stationary points of a projection operator projecting a point
onto a locally fitted sphere (figure 5c). As an alternative our surface
SP can also be defined as the zero set of a scalar field representing
the distance between the evaluation point and a locally fitted sphere
(figure 5d). The former definition is well suited for resampling,
while the latter one is convenient to raytrace the surface [Adam-
son and Alexa 2003; Wald and Seidel 2005] or to perform Boolean
operations [Pauly et al. 2003].

The key ingredients of our framework are the computational algo-
rithms to robustly and efficiently fit a sphere to a set of points in a
moving least squares fashion. These methods will be presented for
the cases of a simple point cloud as well as for a point cloud with
normals in sections 4.2 and 4.3. Based on the procedures for alge-
braic sphere fits, we will define and discuss our APSS definition in
section 4.4. Two significant extensions include normal estimation
in section 5 and the handling of sharp features in section 6.

4 Sphere Fitting and APSS
In this section we will discuss the core mathematical definitions and
computational procedures of our APSS framework. We will elabo-
rate on the sphere fitting problem and show how previous methods
can be adapted to define a MLS surface based on sphere fits. As a
central computational algorithm, we will present a novel and very
efficient sphere fitting method taking into account surface normals.

4.1 General Issues

Weighting scheme. Throughout the paper we will utilize the fol-
lowing generic weight function

wi(x) = φ

(
‖pi −x‖

hi(x)

)
(1)

describing the weight of the point pi for the local evaluation po-
sition x. φ is a smooth, decreasing weight function and hi(x) de-
scribes the local feature size. hi(x) can be constant, depend on x as
in [Pauly et al. 2003], or only on pi, i.e., hi(x) = hi as in [Adamson
and Alexa 2006a]. As a proper choice of φ we suggest the follow-
ing compactly supported polynomial

φ(x) =
{

(1− x2)4 if x < 1
0 otherwise. (2)

This function performs a smooth data approximation and avoids
square root evaluations for the distance computation. Interpolation
can be achieved using functions with a singularity at zero, see [Shen
et al. 2004; Adamson and Alexa 2006b].

Spherical fitting. The problem of fitting a sphere to a set of points
is not new and several methods have been proposed in the past.
It is important to distinguish geometric approaches from algebraic
ones. Geometric fitting denotes algorithms minimizing the sum of
the squared Euclidean distances to the given points (e.g., see [Gan-
der et al. 1994]). Geometric sphere fits have several drawbacks.
First, because of the non-linear nature of the problem, the solution
can only be found using an iterative, expensive approach. More im-
portantly, since these algorithms are either based on a center-radius
or parametric representation of the sphere, they become unstable
when the best fit tends to a plane. This limits the practical utility of
such methods for our purposes.

An elegant alternative is to substitute the geometric distance by an
algebraic distance as in [Pratt 1987]. An algebraic sphere is thus
defined as the 0-isosurface of the scalar field su(x) = [1, xT , xT x]u,
where u = [u0, ..., ud+1]T ∈Rd+2 is the vector of scalar coefficients
describing the sphere. For ud+1 6= 0 the corresponding center c and
radius r are easily computed as:

c =− 1
2ud+1

[u1, ..., ud]T , r =
√

cT c−u0/ud+1 (3)

with d being the dimension. In degenerate cases, u corresponds to
the coefficients of a plane equation with u0 representing the plane’s
distance from the origin and [u1, ..,ud]T being its normal.

4.2 Fitting Algebraic Spheres Without Normals

Let n be the number of points and let W(x) and D respectively be
the n×n diagonal weight matrix and the n× (d +2) design matrix
defined as:

W(x) =

w0(x)

. . .
wn−1(x)

 , D =

 1 pT
0 pT

0 p0...
...

...
1 pT

n−1 pT
n−1pn−1

 . (4)

Then the solution u(x) of our algebraic sphere fit at a given point
x ∈ Rd can be expressed as:

u(x) = argmin
u, u6=0

∥∥∥W
1
2 (x)Du

∥∥∥2
. (5)

In order to avoid the trivial solution u(x) = 0, u has to be con-
strained by a metric. The choice of this constraint significantly in-
fluences the solution of the above minimization problem. Ideally
we want the algebraic fit to behave as closely as possible to a ge-
ometric fit, but at the same time to reliably handle the planar case.
Among all constrained methods that have been proposed, we found
Pratt’s constraint [Pratt 1987] the most suitable for our purposes.

Pratt’s constraint fixes the norm of the gradient at the surface of the
sphere to unit length 1. This is accomplished by ‖(u1, ..., ud)‖2 −
4u0ud+1 = 1 and ensures that the algebraically fitted sphere is close

to the least squares Euclidean best fit, i.e., the geometric fit (see
also figure 6). By rewriting the above constraint in matrix form
uT Cu = 1, the solution u(x) of our minimization problem yields as
the eigenvector of the smallest positive eigenvalue of the following
generalized eigenproblem:

DT W(x)Du(x) = λCu(x), with C =

0 0 · · · 0 −2
0 1 0
.
.
.

. . .
.
.
.

0 1 0
−2 0 · · · 0 0

 . (6)

Note that this method is only used to estimate the missing normals
of input point sets. An efficient algorithm for running the APSS in
the presence of normals will be derived in the following section.

4.3 Fitting Spheres to Points with Normals

While the problem of fitting a sphere to points has been investigated
extensively, there exists to our knowledge no method to take spe-
cific advantage of normal constraints at the sample positions. We
derive a very efficient algorithm by adding the following derivative
constraints ∇su(pi) = ni to our minimization problem (5). Note
that, by definition, it holds that ‖ni‖= 1, which constrains both di-
rection and magnitude of the normal vector. This is especially im-
portant to force the algebraic distance to be close to the Euclidean
distance for points close to the surface of the sphere. Furthermore,
the normal constraints lead to the following standard linear system
of equations that can be solved very efficiently:

W
1
2 (x)Du = W

1
2 (x)b (7)

where

W(x) =

. . .

wi(x)
βwi(x)

. . .

βwi(x)
. . .

, D =

.

.

.

.

.

.

.

.

.

1 pT
i pT

i pi

0 eT
0 2eT

0 pi
.
.
.

.

.

.

.

.

.

0 eT
d−1 2eT

d−1pi
.
.
.

.

.

.

.

.

.

, b =

.

.

.

0
eT

0 ni
.
.
.

eT
d−1ni

.

.

.

. (8)

Here, {ek} denote the unit basis vectors of our coordinate system.
The scalar β allows us to weight the normal constraints. We will
discuss the proper choice of this parameter subsequently. We solve
this equation using the pseudo-inverse method, i.e.:

u(x) = A−1(x)b̂(x) (9)

where both the (d+2)×(d+2) weighted covariance matrix A(x)=
DT W(x)D and the vector b̂(x) = DT W(x)b can be computed di-
rectly and efficiently by weighted sums of the point coefficients.

The issue of affine invariance of this method deserves some further
discussion. While the method’s invariance under translations and
rotations is trivial, the mix of constraints representing algebraic dis-
tances and distances between unit vectors makes it slightly sensitive
to scale. A simple and practical solution is to choose a large value
for β , e.g. β = 106h(x)2 where h(x) = ∑i wi(x)hi(x)

∑i wi(x) is a smooth func-
tion describing the local neighborhood size (1). This effectively
assigns very high importance to the derivative constraints, which,
prescribed at given positions and with a fixed norm, are sufficient
to fit a spherical isosurface to the data. The positional constraints
still specify the actual isovalue. Not only does this choice leave the
fitting invariant under scale, but it also makes it more stable, much
less prone to oscillations (figure 3b) and less sensitive to outliers.
This choice does not unbalance the relative importance of the posi-
tions and normals of the samples because the derivative constraints
depend on both the sample positions and normals.

Figure 6: The Euclidean distance (green cone) versus an algebraic
distance (orange paraboloid) to the 2D yellow circle. Pratt’s nor-
malization makes these two surfaces tangent to each other at the
given circle.

4.4 Algebraic Point Set Surfaces

Implicit surface definition. The previous sections provide all in-
gredients to define an MLS surface based on sphere fits. Our APSS
SP, approximating or interpolating the point set P = {pi ∈ Rd},
yields as the zero set of the implicit scalar field f (x) representing
the algebraic distance between the evaluation point x and the fitted
sphere u(x). This field is illustrated in figure 5d:

f (x) = su(x)(x) =
[
1, xT , xT x

]
u(x) = 0 . (10)

If needed the actual Euclidean distance to the fitted algebraic sur-
face can be computed easily by its conversion to an explicit form.

Gradient. This implicit definition allows us to conveniently com-
pute the gradient of the scalar field which is needed to obtain the
surface normal or to perform an orthogonal projection. We com-
pute the gradient ∇ f (x) as follows:

∇ f (x) = [1, xT , xT x]∇u(x) +

 0 eT
0 2eT

0 x
...

...
...

0 eT
d−1 2eT

d−1x

 u(x) . (11)

The value of the gradient ∇u(x) =
(

du(x)
dx0

, du(x)
dx1

, . . .
)

depends on the fit-
ting method. With the Pratt’s constraint, the derivatives can be com-
puted as the plane fit with covariance analysis case (see [Alexa and
Adamson 2004]). With our normal constraint, the derivatives can
be directly computed from equation (9):

du(x)
dxk

= A−1(x)
(
− dA(x)

dxk
u(x)+

db̂(x)
dxk

)
. (12)

Curvature. The implicit definition can be used to compute higher
order differential surface operators, such as curvature. In prac-
tice, however, the evaluation of the shape matrix involves expensive
computations. Our sphere fit provides an elegant estimate of the
mean curvature readily available by the radius of the fitted sphere
(3). This estimate of the mean curvature is in general very accurate,
except when two pieces of a surface are too close to each other.
In this case the samples of the second surface can lead to an over-
estimation of the curvature. Note that in such cases our normal
constraint fitting method still reconstructs a correct surface without
oscillations (figure 3b). The sign of this inexpensive mean curva-
ture estimate is determined by the sign of un+1 and can be utilized
for a variety of operations, such as accessibility shading shown in
figure 1.

Projection procedure. Since the presented APSS surface defini-
tion is based on a standard MLS, all the projection operators for the
plane case can easily be adapted to our setting by simply replac-
ing the planar projection by a spherical projection. Following the
concept of almost orthogonal projections in [Alexa and Adamson
2004] we recommend the following procedure as a practical recipe
to implement APSS: Given a current point x, we iteratively define
a series of points qi, such that qi+1 is the orthogonal projection of
x onto the algebraic sphere defined by u(qi). Starting with q0 = x,

the projection of x onto the surface is asymptotically q∞. The re-
cursion stops when the displacement is lower than a given precision
threshold. This procedure is depicted in figure 5c.

Including surface normals into the definition comes with additional
significant advantages. First, it makes the scalar field f (x) to be
consistently signed according to the inside/outside relative position
of x. Such consistent orientation is fundamental to perform boolean
operations or collision detections for instance. Furthermore, point-
normals provide a first order approximation of the underlying sur-
face and thus allow for smaller neighborhoods at the same accuracy.
Tighter neighborhoods do not only increase stability, but also accel-
erate the processing. To this end, we recommend the normal esti-
mation procedure described in the following section to preprocess
a raw input point cloud.

5 Estimation of Surface Normals

Our method for normal estimation draws upon the same principle as
the one proposed by Hoppe et al. [1992]. The novelties include the
normal direction estimation and new heuristics for the propagation
of the normal orientation. We will focus on these two issues.

5.1 Normal Direction

To estimate the normal direction ni of a point pi of our input point
set, we essentially take the gradient direction at pi of our MLS sur-
face definition described in the previous section, i.e., ni = ∇ f (pi).
Here, the computation of the algebraic sphere is based on the eigen-
vector method described in section 4.2. In practice, we can approx-
imate the accurate gradient direction of the scalar field f (appendix)
with the gradient of the fitted algebraic sphere u(pi), i.e.:

ni ≈ ∇su(pi)(pi) =

 0 eT
0 2eT

0 pi

...
...

...
0 eT

d−1 2eT
d−1pi

u(pi) . (13)

This step is illustrated in figure 5a. Although the sphere normal
can differ from the actual surface normal, the above simplification
is reasonable, because the approximation is usually very close to
the accurate surface normal for points evaluated close to an input
sample. In practice, we never experienced any problems with it.

During this step we also store for each point a confidence value
µi that depends on the sanity of the neighborhood used to estimate
the normal direction. We take the normalized residual value, i.e.,
µi = λ̄/∑

d+1
k=0 |λk| where λk are the d + 2 eigenvalues and λ̄ is the

smallest positive one. Similar confidence estimates were used be-
fore by several authors (e.g. [Pauly et al. 2004]) in combination

p p
h

i

p
j

m
c

p
i

p
j

(a) (b)

Figure 7: (a) Illustration of the BSP neighborhood of a point pi:
each neighbor defines a halfspace limiting the neighborhood. The
blue points correspond to a naive kNN with k = 6. (b) Illustration
of Ψi j. The angle between the gradient of the fitted sphere (green
arrows) and the normal direction (shown in red here) serves as a
measure for the reliability of the normal propagation.

(a)

(b) (c) (f)

(d) (e)

Figure 8: (a) Closeup view of the tip of the ear of figure 2 after
recomputing the normals using our method. A few normals are
incorrectly oriented and eventually break the APSS reconstruction
(b) when using a weight radius of h = 2. A smoothed manifold
reconstruction (c) can still be obtained when increasing the weight
radius significantly (h = 3.5). Figures (d) and (e) show the normals
after 15 and 30 iterations of our normal optimization procedure
respectively. (f) APSS reconstruction of (e) with h = 2.

with covariance analysis to perform adaptive resampling. We will
use this confidence value in the next section for our propagation
algorithm.

5.2 Propagation of Orientation

Our second contribution concerns the propagation of normal orien-
tation. Following [Hoppe et al. 1992], we use a minimum spanning
tree (MST) strategy which is initialized by setting the normal ori-
entation of a single point in contact with the point set’s bounding
box to point outside.

The major difference of our approach lies in the propagation
method and the weight function for the MST. To propagate the
orientation from a point pi of normal ni to a point p j of normal
n j we locally fit an algebraic sphere at m = pi+p j

2 halfway be-
tween the two points. Figures 3c and 5b serve for illustration.
The sphere gives us a reliable approximation of the surface con-
necting the two points. It hence allows us to reliably transfer a
given normal orientation even across sharp features or along two
close surface sheets. The normal n j of the point p j is flipped if
∇su(m)(pi)T ni ·∇su(m)(p j)T n j < 0.

The purpose of the weight function of the MST is to favor edges
along which it is safe to transfer the normal orientation using the
previous procedure. The MST assigns an edge i- j if and only if
the two involved samples pi and p j are neighbors. Unlike Hoppe’s
k-nearest neighborhood definition (kNN), we utilize a somewhat
more elaborate BSP neighborhood definition. This definition re-
moves from a large kNN of the point pi every point that is behind
another neighbor, i.e., every point p j such that there exist a third
point ph satisfying (pi −ph)T (p j −ph) < 0. Figure 7a depicts an
example. This neighborhood definition allows us to select reliably
the closest neighbors in each direction, even in cases of strongly
non-uniform sampling. In addition it avoids that the propagation
procedure jumps over relevant samples.

To compute the weight of an edge i- j we consider the following
two terms: The first one takes the sum of the confidence values of
its adjacent vertices: µi j = µi +µ j. The rationale of this heuristic is

to push the samples with the lowest confidence values to the bottom
(i.e. the leaves) of the tree. The second term Ψi j is computed by
first fitting a sphere at the center m of the edge and by quantifying
the difference between the gradient of the sphere and the estimated
normal direction. Ψi j is defined as the dot product between the two
vectors, i.e., Ψi j = 1− (|∇su(m)(pi)T ni|+ |∇su(m)(p j)T n j|)/2. As
illustrated in figure 7b, this confirms our intuition that the propa-
gation of normal directions is less obvious when the two vectors
deviate strongly. We finally weight each edge i- j by a weighted
sum of µi j and Ψi j, an empirical choice being 8µi j +Ψi j.

For some rare difficult cases, we propose to use the actual normals
to further optimize the normals with low confidence. This is ac-
complished by using our stable spherical fitting method from sec-
tion 4.3. For the fit, we weight each normal constraint according to
its respective confidence value. This ensures that samples of higher
confidence have increased importance for the fit. To further opti-
mize accuracy, we process the samples starting with the ones having
the highest average confidence of their neighborhood. Our normal
estimation procedure is depicted figure 8.

6 Sharp Features

In this section we present a new approach to handle sharp features
such as creases, corners, borders or peaks. We will explain it in the
context of APSS, but the discussed techniques can easily be used
with any PSS definition. Our approach combines the local CSG
rules proposed in [Fleishman et al. 2005] with a precomputed par-
tial classification, and we present extensions for the robust handling
of borders and peaks. During the actual projection of a point x onto
the surface, we first group the selected neighbors by tag values.
Samples without tags are assigned to all groups. Then, the APSS is
executed for each group and the actual point is projected onto each
algebraic sphere. Next, we detect for each pair of groups whether
the sharp crease they form originates from a boolean intersection or
from a union and apply the corresponding CSG rule. We refer to
[Fleishman et al. 2005] for the details of this last step, and focus on
the novel aspects of our approach.

6.1 Tagging a Point Cloud

In a first preprocessing step or at run time, we compute a partial
classification of the samples by assigning a tag value to each sample
in the adjacency of a sharp feature. Two adjacent samples must
have the same tag if they are on the same side of the discontinuity
and a different tag otherwise. This classification can be achieved
in several ways from fully automatic to entirely manual processing.
Tags can easily be set automatically during a CSG operation [Pauly
et al. 2003; Adams and Dutré 2003]. Tags can also be conveniently
painted by using a brush tool. Figure 9 displays a simple tag stroke.
Such interactive painting provides full user control over the position
of sharp features and it can be applied very efficiently.

Figure 9: A sharp crease is obtained by painting two strokes on an
initially smooth point cloud.

a

p
i

b i

x

i

n (x)i

same tag

same tag
n j,0

n j,1
n i,0

n i,1

Figure 10: Left: A cubic Bézier curve connects two samples to
propagate the tagging and to correctly align the respective normals.
Right: Definition of a peak sample pi of axis ai and angle bi. Its
normal ni(x) depends on the actual evaluation point x.

Automatic Tagging by Local Classification

Another way to automatically tag the point cloud would be to use
the local classification scheme of Fleishman et al. [2005]. While
being very efficient, this method, however, cannot guarantee a con-
sistent global classification. Therefore, we developed the follow-
ing grouping method that guarantees global consistency. The local
classification is applied to each sample in a breadth first order of
the Euclidean minimum spanning tree, each sample counting the
number of times it is assigned a given tag value. If only one group
is found (smooth part) then the algorithm continues with the next
sample. Otherwise, the tag value of each group is determined from
the tag value with the maximum count of all samples. In addition,
each local group must have different tag values. If required, new
tags are created. Next, the group tags are propagated to their sam-
ples. The final tag value of a sample is the one of maximum count.

Tagging from “Sharp” Points

A common way to represent sharp features in point sampled ge-
ometry is to use “sharp” points, i.e., points with multiple normals
[Pauly et al. 2003; Wicke et al. 2004; Guennebaud et al. 2005].
Usually, two normals are assigned to a point on a crease and three
normals to a corner point. We handle such explicit representations
within our framework by the following two step tagging procedure:

The first step focuses on tagging the normals of the sharp samples
only. For simplicity, we will first only consider the case of edge
points, i.e., points having two normals. We start with any sharp
sample, assign a different tag value to each of its normals, and prop-
agate the tag values along the crease lines into each direction. Our
propagation method is mainly based on the construction of an inter-
polating cubic Bézier curve between sharp samples. This enables
us to safely and naturally handle high curvature of the crease lines.
Such a curve can be constructed easily by taking the cross prod-
uct of the two normals of the samples as the curve’s end tangent
vectors. Figure 10 shows the idea.

We scale the tangent vectors such that their length is equal to the
third of the Euclidean distance between the two samples and orient
them such that the length of the resulting curve is minimal. The best
possible successor of a sharp point pi along a crease line is thus the
sharp point p j that leads to the shortest curve connecting it to pi.

In practice, we approximate the length of the Bézier curve by taking
the length of its control polygon. We also propagate the tags of
the point’s normals through tangent orientation. If the normals of
the successor are already tagged, the propagation for this branch
stops, and the corresponding tag values are marked. Otherwise,
the procedure continues by searching the best successor of p j in
the outgoing direction until all sharp samples are tagged. Handling
corner points is accomplished considering them as three distinct
edge samples, and when a corner is reached, a new tag value is
assigned to the third normal.

(b)(a)

Figure 11: (a) Illustration of boundaries handled using “clipping
samples” and an interpolatory weight function. (b) Illustration of
peaks handled without any treatment (left part) and with our special
“peak” samples (right part).

The second step involves a propagation of the tag values to the sam-
ples close to a sharp edge, i.e., where distance is defined by the ac-
tual weighting scheme. Tagging only the samples close to a sharp
crease specifically enables us to deal with non-closed creases as in
figure 9. If pi is a smooth point and p j its closest sharp point having
a non-zero intersection of influence radii, the tag value of pi yields
as the tag value of the normal of p j defining the plane closest to pi.
A result of this procedure is depicted in figure 1-right.

6.2 Extensions

Object boundaries can be treated using “clipping samples”. A set
of clipping points defines a surface that is only used to clip another
surface. In order to simplify both the representation and the user
control, we place such clipping samples at the positions of bound-
ary samples. Similar to the above notion of sharp points it is suffi-
cient to add a clipping normal to each sample at the desired bound-
ary. A clipping normal is set orthogonal to the desired boundary
curve and should be tangent to the surface. Figure 11a illustrates
the concept. Obviously, clipping samples may also be tagged to
define boundary curves with discontinuities. Finally, the evaluation
of the surface or the projection onto the surface only requires a mi-
nor additional modification. Clipping samples are always treated in
separate groups and the reconstructed clipping surface is only used
to clip the actual surface by a local intersection operation. Auto-
matic detection of boundaries in a point cloud can easily be done
by analyzing the neighborhood of each sample, such as in [Guen-
nebaud et al. 2005].

Handling “peak” discontinuities also deserves some special at-
tention. We propose to explicitly represent a peak by a point pi
equipped with an axis ai and an angle bi, i.e., by a cone, as illus-
trated in figure 10. During the local fitting step, we take as the
normal ni(x) of such a peak sample the normal of the cone in the
direction of the evaluation point x. ni(x) thus yields as the unit
vector ai rotated by angle π

2 − bi and axis ai × (x− pi). We also
guarantee that the surface will be C0 at the peak by attaching an
interpolating weight function to peak samples. The results in figure
11b demonstrate that our method produces high quality peaks.

Figure 12: Illustration of the sharpness control, from left to right:
α = 0, α = 0.15, α = 0.5, α = 1.

The sharpness control of a crease feature by a user parameter can
easily be added to our concept. To this end we insert all samples
into all groups but assign a lower weight to a sample when inserted
into a group with a tag different from its own one. We define a
global or local parameter α ∈ [0,1] which modulates the weight of
these samples. For α = 0 we obtain a fully sharp feature, for α = 1
the feature is completely smoothed since all groups are weighted
identically. Values in-between permit a continuous transition from
smooth to sharp (figure 12).

7 Results

7.1 Implementation and Performance

In addition to a software implementation, we accelerated the pro-
jection operator described in section 4.4 on a GPU. Our implemen-
tation relies on standard GPGPU techniques and computes all the
steps of the projection, including neighbor queries, the fitting step
and the orthogonal projection, in a single shader. We use grids
of linked lists as spatial acceleration structures. Our implementa-
tion performs about 45 million projection iterations per second on
a NVidia GeForce 8800-GTS for APSS, compared to 60 million
for SPSS. As detailed in table 1, our APSS projection operator con-
verges about two times faster than SPSS making APSS overall about
1.5 times faster for the same precision. As we can see, a single it-
eration is usually sufficient to obtain a reasonable precision, while
SPSS achieves a similar accuracy only after 2 to 3 iterations.

iter. 1 2 3 4 5 6
APSS 2.01e-4 3.72e-5 1.9e-5 1.53e-5 1.38e-5 1.28e-5
SPSS 1.94e-3 4.62e-4 1.67e-4 7.53e-5 3.95e-5 2.32e-5

Table 1: Comparison of the convergence of APSS and SPSS. The
values indicate the relative average precision obtained after the
given number of iterations for a typical set of models.

The results of MLS surfaces depend significantly on the weight
functions. Although we tried to find best settings for each method,
other weight functions could lead to other, potentially better results.
In particular, we performed all our comparisons on uniform point
clouds using the weight function described in section 4.1 with a
constant weight radius hi(x) = h ·r where h is an intuitive scale fac-
tor and r is the average point spacing.Moreover, our IMLS imple-
mentation corresponds to the “simple” definition given in [Kolluri
2005]:

f (x) = ∑wi(x)(x−pi)T ni

∑wi(x)
= 0. (14)

In order to conveniently handle arbitrary point clouds we suggest to
use hi(x) = h ·ri where ri is the local point spacing that is computed
as the distance to the farthest neighbor of the point pi using our
BSP neighborhood definition. An open source library of our APSS
framework is available at: http://graphics.ethz.ch/apss.

7.2 Analysis of Quality and Stability

Approximation and interpolation quality
Figure 4 compares the ability of our spherical MLS to perform tight
approximation and convex interpolation. For interpolation we used
φ(x) = log(x)4 for both APSS and IMLS and φ(x) = 1/x2 for the
two others. The values of h used for this figure are summarized in
the following table (interpol./approx.):

SPSS HPSS IMLS APSS
3.35 / na na / na 1.95 / 1.95 1.95 / 3.25

(a) (b) (d)(c)

Figure 13: (a) Initial dense chameleon model from which 4k samples have been uniformly picked (depicted with red dots). This low sampled
model is reconstructed using APSS (h = 1.9) (b), SPSS (h = 1.8) (c) and IMLS (h = 2.6) (d).

Stability for Low Sampling Rates
One of the central advantages of our spherical MLS is its ability
to robustly handle very low sampling densities as illustrated in fig-
ure 13. The figure compares the approximation quality of a uni-
formly sampled 4K chameleon model for APSS, SPSS and IMLS.
We can clearly see the superior quality of APSS. We computed the
texture colors from the original dense model. In order to quantita-
tively evaluate the robustness under low sampling and the approx-
imation quality, we iteratively created a sequence of subsampled
point sets P0,P1, . . . by first decomposing the current point set Pi
into disjunctive point pairs using a minimum weight perfect match-
ing (see [Waschbüsch et al. 2004] for a similar scheme). A subse-
quent projection of the pair centers onto the actual PSS Si yields a
reduced point set Pi+1. The graph in figure 14 shows the relative
average distance of the initial point set P0 onto various PSS Si as
a function of the number of samples. Note that the graph is given
on a logarithmic scale. The results demonstrate that the APSS is
about three times more precise than the planar MLS variants. Fur-
thermore, the planar versions break already at much higher sam-
pling rates (crosses in the diagram), while APSS allows for stable
fit at very low sampling rate. The instability of Levin’s operator is
mainly due to the polynomial projection which requires a relatively
large and consistent neighborhood. The distribution of the error is
shown for an example in figure 15.
Stability for Changes of Weights
Figure 16 compares the stability of APSS versus SPSS as a function
of the size of the weight radii. We utilized a higher order genus
model with very fine structures and a low sampling density. As can
be seen SPSS exhibits undesired smoothing already at small radii
and breaks quickly at larger sizes. In this example, APSS always
delivers the expected result, and the surface stays reasonably close
to original data even for large radii.

7.3 Unwanted Extra Zeros

Our spherical fitting algorithm can exhibit an increased sensitivity
with respect to unwanted stationary points away from the surface.
We refer to [Adamson and Alexa 2006a] for a discussion of the pla-
nar fit. With spheres, such extra zeros can specially occur close to

153k 76k 38k 19k 9.5k 4.7k 1.4k 1.2k 597 299 150 75 38 19
1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

APSS

SPSS

IMLS

Levin's

 # pts

A
ve

ra
ge

 d
is

pl
ac

em
en

t

Figure 14: Logarithmically scaled graph of the average projection
error for the Chinese Dragon model.

the boundary of the surface definition domain D when for instance
a small set of points yields a small and stable sphere that lies en-
tirely inside D . D is the union of the balls centered at the sample
positions pi and having the radius of the weight function (h ·ri). We
handle such spurious extra zeros by limiting the extent of D , i.e. by
both reducing the ball radii and removing regions in which fewer
than a given number (e.g., 4) of samples have non-zero weights.
We found that this solution is working well in practice, but admit
that in-depth theoretical analysis is needed as part of future work.

8 Conclusion and Future Work
We have demonstrated that the planar fit utilized in conventional
PSS implementations can successfully be replaced by spherical fits.
Our sphere fit MLS has numerous significant advantages and over-
comes some of the intrinsic limitations of planar MLS. In particular,
we obtain an increased stability for low sampling rates, a tighter fit,
a better approximation quality, robustness, and for-free mean cur-
vature estimation. Fast numerical procedures and efficient imple-
mentations allow for the processing of very complex, high-quality
models and make APSS as fast as simple MLS. Extensions of the
method handle discontinuities of various kinds. An apparent nat-
ural extension of the method would be to employ ellipsoids, espe-
cially for highly anisotropic objects, such as cylinders. Algebraic
ellipsoidal fits, however, do not naturally degenerate to planes. In
contrast, our method handles such objects correctly, as can be seen
on the saddle configuration of figure 1-right.

Future work comprises applications of the representation in inter-
active modeling. We believe that the method is well-suited for de-
formations of point sampled geometry where the surface normals
could be estimated directly from the gradient operator. Another im-
portant issue is the theoretical analysis of both unwanted extra zeros
and the sampling requirements for our setting. Finally, we want to
explore its extension to non-manifold geometry as well as realtime
ray-tracing of dynamic APSS.

(a) (b) (c)0% 0.6%

Figure 15: Chinese Dragon model (150 K) approximated with
APSS (a) and color-coded magnitude of the displacement between
the input samples and a low resolution model (19 K) using APSS
(b) and SPSS (c).

Figure 16: A sparsely sampled point model (19 K) handled with
APSS (top row) and with SPSS (botton row) using different sizes of
the weight radii: 1.6, 4, 8.

Acknowledgments

This work was supported in part by the ERCIM “Alain Bensoussan”
Fellowship Programme. We would like to thank all reviewers for
their insightful comments and discussions of the method, as well
as Mario Botsch and Ronny Peikert for proof reading the paper.
The models of figures 15 and 16 are provided courtesy of INRIA
and SensAble by the AIM@SHAPE Shape Repository. The tree of
figure 1 is provided courtesy of Vincent Forest.

References

ADAMS, B., AND DUTRÉ, P. 2003. Interactive boolean opera-
tions on surfel-bounded solids. ACM Transactions on Graphics
(SIGGRAPH 2003 Proceedings) 22, 3, 651–656.

ADAMSON, A., AND ALEXA, M. 2003. Approximating and inter-
secting surfaces from points. In Proceedings of the Eurographics
Symposium on Geometry Processing 2003, 230–239.

ADAMSON, A., AND ALEXA, M. 2004. Approximating bounded,
non-orientable surfaces from points. In Proceedings of Shape
Modeling International 2004, IEEE Computer Society.

ADAMSON, A., AND ALEXA, M. 2006. Anisotropic point set
surfaces. In Afrigraph ’06: Proceedings of the 4th international
conference on Computer graphics, virtual reality, visualisation
and interaction in Africa, ACM Press, 7–13.

ADAMSON, A., AND ALEXA, M. 2006. Point-sampled cell com-
plexes. ACM Transactions on Graphics (SIGGRAPH 2003 Pro-
ceedings) 25, 3, 671–680.

ALEXA, M., AND ADAMSON, A. 2004. On normals and projection
operators for surfaces defined by point sets. In Proceedings of the
Eurographics Symposium on Point-Based Graphics, 149–156.

ALEXA, M., AND ADAMSON, A. 2006. Interpolatory point set
surfaces - convexity and hermite data. Submitted paper.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2003. Computing and rendering point set
surfaces. IEEE Transactions on Computer Graphics and Visual-
ization 9, 1, 3–15.

AMENTA, N., AND KIL, Y. 2004. Defining point-set surfaces.
ACM Transactions on Graphics (SIGGRAPH 2004 Proceedings)
23, 3, 264–270.

AMENTA, N., AND KIL, Y. 2004. The domain of a point set sur-
face. In Proceedings of the Eurographics Symposium on Point-
Based Graphics 2004, 139–147.

BOISSONNAT, J.-D., AND CAZALS, F. 2000. Smooth shape recon-
struction via natural neighbor interpolation of distance functions.
In Proceedings of the 16th Annual Symposium on Computational
Geometry, ACM Press, 223–232.

DEY, T. K., AND SUN, J. 2005. An adaptive MLS surface for re-
construction with guarantees. In Proceedings of the Eurograph-
ics Symposium on Geometry Processing 2005, 43–52.

DEY, T. K., GOSWAMI, S., AND SUN, J. 2005. Extremal sur-
face based projections converge and reconstruct with isotopy.
manuscript.

FLEISHMAN, S., COHEN-OR, D., AND SILVA, C. T. 2005. Robust
moving least-squares fitting with sharp features. ACM Transac-
tions on Graphics (SIGGRAPH 2005 Proceedings) 24, 3, 544–
552.

GANDER, W., GOLUB, G. H., AND STREBEL, R. 1994. Least-
squares fitting of circles and ellipses. BIT Numerical Mathemat-
ics 34, 4, 558–578.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2005. Interpo-
latory refinement for real-time processing of point-based geom-
etry. Computer Graphics Forum (Proceedings of Eurographics
2005) 24, 3, 657–666.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface reconstruction from unorganized
points. In Proc. of ACM SIGGRAPH ’92, ACM Press, 71–78.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the Eurographics Sym-
posium on Geometry Processing 2006, 43–52.

KOLLURI, R. 2005. Provably good moving least squares. In ACM-
SIAM Symposium on Discrete Algorithms, 1008–1018.

LEVIN, D. 2003. Mesh-independent surface interpolation. Geo-
metric Modeling for Scientific Visualization, 181–187.

MITRA, N. J., NGUYEN, A., AND GUIBAS, L. 2004. Estimating
surface normals in noisy point cloud data. International Journal
of Computational Geometry and Applications 14, 4–5, 261–276.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition of unity implicits. ACM
Transactions on Graphics (SIGGRAPH 2003 Proceedings) 22,
3, 463–470.

PAULY, M., KEISER, R., KOBBELT, L. P., AND GROSS, M. 2003.
Shape modeling with point-sampled geometry. ACM Transac-
tions on Graphics (SIGGRAPH 2003 Proceedings) 22, 3.

PAULY, M., MITRA, N. J., AND GUIBAS, L. 2004. Uncertainty
and variability in point cloud surface data. In Proceedings of the
Eurographics Symposium on Point-Based Graphics, 77–84.

PRATT, V. 1987. Direct least-squares fitting of algebraic surfaces.
In Proc. of ACM SIGGRAPH ’87, ACM Press, 145–152.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
ACM Transactions on Graphics (SIGGRAPH 2004), 896–904.

WALD, I., AND SEIDEL, H.-P. 2005. Interactive ray tracing of
point based models. In Proceedings of the Eurographics Sympo-
sium on Point Based Graphics 2005.

WASCHBÜSCH, M., GROSS, M., EBERHARD, F., LAMBORAY,
E., AND WÜRMLIN, S. 2004. Progressive compression of point-
sampled models. In Proceedings of the Eurographics Symposium
on Point-Based Graphics 2004, 95–102.

WICKE, M., TESCHNER, M., AND GROSS, M. 2004. CSG tree
rendering of point-sampled objects. In Proceedings of Pacific
Graphics 2004, 160–168.

