filename : Kas07.pdf entry : article conference : pages : 355-369 year : 2007 month : October title : Computer-based multisensory learning in children with developmental dyslexia subtitle : author : Monika Kast and Martin Meyer and Christian Voegeli and Markus Gross and Lutz Jaencke booktitle : Restorative Neurology and Neuroscience ISSN/ISBN : editor : publisher : IOS Press publ.place : volume : 25 issue : 3-4 language : English keywords : abstract : Purpose: Several attempts have been made to remediate developmental dyslexia using various training environments. Based on the well-known retrieval structure model, the memory strength of phonemes and graphemes should be strengthened by visual and auditory associations between graphemes and phonemes. Using specifically designed training software, we examined whether establishing a multitude of visuo-auditory associations might help to mitigate writing errors in children with developmental dyslexia. Methods: Forty-three children with developmental dyslexia and 37 carefully matched normal reading children performed a computer-based writing training (15-20 minutes 4 days a week) for three months with the aim to recode a sequential textual input string into a multi-sensory representation comprising visual and auditory codes (including musical tones). The study included four matched groups: a group of children with developmental dyslexia (n=20) and a control group (n=18) practiced with the training software in the first period (3 months, 15-20 minutes 4 days a week), while a second group of children with developmental dyslexia (n=23) (waiting group) and a second control group (n=19) received no training during the first period. In the second period the children with developmental dyslexia and controls who did not receive training during the first period now took part in the training. Results: Children with developmental dyslexia who did not perform computer-based training during the first period hardly improved their writing skills (post-pre improvement of 0-9%), the dyslexic children receiving training strongly improved their writing skills (post-pre improvement of 19-35%). The group who did the training during the second period also revealed improvement of writing skills (post-pre improvement of 27-35%). Interestingly, we noticed a strong transfer from trained to non-trained words in that the children who underwent the training were also better able to write words correctly that were not part of the training software. In addition, even non-impaired readers and writers (controls) benefited from this training. Conclusion: Three-month of visual-auditory multimedia training strongly improved writing skills in children with developmental dyslexia and non-dyslexic children. Thus, according to the retrieval structure model, multi-sensory training using visual and auditory cues enhances writing performance in children with developmental dyslexia and non-dyslexic children.