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Abstract
We present a framework for 3D spatial gesture design

and modeling. A wearable input device that facilitates the
use of visual sensors and body sensors is proposed for ges-
ture acquisition. We adapted two different pattern match-
ing techniques, Dynamic Time Warping (DTW) and Hidden
Markov Models (HMMs), to support the registration and
evaluation of 3D spatial gestures as well as their recogni-
tion. One key ingredient of our framework is a concept for
the convenient gesture design and registration using HMMs.
DTW is used to recognize gestures with a limited training
data, and evaluate how the performed gesture is similar to
its template gesture. In our experimental evaluation, we de-
signed 18 example gestures and analyzed the performance
of recognition methods and gesture features under various
conditions. We discuss the variability between users in ges-
ture performance.

1. Introduction
The recent advance of sensing and display technologies

has been transforming our living and working environment
to a window connecting the physical and the virtual world.
This new computational environment beyond desktops en-
courages the use of 3D spatial gestures for more natural and
intuitive human computer interaction. A wide range of 3D
spatial gestures from simple to complex has been designed
and demonstrated in various applications including virtual
reality, smart environments, game interface design, and dig-
ital art performance.
Our research goal is to improve the growth of available

3D spatial gesture vocabulary by supporting people to easily
design and learn gestures, and use optimal ones appropriate
for their preference and physical condition. In this paper,
we propose our approach to develop a design framework
for 3D spatial gestures by combining different sensors and
putting emphasis onto the extensibility of the model.
Using the proposed framework, users can acquire a wide

range of gesture information from approximate to detail.
A wearable input device is designed to support the easy

integration of different body sensors and robust positional
tracking with visual sensors. Our gesture model is designed
to support the registration and evaluation of gestures as well
as their recognition. We extended the previously introduced
gesture unitmotion chunk that decomposes a 3D spatial ges-
ture into a set of postures and gestures [3]. The explicit dis-
tinction of postures and dynamic gestures within the HMM
model facilitates the design of new gestures in a flexible
and convenient way. We use the DTW technique to recog-
nize gestures with a limited training data and also evaluate
the performed gestures comparing to the templates. There-
fore, users can use newly designed gestures without a large
training dataset, and improve their performance during the
practical use.

2. Overview

Figure 1 shows an overview of the proposed framework
which consists of two main components (acquisition and
gesture model). During acquisition (Section 4), 3D spatial
gestures are acquired through body sensors and visual sen-
sors. The acquired data is segmented and represented with
a combination of postures and gestures (Section 4.1). Us-
ing DTW and HMMs, the gesture model operates in three
phases: design and registration (Section 4.2) to design a
novel gesture and to add it to the system, evaluation (Sec-
tion 4.3) to measure the quality of the input gesture, and
recognition (Section 4.4) to identify the type of the un-
known input gesture. The following sections describe each
component in detail.
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Figure 1. Overview of the framework.



3. Acquisition
In our framework, 3D spatial gestures can be acquired

from body sensors (e.g. accelerometers) or visual sensors
(cameras). Combining different sensors we intend to make
features more expressive and to disambiguate recognition.
A wearable input device (Figure 2) is designed to help users
integrate different body sensors. The device can be worn on
the wrist (Figure 2-b) like a wrist watch or hold in a hand
(Figure 2-c) like a celluar phone.
By default the device is equipped with one 2D-axis ac-

celerometer inside and two pressure sensors attached on the
top surface of the case. Using external sensor connectors,
users can easily connect other types of body sensors like
bend sensors or digital compasses. The device provides
LED connectors. With additional extension wires, users can
connect LEDs and different colors and attach them to body
parts such as fingers (Figure 2-a), elbows, and shoulders.
Bright color LEDs enable faster and more robust track-

ing of multiple 3D positions using visual sensors. Their
focal brightness provides relatively robust tracking results
even for small-scale movements in indoor environments. To
compute the 3D position of the interest, we employ conven-
tional triangulation from a pair of calibrated cameras [6],
[4]. We use accelerometers that precisely measure the tilt,
movement, and vibration of individual body parts.

Figure 2. The wearable input device.

4. The Gesture Model
4.1. Segmentation and Representation
The obtained gesture signals are processed to find the

start and end point of a gesture using a simple sliding win-
dow technique. We compute a standard deviation of the
samples in the window (typically of size 20) which slides
along the signal with a sampling rate of 30Hz. We assume
that a gesture starts with a preceding start posture if the stan-
dard deviation is above the starting threshold, and subse-
quently a gesture ends with a following end posture if the
standard deviation is below the ending threshold. After seg-
mentation, the segmented signal is represented based on the
structure of motion chunk [3] as shown in Figure 3. This

motion chunk is used as the core representation of our ges-
ture model and serves as a basis for gesture design, registra-
tion, evaluation, and recognition.

S ED D ES

Figure 3. The structure of a motion chunk:
start-static chunk S, dynamic chunk D, and
end-static chunk E.

4.2. Gesture Design and Registration using HMM
A user designs an individual 3D spatial gesture following

the structure of motion chunk (i.e. design first start posture
and an end posture, and in-between gesture connecting two
postures subsequently). According to this design sequence,
each 3D spatial gesture is modeled as a single HMM(λ) [5]
with five states as illustrated in Figure 4. The first start and
end state are equivalent to the start-static chunk and the end-
static chunk respectively. The three in-between states are
used for dynamic chunk features only. For static chunks
they are skipped by directly connecting a start state to an
end state. We call the resulting two state HMM a posture
model and the complete five state HMM a gesture model.
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Figure 4. The topology of the HMM model.

Once postures are designed, the two state posture model
can be trained separately from the gesture model. In our
framework, this pre-trained posture model is used to de-
tect input training gestures automatically. We generalized
this process with two separate interactive steps: a posture
registration and a gesture registration as illustrated in Fig-
ure 5. During posture registration, users provide the start
posture and the end posture for a certain time (2 or 3 sec-
onds) by pressing the upper and lower pressure buttons of
the device (Figure 2-c) respectively. The two types of pos-
ture data (OS , OE) are used to adjust the parameters of the
two-state posture HMM model respectively.
Once the posture model is trained, the system employs

it to automatically discriminate training gestures for the full



5 state gesture HMM model from arbitrary input gestures
such as recovery gestures or rest gestures. The detection is
accomplished if P (OS , OE |λ) is above a certain threshold
(typically 90%). This approach guides users to easily de-
sign 3D spatial gestures, and simplifies the user’s effort to
manually segment and detect training gestures.
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Figure 5. Overview of the gesture registration
process.

4.3. Gesture Evaluation using DTW
The gesture evaluation measures the similarity between

the actual gesture and a reference gesture. The result (e.g.
a numerical score) can for instance be used to improve user
performance or to correct wrong gestures as presented in
our previous work [3]. Similar to the practical motion train-
ing process [3], the evaluation consists of both posture eval-
uation and gesture evaluation. Three distinct scores are
computed for the start static chunk, the dynamic chunk,
and the end static chunk respectively. We use Dynamic
Time Warping (DTW) that supports non-linear time align-
ment differences between an input gesture and a template
gesture [2]. We also applied the Derivative Dynamic Time
Warping (DDTW) technique [1] for a more natural align-
ment.
4.4. Gesture Recognition using HMM/DTW
The gesture recognition identifies the gesture template

that most closely matches the input gesture. We designed
a HMM recognizer and a DTW recognizer. The HMM
recognizer is used when a certain amount of training data
(typically 20) is available to parameterize and condition the
model. It accommodates the probabilistic nature of the sig-
nal efficiently. During the training phase, an HMM λn is
built for each gesture Gn. Then, for each unknown gesture,
the model computes the likelihoods for all possible mod-
els P (O|λn), 1≤n≤N and selects the gesture Gn̂ with the
highest model likelihood.
The DTW recognizer as a non-parametric technique em-

ploys the original gesture frames directly for gesture recog-

nition. It works even in cases where only one training
dataset is available so that newly designed gesture can be
recognized without a large training dataset. The DTW
recognizer identifies the type of input gesture by selecting
the template that minimizes the overall distance to the input
gesture. We provide two different types of DTW recogniz-
ers depending on the number of templates: a single template
DTW (SDTW) and a multiple-template DTW (MDTW).
The MDTW improves the recognition rate by accommodat-
ing the variations between multiple templates even though
it can be computationally more expensive. In practice, three
templates are sufficient in our tests.

5. Experimental Evaluation

5.1. Process

We conducted a preliminary evaluation to test our frame-
work, and analyze issues in designing and learning 3D spa-
tial gestures. We designed 18 gestures with three style
groups for 3D spatial gestures: a planar-style, a curved-
style, and a twisted-style, and represented with our unique
gesture diagram as shown in Figure 7.
We hired two subjects (male and female) individually

and asked to provide twenty training data. They wore the
proposed wearable input device with the LED ring on the
index finger as illustrated in Figure 2. 2-dimensional ac-
celerometer data was used for body sensor features and the
relative 3D positions (rx, ry, rz) of the index finger tip
were used as the visual feature. Our experimental setup with
two cameras provides the active volume (about 3×3×3 in
meter) regarding shift, and to the maximum rotation angle
(60◦).
Two other independent test datasets for translated

(shifted) position and rotated position were acquired and
utilized to test the invariance of the recognition, as illus-
trated in Figure 6. We used leave-one-out (LOO) cross vali-
dation to compute the recognition rates. During acquisition,
subjects were requested to randomly change their positions
in short time intervals to create more realistic situations.
This added some additional variation to their gesture per-
formances.

Figure 6. The three different user positions:
(a) same (initial), (b) shifted, and (c) rotated.
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Figure 7. The 18 gesture diagrams with three style groups: (a) planar, (b) curved, and (c) twisted.
The line indicates the trajectory of the gesture and the end of the gesture is presented as an arrow.
The hand symbol uses black to indicate palm-down and white for palm-up.

5.2. Results
Table 1 shows the result of testing gesture features at dif-

ferent user positions with five state HMM (5SHMM). Over-
all, the combined visual and body features (VB) performs
best and achieves the highest recognition rates in all three
user positions. As expected, the body-only features (B) out-
perform the visual-only features (V) in the rotated-position,
reaching about 15.9% reduction in the error rate. The visual
sensor features perform better for shifted positions. We also
compared DTW recognizers (SDTW and MDTW) with the
HMM recognizer. Even though the HMM recognizer is still
better, the result of the DTW recognizers is also good con-
sidering the required amount of training data (1 for SDTW
and 3 for MDTW).
To analyze the performance variability between two sub-

jects, we compared a user-dependent model (D) and a user-
independent model (I) in terms of three different gesture
styles. As Table 2 shows, while the recognition rates of the
user-dependent model are over 90%, the recognition rates
of the user-independent model is below 50% due to the dif-
ference in the gesture performance between users. In the
user-independent model, the recognition rate of the curved-
style gestures are far inperior to the others. Two subjects
spontaneously turned their hand in different ways because
the diagrams for a curved-style (Figure 7-b) do not indicate
the hand face (palm-down and palm-up) and the rotational
direction of the hand.

Table 1. Recognition rates of three user posi-
tions with different gesture features.

User Position same shifted rotated overall
V-5SHMM 96.0% 88.2% 60.0% 81.4%
B-5SHMM 94.5% 85.2% 75.9% 85.2%
VB-5SHMM 95.4% 93.1% 86.3% 91.6%
VB-SDTW 89.2% 86.7% 78.2% 84.7%
VB-MDTW 91.4% 89.3% 85.6% 88.7%

Table 2. Recognition rates of three gesture
style groups with the user-dependent (D) and
the user-independent (I) model.

Gesture Type planar curved twisted overall
VB-5SHMM(D) 90.8% 97.2% 98.2% 95.4%
VB-5SHMM(I) 69.8% 20.5% 60.7% 50.3%

6. Conclusion
In this paper, we presented a versatile framework to ac-

quire, design and recognize 3D spatial gestures using a
wearable input device. It is intended to support applica-
tion developers and end-users in easily exploring the full
advantages of 3D spatial gestures for human computer in-
teraction.
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