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ABSTRACT

The simulation of fracture leads to collision-intensive situations that
call for efficient collision detection algorithms and data structures.
Bounding volume hierarchies (BVHs) are a popular approach for
accelerating collision detection, but they rarely see application in
fracture simulations, due to the dynamic creation and deletion of
geometric primitives. We propose the use of balanced trees for
storing BVHs, as well as novel algorithms for dynamically restruc-
turing them in the presence of progressive or instantaneous fracture.
By paying a small loss of fitting quality compared with complete re-
construction, we achieve more than one order of magnitude speedup
in the update of BVHs.

Keywords: Collision detection, AVL-trees, fracture.

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Object Hierarchies

1 INTRODUCTION

Action videogames and feature films often display spectacular
crashes that lead to the fracture of cars, walls, etc. In medical sim-
ulation, surgical interventions often involve cutting of soft tissue.
After fracture or cutting, the newly created objects or surfaces move
independently, and are free to collide with each other, thereby lead-
ing to collision-intensive situations.

At fracture events, the precomputed data structures for acceler-
ating collision detection become obsolete, and need to be recom-
puted. This recomputation carries a cost that cannot be afforded
in interactive applications. One alternative, commonly followed in
videogames, is to predefine the fractured pieces, thus their colli-
sion detection data structures can be precomputed. Though practi-
cal, this predefinition limits the richness of the effects that can be
achieved, and is not appropriate for applications that involve arbi-
trary fracture or cutting.

In this paper, we present an approach for dynamically adapting
data structures for collision detection at fracture or cutting events.
We build our approach on bounding volume hierarchies (BVHs),
which have proved to be a successful acceleration data structure for
collision detection between rigid bodies [14, 10, 16, 8], collision
detection between deformable bodies [32, 7, 18, 15, 19, 31, 34],
and also as a first step of culling in combination with other meth-
ods [12].

We leverage AVL-trees [1, 17] for constructing BVHs, and we
design operations for dynamically restructuring BVHs during frac-
ture, based on elementary operations for rebalancing AVL-trees.
We also discuss metrics and operations for maintaining good fitting
of bounding volumes. To the best of our knowledge, no previous
work addresses the problem of restructuring BVHs as a result of
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Figure 1: Collisions in Fractured Objects. Left: Self-collisions on an
apple that is progressively cut. Right: Collisions between multiple
pieces of a pumpkin that hits the ground and breaks. When new sur-
face primitives are created due to fracture, we dynamically restruc-
ture the BVHs for collision detection. This operation is up to 20 times
faster than full reconstruction of the BVHs.

fracture. We show that, in cases where objects fracture progres-
sively, dynamically updating BVHs with our approach is up to 20
times faster than fully reconstructing them from scratch. More-
over, complemented with existing efficient techniques for refitting
BVHs [19, 34], our dynamic restructuring algorithms can provide
these update speedups with almost no penalty on the performance
of collision detection.

In §2, we discuss related work, including a description of char-
acteristics of BVHs that are relevant for design decisions in our
algorithm. In §3, we overview AVL-trees and their basic rebal-
ancing operations for insertion and deletion of nodes. With this
background knowledge, in §4 we present our algorithms and data
structures for dynamic update of BVHs during fracture. Finally,
we present experiments and results in §5, before concluding with
discussions in §6.

2 RELATED WORK

Collision detection is a problem that has been largely addressed in
computer graphics, robotics, or computational geometry. We refer
the reader to recent surveys [20, 31] for extensive discussions on
the topic. In this paper, we are interested in collision detection of
objects that undergo topological changes, thus surface primitives
(i.e. triangles) are created, deleted, and reconnected dynamically.
Some of the popular techniques for collision detection between
deforming objects, such as visibility-based culling [11], distance
fields [9, 29], layered depth images [13], or spatial hashing [30],
assume no pre-processing of the surfaces. Bounding volume hier-
archies (BVHs) have also proved to be competitive when updated
efficiently, for complete collision detection between deforming ob-
jects [32, 7, 18, 15, 19, 34], or as a first culling stage in combination
with visibility-based algorithms [12].

The cost of collision detection using BVHs can be decomposed
into: the cost of primitive-level tests, the cost of BV tests, and the
cost of BV updates (for deforming objects) [10]. The choice of type
of BV is driven by the minimization of the overall cost. AABBs [3,
7] offer a good trade-off for collision detection between deforming
objects, as each BV can be updated in O(1) time from information
of its children. Other types of BVs include spheres [25, 14], k-
DOPs [16], OBBs [10], or convex hulls [8]. Recently, Weller et



Figure 2: Local Restructuring Operations. Left: Right rotation Rright of the edge (a,b), and modified right rotation R∗
right with pre-swap of subtrees

A and B. Middle: Left rotation Rle f t of the edge (a,b), and modified left rotation R∗
le f t with pre-swap of subtrees B and C. Right: The three different

permutations of the grandchildren of node a.

al. [33] have investigated the expected time for collision detection
using AABB trees.

The design of the BVH is also driven by the minimization of
the overall collision detection cost. To guarantee efficiency, the
BVH of a surface with n primitives must maintain several prop-
erties: (i) the depth of the tree must be O(lgn), (ii) each node must
have O(1) children, and (iii) the size of BVs should be minimized.
Typically, these properties are achieved by appropriately construct-
ing the BVH during preprocessing. One option is to construct the
BVH in a bottom-up manner, by pairwise merging of BVs. Another
option is to construct it in a top-down manner, by successive split-
ting along the longest axis [10]. Splitting at the midpoint or mean
position yields a construction cost of O(n lgn), but may violate the
properties of BVHs, as it does not guarantee a balanced tree of log-
arithmic depth. Splitting at the median position, on the other hand,

ensures a balanced tree, but yields a construction cost of O(n lg2 n).
With deforming objects, the BVH must be updated at runtime.

We consider two different types of updates: (i) refitting of BVs, and
(ii) restructuring of the tree. Efficient refitting has been extensively
studied, and it includes approaches such as hybrid top-down and
bottom-up updates [18], lazy update with enlarged BVs [21], fully
top-down update for reduced deformable models [15], or event-
based refitting in the framework of kinetic data structures [34]. Effi-
cient restructuring of the trees, however, is a less explored problem.
Larsson and Akenine-Möller [19] present a fitting quality metric
and a method for dynamically splitting BVs in situations with un-
structured motion. In this paper, we investigate dynamic restructur-
ing of BVHs for fracturing objects.

Our work is also related to previous work on dynamic mesh
reclustering by Carr and Hart [5]. They define imbalance functions
to measure the quality of mesh clusters, and apply node rotations
and swapping operations to improve balance. Our BVH restructur-
ing approach builds upon balanced trees, such as AVL trees [1, 17]
or red-black trees [6], and employs elementary rebalancing opera-
tions similar to those of Carr and Hart [5].

The algorithms presented in this paper focus on the problem of
detecting collisions between fracturing objects, not in the simula-
tion of fracture itself. We rely on existing techniques in computer
graphics for physically-based simulation of fracture [24, 23], and
for handling the geometric aspects of topological changes in cut-
ting or fracture simulations [22, 28].

3 AVL TREES FOR COLLISION DETECTION

Given an object A, described by a set of triangles {τi}, we wish to
design a BVH that will be efficiently adapted under fracture events.
We make no assumptions on the topology of A (i.e. it may be a
triangle soup), but for simplicity we will refer to the set {τi} as a
triangle mesh. Fracture produces dynamic changes to the triangle
mesh, as some triangles are decomposed into new triangles, and

parts of the mesh are newly synthesized when cracks evolve. The
BVH for accelerating collision detection queries with A should re-
main balanced at all times, and the BVs should maintain a good
fitting quality. Although the basic algorithms and data structures
we propose support any type of BV, we have chosen AABBs for
their O(1) update cost.

We use AVL trees for the implementation of BVHs, and thus we
provide efficient operations for guaranteeing balanced BVHs and
for optimizing fitting quality of BVs, as the triangle meshes are up-
dated during fracture. In this section, we introduce notation and
parameters of AVL trees, we describe the basic operations of inser-
tion and deletion, as they will serve us to account for updates in the
geometry of the meshes, and we describe restructuring operations
for rebalancing and local optimization of fitting quality.

3.1 Description of AVL Trees

An AVL Tree is a self-balancing binary tree [1]. Each node a stores
pointers to its parent, a.parent, and left and right children, a.le f t
and a.right. The height h(a) of a node a is defined recursively as

h(a) =

{

0 if a is a leaf,
1+max(h(a.le f t),h(a.right)) otherwise.

(1)

And the balance factor β (a) of a node a is defined as

β (a) =

{

0 if a is a leaf,
‖h(a.le f t)−h(a.right)‖ otherwise.

(2)

AVL trees self-balance by guaranteeing a balance factor β ∈
{0,1} on all nodes. In other words, the height difference of right
and left subtrees will be at most one for all nodes. Insertion and
deletion of nodes may imbalance the tree (see §3.2), but after a sin-
gle insertion or deletion the balance factor of a node may be at most
β = 2, and the node may be rebalanced with a single local operation
(see §3.3).

For our purpose of collision detection with triangle meshes, each
leaf of the tree stores one triangle τi and its corresponding BV. In-
ternal nodes store pointers to their children, and a BV that bounds
all triangles in the subtree. Insertion and deletion operations are
performed on leaves, not on internal nodes. We initialize the AVL
tree (i.e. the BVH) by top-down successive sorting and splitting of
the input triangle mesh [10]. Note that, by successively sorting a set
of triangles and splitting them at the median, we ensure a balanced
tree. Then, for each leaf we compute an AABB, and we fit AABBs
to all tree nodes in a bottom-up manner [7].

3.2 Insertion and Deletion of Triangles

An individual insertion operation Insert(τi,τ j) of triangle τi at the
position of triangle τ j replaces τ j with an internal node a and sets τ j



and τi as children of a. An individual deletion operation Delete(τi)
of triangle τi replaces the parent of τi with its sibling.

Both insertion and deletion operations locally modify the height
of the tree, and this may result in imbalance. After insertion or
deletion, the tree must be rebalanced by means of node rotations
(see §3.3), and heights need to be recomputed along the path to the
root of the tree. For an AVL tree with n leaves, an individual in-
sertion needs, in the worst case, one rotation and O(lgn) height re-
computations; and an individual deletion needs, in the worst case,
O(lgn) rotations and O(lgn) height recomputations [17]. As dis-
cussed in §4, fracture simulation is dominated by insertion oper-
ations, which require fast height recomputations and only a few
rebalancing operations.

3.3 Restructuring Operations

Here we describe restructuring operations on AVL trees that enable
both dynamic tree rebalancing and BV refitting.

3.3.1 Tree Edge Rotations

Given a node a with imbalance factor β (a) = 2, the node can be
rebalanced by applying a local tree rotation. We refer as the higher
child of a node a to the child with larger height value. If the
left child is higher, i.e. h(a.le f t) = h(a.right) + 2, we apply a
right rotation Rright . If the right child is higher, i.e. h(a.right) =
h(a.le f t)+ 2, we apply a left rotation Rle f t . Tree rotations are de-
picted schematically in Figure 2.

Simple rotations may not rebalance the node a if the higher child
has a balance factor β = 1. We exploit the fact that in our appli-
cation AVL trees do not store sorted data, hence the order of sib-
lings is irrelevant. Then, if the balance factor of the higher child is
β = 1, we swap its children appropriately before applying the rota-
tion. This pre-swapping yields modified rotations R∗

right and R∗
le f t ,

as shown in Figure 2.

3.3.2 Grandchildren Permutations

The possibility to swap siblings can be exploited further, in order to
locally optimize the fitting quality of BVs. Given a node a, we pro-
pose local restructuring by permuting its grandchildren, as shown
in Figure 2. We only consider as valid those permutations that do
not produce imbalance.

We can easily test for valid permutations due to the following
property: If the node a and its descendants are balanced, the node
a will also be balanced after a permutation of its grandchildren if
its children are balanced. Therefore, it is sufficient to test for the
balance of a.le f t and a.right.

In §4.3 we explain the local optimization of fitting quality em-
ploying grandchildren permutations.

4 DYNAMIC UPDATE OF BVHS

In this section we describe how to dynamically update the BVHs
of fracturing objects, using the data structures and algorithms dis-
cussed in the previous section. We distinguish two types of fracture
processes: progressive fracture, where cracks evolve incrementally
between two time steps (see Figure 5), and instantaneous fracture,
where cracks start and terminate during one single time step (see
Figure 6). After discussing the different update algorithms for pro-
gressive and instantaneous fracture, we describe local optimization
operations for improving the fitting quality of BVs.

4.1 Progressive Fracture

In the simulation of fracture in computer graphics, crack surfaces
must be dynamically synthesized. Given the path swept by a crack
during a time step of simulation, dynamic crack surface synthesis
involves the following steps [28]: (i) triangulate the surface swept
by the crack during the time step, (ii) intersect the crack surface
with the original surface of the object, (iii) trim and decompose

Figure 3: Progressive Crack Growth. Top: As the crack front (in red)
evolves, new triangles Tcrack are synthesized on the crack surface.
Bottom: Top view of the crack growth, showing old triangles Told that
break and are decomposed into new triangles Tdecomp.

the triangles that intersect, and (iv) stitch the crack surface and the
original surface together.

For the purpose of updating BVHs for collision detection, at
every time step we are interested in the set of old triangles Told that
break and are decomposed into new triangles Tdecomp, as well as
new triangles Tcrack on the crack surface (see Figure 3). The old tri-
angles Told must be deleted from the BVH, while the new triangles
Tdecomp and Tcrack must be inserted.

Every old triangle τi ∈ Told is decomposed into a (typically
small) set of triangles {τ j} ⊂ Tdecomp. Instead of deleting τi from
the BVH with the Delete() operation described in §3.2, it is more
efficient to directly replace it by one of the triangles in {τ j}. There-
fore, we design an operation Replace(τ j,τi) that places τ j at the po-
sition of τi in the AVL tree. Note that this operation requires no re-
balancing or height recomputations. We refer as Treplace ⊂ Tdecomp

to the subset of decomposed triangles that are added to the BVH
simply by replacing old triangles Told .

The rest of new triangles τi ∈ Tinsert = (Tdecomp − Treplace) ∪
Tcrack are inserted in the AVL tree using the Insert() operation dis-
cussed in §3.2. For each of them, we need to identify a location
for insertion τk, and we do it in the following way. We first add
to a queue all triangles neighboring Told ∪Tcrack that are not frac-
tured. Then, we do a breadth-first search (BFS) from this queue,
and whenever we visit a triangle τi ∈ Tinsert , we insert it in the BVH
by the procedure Insert(τi,τk), where τk is the parent of τi in the
BFS. This guarantees that τk is present in the BVH when τi is in-
serted. Also, since τk and τi are adjacent to each other, the insertion
procedure favors tight fitting BVs. In case we are dealing with a tri-
angle soup instead of a connected triangle mesh, the BFS procedure
may be substituted by a greedy search of nearby triangles.

After each insertion operation we recompute heights and rebal-
ance nodes if necessary, as described in §3.3. Once all new triangles
are inserted, the BVs may be updated, and we perform local opti-
mizations described in §4.3.

4.2 Instantaneous Fracture

In some materials the propagation of cracks is much faster than
the frequency at which collision detection is typically performed.
Therefore, a complete object can be considered to fracture in just
one time step of simulation (see Figure 6). We refer to this phe-
nomenon as instantaneous fracture.

In the case of instantaneous fracture, it would not be efficient
to let the BVHs self-adjust by local optimization operations, as is
the case with progressive fracture. After restructuring of the BVH,
all the triangles belonging to one connected component should lie
under one single AVL subtree, but the number of restructuring op-
erations required to achieve this may easily grow beyond the cost



of simply rebuilding the BVHs from scratch. This is especially true
if the initial object breaks into many small components.

Here, we propose a method for restructuring the BVHs that is ap-
propriate for instantaneous fracture into several components. Based
on our experiments (see §5.4), the method is competitive for objects
of about 10K triangles that fracture into less than 10 components
(For objects with more triangles, it will be competitive even if they
fracture into more components). In cases where an object fractures
into many small pieces, full reconstruction of the BVHs is more
efficient. Our algorithm is also applicable for handling the discon-
nection of components at the end of a progressive fracture. Given
an object with n triangles that breaks into a small number of pieces,
our restructuring algorithm has O(n) complexity.

To describe our method for restructuring BVHs after instanta-
neous fracture, let us assume that an object A breaks into two com-
ponents B anc C. The initial set of triangles TA is decomposed into
three subsets: triangles fully in B, TB, triangles fully in C, TC, and
triangles that break Told . After synthesis of the crack surfaces, we
also have two sets of new triangles for each component, TcrackB and
TcrackC .

We first clone the BVH of object A, which yields initial BVHs
for B and C. Then, we delete TC ∪ Told from the BVH of B, and
delete TB ∪Told from the BVH of C. For this, we use the Delete()
operation described in §3.2. Finally, we insert TcrackB into the BVH
of B, and TcrackC into the BVH of C, using the Insert() operation
described in §3.2. In order to determine the location of insertion for
new triangles, we follow the same BFS-based flooding approach
introduced for progressive fracture.

4.3 Optimization of Fitting Quality

Before describing optimization strategies, we will define the fitting
quality q(a) of a node a of the BVH, and the fitting quality Q(A) of
the complete BVH of object A. Larsson and Akenine-Möller [19]
define a fitting quality metric that evaluates overlap among sibling
nodes in the BVH. In contrast, the fitting quality Q that we define
here is an absolute metric that serves for comparing BVHs. As it
will be discussed in §5.2, the depth of the BVH is another possible
quality metric.

Given a node a of the BVH, we measure its fitting quality q(a)
as the sum of squared volumes of its children:

q(a) = Vol2(a.le f t)+Vol2(a.right). (3)

Given an object A, we measure the fitting quality Q(A) of its BVH
as the sum of squared normalized volumes of all nodes in the BVH:

Q(A) =
1

Vol2(BVroot)
∑

BVi∈BV H(A)

Vol2(BVi). (4)

As reference, in a balanced binary BVH where each BV is divided
into two equal children with half the volume of their parent, the fit-

ting quality for n triangles is Q = ∑
lgn
i=0

1
2i = 2n−1

n . Note that smaller
values of q and Q denote better fitting.

After each time step, once new fracture geometry is inserted into
the BVH, we perform a bottom-up update of the BVs, followed by
local refitting optimization. For every node a of the BVH, we test
if some grandchildren permutation (see §3.3) improves the fitting
quality q(a). We only allow permutations that do not imbalance
the children of a, in order to avoid cascading rotations. Carr and
Hart [5] proposed local optimization operations based on tree edge
rotations in the context of mesh reclustering, but their operations
would induce cascading rotations in our application. By limiting
local optimizations to those that do not produce imbalance, we also
limit the flexibility of improving the fitting quality of the complete
BVH, Q(A), but we ensure that the cost of the optimization remains
the same as for the BV refitting, i.e. O(n).

Figure 4: Progressive Splitting of Triceratops Model. These images
depict the benchmark for the results described in §5.2. Left: Triangle
mesh of a triceratops as it is progressively split. The blue triangles
denote the evolution of the crack, while the red triangles denote the
decomposed triangles Tdecomp and new crack triangles Tcrack for the
last splitting step. Right: Final fractured triceratops.

5 RESULTS

In this section we describe experiments that we have carried out
for testing the performance of our restructuring algorithms. These
experiments include static benchmarks for scalability analysis, and
dynamic simulations of progressive and instantaneous fracture. The
fracture simulations (See Figures 5 and 6) present very challenging
situations of collision and self-collision, with large areas in parallel
close proximity, which is a worst-case scenario for collision detec-
tion [10].

5.1 Implementation Details

Our algorithms have been implemented by extending the collision
detection library SOLID [27], based on AABBs. We modified
SOLID to support AVL trees as the underlying data structure, and
added median-based splitting for the construction of a balanced
BVH. Our dynamic simulations also employ existing methods for
contact handling of rigid and deformable objects [2, 4].

All experiments have been executed on a dual Pentium-4
3.0 GHz processor PC with 2.0 GB of memory.

5.2 Analysis of Performance and Scalability

We have performed a progressive fracture of a static triceratops
model (see Figure 4) with different mesh resolutions, for comparing
the cost of dynamic restructuring of the BVH Vs. the cost of full
reconstruction, as well as for evaluating the evolution of the fitting
quality. Table 1 shows average timings across the different fracture
steps, and the overall performance gain obtained by our algorithm,
for the different mesh resolutions. Figure 7, on the other hand, de-
picts the evolution of the BVH update time, the fitting quality Q,
and the depth of the BVH, for the densest mesh (90560 triangles).

As can be deduced from Table 1, the time required for replacing
and inserting new primitives is negligible in comparison with the
time required for refitting and optimizing the BVH. The reason is
that the amount of triangles to be inserted per step is small com-
pared to the size of the mesh, and each insertion only requires one
tree rotation at most, as explained in §3.2. Height updates, on the
other hand, are extremely fast.

Notice also from Figure 7 that the time for dynamic restructuring
per step (approximately 100 ms) is up to 4 times smaller than for
full reconstruction through midpoint splitting, and up to 18 times
smaller than for full reconstruction through median splitting. As
discussed in §4.3, the cost of refitting and optimization is O(n),
asymptotically better than the cost for full reconstruction through

both midpoint splitting, O(n lgn), and median splitting, O(n lg2 n).
Note also that, with reconstruction through midpoint splitting, the
quality of the BVH degrades largely, as denoted by the depth of the
tree (see Figure 7), which almost triples the depth of the balanced
AVL trees when the fracture ends.

As one would expect, with dynamic restructuring the quality Q
of the BVH decays as cracks evolve, but the local optimization



Figure 5: Progressive Peeling of an Apple. Benchmark for our BVH update algorithm with progressive fracture and challenging self-collisions.

Figure 6: Instantaneous Fracture of a Pumpkin. A pumpkin is dropped on the ground and it fractures into a variable number of pieces (2 and 8 in
the snapshots). At the instant of fracture, there are large areas in parallel close proximity, a worst-case scenario for collision detection.

operations (see §4.3) improve the fitting quality by approximately
30%, as shown in Figure 7. The fitting quality and depth plots also
suggest that further investigation should be devoted to designing a
unique quality metric that accounts for both the size of bounding
volumes and the depth of the tree.

5.3 Progressive Fracture

Figure 5 shows an example of dynamic scene with progressive frac-
ture. An apple with 6124 triangles is progressively peeled in several
parts, and it undergoes challenging self-collisions when the peels
retract. We have applied our BVH restructuring algorithm, and we
have compared its performance with the performance of full recon-
struction through median splitting. We have also compared the time
spent on self-collision detection with both approaches, for a query
that returns all intersecting primitives.

The times for BVH update and collision detection for the first
800 frames of simulation are shown in Figure 8. At the end of the
sequence, the apple mesh has already grown to 11152 triangles.
Note that we only rebuild or restructure the BVH when some frac-
ture takes place, not when there is only deformation. The time for
restructuring the BVH remains consistently under 12 ms, with up
to 20 times speedup compared to full rebuilding at some frames.

In our experiments, we found that the quality of the BVH can de-
grade significantly when many new primitives are added (as is the
case in the example, where the size of the mesh almost doubles).
One conclusion that can be drawn from this is that our dynamic re-
structuring algorithm can be complemented with existing work for
efficiently refitting BVs or rebuilding parts of the BVH [34, 19].
Therefore, we decided to fully rebuild the BVH of the apple when-
ever the fitting quality Q > 2.3. This explains the 9 spikes in the
graph for BVH restructuring, whose cost is amortized over the rest
of the simulation. With this approach, the average time for self-
collision detection with the restructured BVH is 142.8 ms, only
3.2% more than with a rebuilt BVH (138.3 ms).

5.4 Instantaneous Fracture

We have also applied our dynamic BVH restructuring to instan-
taneous fracture simulations. Figure 6 shows a pumpkin model
(10000 triangles) that is dropped and fractures instantaneously into
a variable number of rigid pieces (i.e., between 2 and 12 in our
tests).

As depicted in Figure 8, in this example our dynamic restruc-
turing algorithm outperforms full reconstruction when the resulting

number of pieces is smaller than 8. From our experience, this num-
ber highly depends on the size of the original mesh and the amount
of triangles that are created during fracture (In our case, for 8 pieces
the pumpkin mesh grows to 16136 triangles). The time for restruc-
turing is dominated by the time needed for cloning the trees, and
insertion and deletion operations are more costly than refitting and
local optimizations due to the large growth of the number of trian-
gles.

As shown also in Figure 8, the fitting quality degrades as the
number of fractured pieces increases, and here as well it would be
worth incorporating other refitting strategies [19]. However, the
time for collision queries degrades less than the fitting quality. As
a reference, in the simulation with 8 fractured pieces, the time for a
collision query that returns all intersecting triangles reaches a max-
imum of 61.3 ms with fully rebuilt BVHs, and it grows only to
71.5 ms with restructured BVHs. During the first 200 frames of
simulation (when most of the collisions occur), the average colli-
sion detection time is 18.6 ms with rebuilt BVHs, and 23.7 ms with
restructured BVHs, an average increase of 27%.

6 CONCLUSIONS

We have presented novel algorithms for dynamically restructuring
BVHs in the presence of fracture simulations, as opposed to re-
constructing them from scratch when geometric primitives must be
inserted and/or deleted. Our algorithms for progressive and instan-
taneous fracture rely on the implementation of BVHs using AVL
trees as the underlying data structure, which guarantees balanced
hierarchies through simple local operations.

Our approach for dynamic restructuring performs particularly
well during progressive fracture, when the amount of added trian-
gles remains as a small factor (approximately less than 10%) of the
original mesh size. We have demonstrated speedups of up to a fac-
tor of 20 with small degradation of the fitting quality. If the size
of the mesh continues growing, our local optimization operations
cannot guarantee a good fitting quality, and our approach must be
complemented with local rebuilding and refitting strategies [19, 34].

In situations of instantaneous fracture, our restructuring algo-
rithm is competitive only when the resulting number of fractured
pieces is relatively small. As part of future work, we plan to in-
vestigate approaches for bulk insertion and deletion of AVL sub-
trees [26], which could lay the grounds for more efficient restruc-
turing algorithms for instantaneous fracture. In that case, it is also
necessary to design algorithms for grouping triangles of a same



fractured piece under a common AVL subtree.

To conclude, further work should also be devoted to handling
self-collision situations during progressive fracture. Simulation in-
formation may be exploited to accelerate the culling of newly cre-
ated crack surfaces that hinder self-collision detection.
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Init Size End Size Told Tdecomp Tcrack Replace Insert Refit Optim. Total Midpoint Split Median Split

5660 6702 16.27 49.00 62.00 0.01 0.09 2.60 4.08 6.78 25.48 (3.76) 49.42 (7.28)

22640 24672 29.73 89.36 125.09 0.02 0.18 9.48 15.99 25.68 100.10 (3.90) 226.07 (8.80)

90560 94560 57.45 172.55 248.55 0.04 1.40 37.02 62.27 100.74 410.60 (4.08) 1491.59 (14.81)

Table 1: Statistics of Dynamic BVH Restructuring. A triceratops model of three different resolutions (5660, 22640, and 90560 triangles) is split
in 11 steps as shown in Figure 4. The table shows the initial and final size of the mesh; the average number of old split triangles Told , new
decomposed triangles Tdecomp, and new crack triangles Tcrack for each splitting step; and the average time spent in replacement, insertion,
refitting, and optimization operations for each splitting step (all in ms.). The last columns also compare the average total time for dynamic
restructuring of the BVH Vs. the time needed for rebuilding the BVH from scratch with midpoint or median splitting. The numbers in parenthesis
indicate the average speedup obtained with our dynamic restructuring algorithm.
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Figure 7: Performance and BVH Quality in a Static Benchmark. The data corresponds to 11 steps of progressive fracture for the highest resolution
triceratops model (90560 triangles, see Figure 4). Left: Comparison of time for dynamic restructuring, time for full reconstruction through median
splitting, and time for full reconstruction through midpoint splitting (all in ms.), during the different fracture steps. Middle: Evolution of the fitting
quality Q with full reconstruction and dynamic restructuring (with and without local optimization operations). Right: Evolution of the depth of the
BVH.
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Figure 8: Performance and BVH Quality in Dynamic Benchmarks. Left: Time spent on BVH update and self-collision detection query (CD) during
the progressive peeling of an apple (see Figure 5). The graph compares the times with our dynamic restructuring algorithm and with full BVH
rebuilding (in ms.). Middle: Performance of dynamic restructuring for instantaneous fracture of a pumpkin into a variable number of pieces (see
Figure 6). The graph compares the time spent on different steps of the algorithm and the time for full BVH rebuilding. Right: Comparison of the
average BVH quality Q for the resulting pumpkin pieces.


