
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007)
D. Metaxas and J. Popovic (Editors)

Adaptive Deformations with Fast Tight Bounds

Miguel A. Otaduy1, Daniel Germann1, Stephane Redon2 and Markus Gross1

1Computer Graphics Laboratory, ETH Zurich, Switzerland
2i3D - INRIA Rhone-Alpes, Grenoble, France

Abstract

Simulation of deformations and collision detection are two highly intertwined problems that are often treated sepa-

rately. This is especially true in existing elegant adaptive simulation techniques, where standard collision detection

algorithms cannot leverage the adaptively selected degrees of freedom. We propose a seamless integration of multi-

grid algorithms and collision detection that identifies boundary conditions while inherently exploiting adaptivity.

We realize this integration through multiscale bounding hierarchies, a novel unified hierarchical representation,

together with an adaptive multigrid algorithm for irregular meshes and an adaptivity-aware hierarchical collision

detection algorithm. Our solution produces detailed deformations with adapted computational cost, but it also

enables robust interactive simulation of self-colliding deformable objects with high-resolution surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physic. based modeling

1. Introduction

Simulation of deformable bodies has long attracted the at-
tention of computer graphics, and today we can find so-
phisticated methods for highly-realistic simulation of e.g.,
human biomechanics [ITF04], cloth [BFA02], or fracture
effects [OBH02] among others. In later years, deformable
bodies have also seen application in videogames or virtual
surgery, through the development of plausible interactive
simulation techniques [JP03, BJ05, MHTG05].

Contact exacerbates the complexity of simulating de-
formable bodies, by exciting arbitrarily many deformation
modes and inducing rich and diverse deformations. To attack
the complexity of the problem, adaptive simulation meth-
ods [DDCB01, GKS02, CGC∗02] employ fewer degrees of
freedom (DoFs) on regions that allow for lower resolution.
However, in computer graphics, the boundary of the simula-
tion domain (i.e., the surface) plays a central role, and han-
dling of boundary conditions for producing accurate surface
deformations requires the use of high-resolution surfaces.
Collision detection becomes then a central component of the
simulation, as part of the process for setting boundary con-
ditions. To the best of our knowledge, there is no prior tech-
nique that bridges the simulation of deformations and colli-
sion detection, and that exploits adaptivity for setting (i.e.,
detecting) boundary conditions. The BD-Tree [JP04] and re-

Figure 1: Interactive Deformation with Self-Collisions. A

dragon with 13480 triangles deforms interactively (almost

10 fps on average), with accurate handling of self-collisions.

duced deformable models have been combined to produce an
elegant solution for cases where deformations are described
by a few constant DoFs, but can hardly handle some of the
rich effects produced by contact deformation dynamics.

In this paper, we propose a seamless integration of multigrid
methods [Bra77, BHM00] and hierarchical collision detec-
tion [GLM96] for exploiting adaptivity when setting bound-
ary conditions in the context of contact and deformation sim-
ulations. This integration relies on three main contributions:

• Multiscale bounding hierarchy (MBH): A unified rep-
resentation that combines a hierarchy of irregular non-nested
tetrahedral meshes and a bounding volume hierarchy (BVH),
and maps tetrahedra at multiple scales to the BVs.
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Figure 2: Adaptive Refinement of a Mesh Hierarchy. Left: surface of the fine mesh M1 of the dragon model, color-coded by

the local active resolution (‘yellow’ is coarse, ‘red’ is fine). Rest: boundary of tetrahedral meshes M2, M3, and M5 with interior

(orange), front (green), and interface nodes (blue). Notice the change of genus in the hierarchy.

• Adaptive multigrid on irregular meshes: Through
careful augmentation of mesh data structures and refine-
ment/coarsening strategies, the algorithm is as simple as
adaptive multigrid for regular nested meshes [Bra77], but
conforms well to rich object boundaries using non-nested
irregular meshes. We have applied it to corotational linear
elasticity with implicit integration [MG04].

• Adaptivity-aware (self-)collision detection: Exploiting
the MBH to perform efficient on-demand refitting of bound-
ing volumes, the cost for collision (and self-collision) detec-
tion depends on the active DoFs and the number of (poten-
tial) contacts, not surface complexity.

We demonstrate our approach on collision-intensive multi-
object scenes (See Fig. 4), and accurate computation of con-
tact manifolds in self-collions (See Fig. 5). But, most im-
portantly, and as shown in Fig. 1, the seamless connection
between simulation of deformations and collision detection
allows for efficient and robust handling of (self-)collisions
with high-resolution surfaces at interactive rates.

In §2 we discuss related work, and in §3 we formulate the
dynamic deformation problem at hand, and we discuss its
solution with adaptive multigrid on regular nested meshes.
In §4 we describe our adaptive solution for irregular meshes,
based on an elegant augmentation of the data structures and
refinement/coarsening strategies that permits the use of the
very same algorithm as for regular nested meshes. In §5 we
describe the MBH in detail, and we present our collision de-
tection algorithm, exploiting adaptively selected DoFs. We
also present an extremely fast method for computing tight
bounds for sets of points interpolated inside a simplex. We
finally discuss the results of our experiments, as well as pos-
sible directions of future work.

2. Related Work

We focus here on methods for adaptive simulation of de-
formable objects and collision detection. As our paper in-
troduces no novel deformation model, we refer the reader to
comprehensive surveys for details [GM97, NMK∗05].

Grinspun et al. [GKS02] developed a general method for
adaptive simulation with the finite element method (FEM)
in computer graphics, with the advantage that adaptivity is
achieved through refinement of basis functions, not decom-
position of mesh elements. Their method requires subdivi-

sion connectivity of the meshes. Capell et al. [CGC∗02] pro-
posed another technique built on subdivision, but they em-
bedded the surface of the object to be deformed. Their tech-
nique allows, for example, the application of constraints on
the embedded mesh. Debunne et al. [DDCB01], instead, de-
signed a method for adaptive simulation of deformations us-
ing non-nested irregular meshes, which conform more accu-
rately to the boundary with fewer elements. A fundamental
difference of our multigrid approach is a hierarchical defi-
nition of the deformation problem, which naturally enables
a link between the data structures for adaptive simulation
and collision detection. Moreover, in Debunne’s approach,
interpolation at the interface between different mesh resolu-
tions is not symmetric, therefore making the method not well
suited for full implicit simulation with fast iterative solvers.
Similar to adaptive methods, reduced models provide very
fast simulations with a few DoFs that drive complex sur-
faces [BJ05]. However, their strength is in global deforma-
tions, not accurate surface deformations during contact.

Multigrid algorithms were initially intended (and show opti-
mal linear convergence) for solving elliptic boundary value
PDE problems. Nonetheless, they see application on a much
larger range of problems, and under multiple variants. We
refer to books on the topic [BHM00, TOS01] for a com-
prehensive treatment. The common feature of multigrid al-
gorithms is to solve the problem by smoothing the error
through iterative relaxation on different scales. The typical
implementation of multigrid is based on a correction scheme
that filters the fine-scale residual and corrects it on a coarser
scale. Brandt [Bra77] introduced the full approximation stor-
age (FAS) scheme, which filters both the residual and the
fine-scale estimate of the solution, thus correcting the full
solution on the coarser scale. FAS allowed Brandt to im-
plement multilevel adaptive technique (MLAT) solutions on
nested regular meshes. The fast adaptive composite (FAC)
grid method [MT86] constitutes another popular adaptive
multigrid technique, but it relies strongly on the use of reg-
ular meshes. Little work exists in the application of adaptive
multigrid to irregular meshes in 3D, due to the difficulty in
maintaining interface regions of locally refined meshes, and
smoothly interpolating values across meshes.

In the context of computer graphics, multigrid has been used
for simulating thin shells [GTS02], enhancing the stability
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Figure 3: Multiscale Bounding Hierarchy (MBH). From left to right: (i) Mesh M4 of the dragon model, and one bounding

volume B (in blue) at the corresponding level L4 of the BVH. (ii) Finest mesh M1, and the surface patch (in white) bounded by

B. (iii) When M4 is the locally finest active mesh, B can be updated directly from its effective governor tetrahedra G∗(B) ∈M4

(superimposed in yellow), without accessing or evaluating the finest surface ∂M1. (iv) Notice the loose AABB computed from

the tetrahedra, as opposed to the tight AABB computed with our method based on simplex interpolation (in the other images).

of explicit integrators [WT04], accelerating the simulation
of deformable models in a non-adaptive manner [GW05],
or recently for fast mesh deformations in geometric model-
ing [SYBF06]. Aksoylu et al. [AKS05] have designed gen-
eral multigrid solvers on unstructured meshes.

Collision detection of deformable objects has been ad-
dressed using techniques such as: BVHs [dB97], spatial
hashing [THM∗03], visibility-based culling [GRLM03], or
second-order Voronoi diagrams [SGG∗06] (See [TKH∗05]
for a recent survey). Self-collision further complicates the
problem [VMT94, VMT06], as primitive adjacency is diffi-
cult to distinguish from actual collisions. For a surface with
n primitives, most techniques have a best-case O(n) cost.
The BD-tree [JP04] for linear parametric models constitutes
a notable exception. It may prune non-colliding objects by
testing only the root of the tree, which can be updated with a
cost linear in the number of deformation modes, not the size
of the surface. Our multiscale bounding hierarchy (MBH) is
also optimal in the sense that its best-case update cost (i.e.,
for a non-colliding object) is linear in the number of DoFs
of the simulation. As opposed to hybrid approaches for up-
dating BVHs [LAM01], it presents a O(1) cost for tightly
updating bounding volumes on demand. Moreover, by com-
bining features of BVHs and spatial hashing, it also allows
for fast hierarchical pruning in self-collision detection. Last,
visual or haptic perceptual metrics [ODGK03,OL03] can be
incorporated for implementing interruptible or adaptive col-
lision detection.

3. Adaptive Multigrid Deformations

In this section we describe the discretized dynamic deforma-
tion problem, its multigrid solution with the FAS scheme,
and the addition of adaptivity with the MLAT algorithm for
regular nested meshes, This algorithm sets the foundations
for our extension to irregular non-nested meshes, which we
will describe in §4.

3.1. Discretized Deformation Dynamics

Linear FEM discretization of linear-elastic deformation dy-
namics leads to motion equations Mẍ + Dẋ + Kx = Fext ,
where M, D, and K are, respectively, mass, damping, and
stiffness matrices, and Fext is a vector of external forces

(See [NMK∗05] for more details). We apply lumping to yield
diagonal M and D matrices, and per-tetrahedron stiffness
warping [MG04] to improve the behavior of linear elasticity
under large deformations. Backward Euler implicit integra-
tion with a first order approximation of forces [BW98] yields
the following linear system for computing node positions:

Axi = b, (1)

A = M+∆tD+∆t2K, (2)

b = Axi−1 +∆t (M+∆tD)vi−1 +∆t2Fi−1. (3)

3.2. FAS Multigrid

The first component of our novel multiscale bounding hier-
archy (MBH) is a sequence of non-nested irregular tetrahe-
dral meshes M = {M1,M2, . . .Mm} (See an example in Fig-
ure 2). Unlike the common numbering convention in the lit-
erature, we denote by M1 the highest resolution mesh, to es-
tablish a clear correspondence between levels of M and the
BVH. In this section, and w.l.o.g., we will consider M as a
sequence of nested regular meshes. We assume that the de-
formation field animates a high-resolution surface S, and, for
simplicity, throughout the paper we assume S = ∂M1.

We have implemented a V-cycle of FAS multigrid [BHM00,
TOS01] on the hierarchy M of meshes to solve the dis-
cretized linear problem (1). FAS computes an approxima-
tion to the full position x on every mesh (i.e., approx-
imations with different frequency components), and this
property is important for computing bounds of x based
on coarse mesh information, and thus designing the BVH.
On the top-down pass (from
fine to coarse), the algo-
rithm successively relaxes
the error on each level us-
ing Gauss-Seidel (G-S) it-
eration, and restricts (R)
the residual b−Ax to the
next coarser level. On the
bottom-up pass (from coarse to fine), the algorithm prolongs

(P) the coarse corrected solution to the next finer level and
performs further error relaxation. On the coarsest level, we
use a Conjugate Gradient (CG) iterative solver.

c© Association for Computing Machinery, Inc. 2007.
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Figure 4: Adaptively Deformed Gummy Bears. Each bear has a 6-mesh hierarchy (from 85 to 6418 tetrahedra). Notice the

refinement (red) when collisions induce high stress, and the coarsening (yellow) when the bears come to rest. Our adaptive

algorithm offers about 10x speed-up over full-resolution conjugate gradient or non-adaptive multigrid. See details in Table 1.

In FAS, the right-hand side on a coarse mesh M j+1 is formu-
lated using a residual restriction operator R, and a solution

restriction operator R̃ as:

b j+1 = R j+1
(

b j−A jx j
)

+A j+1R̃ j+1x j
. (4)

The corrected solution is prolonged to M j by a prolongation

operator P as:

x j ← x j +P j(x j+1− R̃ j+1x j). (5)

On the finest mesh, we use as initial estimate

x1
i ← x1

i−1 +∆tv1
i−1. (6)

On coarser meshes M j+1, we use as initial estimate the re-
stricted solution, x̃ j+1 = R̃ j+1x j.

We define A j by discretizing the dynamic deformation prob-
lem on every mesh, which provides a formulation indepen-
dent of the level of refinement in the adaptive setting. We
leave the description of the interpolation operators P, R, and
R̃ to the specific case of irregular tetrahedral meshes in §4.1.

3.3. MLAT Algorithm

In MLAT, each mesh M j is active on a domain Ω j, and may
be refined locally to yield an active domain Ω j−1 ⊆ Ω j on
the finer mesh M j−1. We define as active nodes those that
belong to an active domain Ω. Error relaxation should be
executed on the active domains Ω j, which requires the eval-
uation of values on inactive nodes on the interface ∂Ω j. We
further divide active and inactive nodes into four subclasses:

• Interior: active nodes on regions that are refined.

• Front: active nodes on regions that are not further refined.

• Interface: inactive nodes where the function x needs to be
evaluated in the context of the multigrid algorithm.

• Idle: all other (inactive) nodes.

Values on interface nodes should be interpolated from the
coarser active regions in which they lie. On regular nested
meshes, coarse nodes are simply a subset of fine nodes, and
interpolation of interface nodes is straightforward [Bra77,
TOS01], because the nodes on a coarse mesh M j+1 that de-
fine the value x on an interface node of the next finer mesh
M j are by construction active or interface themselves. The
FAS algorithm can be modified to account for active subdo-
mains and adaptivity, leading to the MLAT algorithm:

Algorithm 1 V-Cycle of MLAT.

//Top-Down Pass
for meshes M j, j = 1→ m−1,

Initialize x j on front nodes based on (6).
Set b j on front nodes based on (3).
Perform G-S pre-relaxation on x j on active nodes.
Restrict x̃ j+1← R̃ j+1x j to interior nodes.
Restrict b j+1 to interior nodes as in (4).

//Coarse Mesh Solution
Solve Amxm = bm with Conjugate Gradient.

//Bottom-Up Pass
for meshes M j, j = m−1→ 1,

Interpolate x j on interface nodes based on P.
Correct x j by prolongation (5) on active nodes.
Perform G-S post-relaxation on x j on active nodes.

4. MLAT on Irregular Meshes

In this section we describe our extension of MLAT to irreg-
ular meshes, through appropriate interpolation operators, an
augmentation of node neighborhoods, and simple refinement
and coarsening strategies. We also describe our error crite-
rion, the interpolation of the deformation to the animated
surface, and constraint-based collision response.

4.1. Irregular Meshes and Interpolation Operators

We construct the meshes {M j} in a way such that their
boundaries approximate the animated surface S, and all ver-
tices of S are contained in every mesh M j in the rest config-
uration. Note, however, that we do not enforce topological
equivalence across meshes (e.g., the meshes may have dif-
ferent genus) (See Figure 2 for an example). To construct
each mesh M j, we start from the triangle mesh S, create an
offset surface, apply triangle mesh decimation, and mesh the
interior with an off-the-shelf tetrahedral mesh generator.

Prolongation P can be regarded as upsampling, and is typ-
ically implemented as interpolation. Specifically, for every
node N ∈ M j, we identify the tetrahedron T ∈ M j+1 that
is closest to or encloses N. W.l.o.g., we refer to it as the
coarse enclosing tetrahedron T+ of N, T = T+(N). We de-
fine the corresponding row of P j by the barycentric coordi-
nates of N in T+(N) in the rest configuration. For the resid-
ual restriction operator R, we follow the common choice of
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R j+1 =
(

P j
)T

[BHM00]. For the solution restriction opera-
tor R̃, however, we choose barycentric interpolation of each
coarse node N ∈ M j in the closest or enclosing tetrahedron
T ∈M j−1. W.l.o.g., we refer to it as the fine enclosing tetra-
hedron T− of N, T = T−(N).

On irregular meshes, we identify the following sources of
potential inconsistencies in the cross-mesh interpolations of
Algorithm 1, which we avoid through the augmentation of
mesh data structures and careful refinement and coarsening
strategies presented in the next subsection:

• Prolongation to an active node N ∈ M j according to (5)
in the bottom-up pass of Algorithm 1 may use inactive
nodes in M j+1 in a straightforward application to irregu-
lar meshes. In order to satisfy appropriate convergence of
the multigrid algorithm, the algorithm must use only active
nodes in M j+1. Moreover, the correction x− x̃ is concep-
tually a correction to the residual only for interior coarse
nodes in M j+1. For front coarse nodes, we consider x̃ sim-
ply as the initial value in the top-down pass of the V-cycle.
• Interpolation to an interface node may use idle nodes
without a proper solution estimate, and correct interpola-
tion must use only active or interface nodes.
• Similarly, restriction to an interior node may use idle
nodes, but must use only active or interface nodes. In the
residual restriction to a node N ∈ M j according to (4), we
set a value 0 for the residual of interface nodes in M j−1.

4.2. Refinement and Coarsening

To guide the refinement and coarsening, we construct a node

forest N similar to the one of Debunne et al. [DDCB01]. For
each node N ∈M j, we set as its parent in N the closest node
from T+(N) ∈M j+1. Note that Debunne’s forest definition
would not avoid the interpolation inconsistencies.

Furthermore, we define a set of cascade neighbors C(N) on
each node N, which conceptually augments the 1-ring neigh-
borhood of N, and can be precomputed without additional
run-time bookkeeping. Specifically, N j belongs to C(N) if at
least one of the following conditions holds: (a) N j belongs
to the 1-ring neighborhood of N; (b) given a 1-ring neighbor
Nk of a child of N, N j is one of the nodes in T +(Nk); (c) N j

is the parent in N of a node in T−(N); and/or (d) N is a cas-
cade neighbor of N j (to ensure symmetry of the definition).
We can now introduce the following simple refinement and
coarsening strategies for irregular meshes:

Refinement: If a front node N does not satisfy the error cri-
terion (See §4.3), we refine it by converting it into an interior
node, and activating all its children in N . At the same time,
we enforce that all nodes in C(N) must be active, which may
induce cascading refinements.

Coarsening: If all children of an interior node N are front,
none of their cascade neighbors is an interior node, and N

satisfies the error criterion, we coarsen N by converting it
into a front node, and deactivating all its children in N .

Our definition of node forest, cascade neighbors, and simple
refinement and coarsening strategies enable the use of the
very same MLAT Algorithm 1 on irregular meshes. Refine-
ment is executed after a complete execution of Algorithm 1,
and starts on the coarsest mesh Mm. Coarsening is executed
after refinement, and starts on the finest mesh M1. After re-
finement and coarsening are completed, we initialize the in-
terface for the next time step, by setting inactive neighbors
and children of front nodes as interface, and initializing x on
them in a bottom-up pass (from coarse to fine).

4.3. Error Criterion

We determine the locally required resolution of the multigrid
hierarchy M by comparing the solution on the two finest
active levels. Specifically, and as common in adaptive finite
element simulations [Ran99], we compute on a front node
N ∈M j a local residual that weights by the local linear sys-
tem A the difference between the local solution and the one
prolonged from the next coarser level:

e(N) = ‖A j(x j−P jx j+1)‖. (7)

Our error criterion measures the local quality of the linear
approximation on M j+1, and maintains M j as a conserva-
tive level for error computations. By weighting the solu-
tion difference by A, the error criterion depends on the lo-
cal stiffness of the equations, thus reducing possible pop-
ping due to dynamic refinement and coarsening. We com-
pare e(N) to predefined error thresholds, but they could also
be weighted by distance to the camera, amount of occlusion,
or size of the contact area, to account for visual or haptic
perception [ODGK03, OL03]. Note that the error threshold
may not be too high, or popping will be inevitable.

4.4. Surface Evaluation and Collision Response

Application of boundary conditions in the dynamic simula-
tion requires the definition of positions x on the animated
surface S. Note that, for collision detection, we compute
bounds of regions of S, and x is explicitly evaluated only
on colliding points. We define a tetrahedron T as front if at
least one of its nodes is a front node. Then, we define the
position x of a vertex V ∈ S as a barycentric combination
of the nodes of its finest enclosing front tetrahedron (in rest
configuration), denoted by T F (V ). Due to the containment
of S on all multigrid meshes, x is strictly defined as a convex

combination of nodes, and this is crucial for designing the
BVH (See §5).

Our adaptive multigrid solution to dynamic deformations al-
lows the use of diverse contact handling methods, such as
penalty-based or constraint-based. In our simulations, we
have followed the approach of solving a linear comple-
mentarity problem (LCP) using the projected Gauss-Seidel
method [CPS92]. We first solve a collision-free version of
the discretized forward dynamics problem (1), then we ex-
ecute continuous collision detection [RKC02] to detect and
formulate (inequality) contact constraints, and finally solve
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Figure 5: Self-Collisions in a Knot. A knot with 42254 triangles and a 7-mesh hierarchy (119399 tets in M1) is dropped and

suffers large self collisions. The middle image shows the resolution near the surface (‘yellow’ is coarse, ‘red’ is fine), achieving

smooth deformations and accurate handling of contact boundary conditions. Table 2 evaluates collision detection performance.

the LCP. Figure 5 shows smooth and robust contact sur-
faces that can be achieved by combining an LCP formula-
tion with our simulation and collision detection approach.
Constraint-based collision response is costly when applied
to high-resolution objects undergoing a large number of con-
tacts, but our multigrid hierarchy accelerates response com-
putations, as each contact force is applied directly on the
nodes of T F (V ) for each colliding vertex V , and the effect
propagates quickly through the object on the coarse meshes.

5. Adaptivity-Aware Collision Detection

We now complete the definition of the MBH, as we describe
the multiscale connections between BVs and tetrahedra, the
fast fitting of tight bounds for sets of points interpolated in a
simplex, and our novel adaptivity-aware self-collision detec-
tion. We first introduce the concepts for a non-adaptive simu-
lation with a high-resolution surface S embedded in a coarse
simulation mesh M f , and later extend them to the adaptive
setting. Our algorithms are independent of the type of BV,
but here we discuss an AABB-based implementation.

5.1. Multiscale Bounding Volumes

Our novel MBH consists of the sequence of non-nested
irregular tetrahedral meshes M = {M1,M2, . . .Mm} intro-
duced in §3.2, and the levels of a BVH B = {L1,L2, . . .Ll}
(with M1 and L1 the finest mesh and level). For bounding the
motion of the animated surface S, we enforce that all meshes
M j and BVH levels L j bound S.

The BVH B is a tree of multiscale bounding volumes

(MBVs) that bound S in a hierarchical manner. Concep-
tually, we set a bidirectional correspondence between the
lower m levels of B and the meshes in M . Classical BVH
refitting first computes the leaf BVs and then updates the
rest of the hierarchy in a bottom-up manner. The intuitive
idea behind our adaptivity-aware collision detection algo-
rithm is to exploit the correspondences between levels of B

and meshes of M , to refit coarse MBVs directly and in a fast
manner (i.e., with cost O(1)) using active tetrahedra.

We define the tree connectivity of B as a preprocessing op-
eration, by successive splitting of the triangles of S at the
median of the longest axis defined by the covariance ma-
trix [GLM96]. Let us assume, w.l.o.g., that this procedure
yields a perfectly binary tree with l levels. In this way, a
MBV B at level L j must bound a set of 2 j−1 triangles in S.

5.1.1. Governors for Efficient Dynamic Refitting

Let us start with the assumption that the front of M is fixed
at a coarse mesh M f (i.e., only M f and coarser levels are ac-
tive) and later relax this assumption in §5.4. Given M f , we
similarly define its corresponding BVH level L f as the front
of B. For each MBV B ∈ L j, j ≤ f , we define the effective

governor tetrahedra G∗(B) ∈M f as those that bound (in the
rest configuration) the set of vertices V (B) ∈ S that must be
bounded by B. Figure 3 shows one BV B ∈ L4, its governors
G∗(B) ∈M4, and the patch it bounds in S = ∂M1. When the
locally finest active mesh is M f = M4, we can detect colli-
sions using only DoFs from M4, without ever evaluating M1.

5.1.2. Refitting Algorithm

We exploit the knowledge about the front of M to refit B

with an adaptivity-aware cost in the following manner. Be-
fore a collision detection query, we bound MBVs in L f using
effective governors. Then, we bound all other MBVs in the
subtree B f = {L j, j ≥ f} in a bottom-up manner.

During a collision detection query, we compute bounds on
demand for each visited MBV B below the front L f , using
its effective governors G∗(B)∈M f . In simulations with tem-
poral coherence, we cache the front of the subtree B∗ of
B visited during the previous collision query. Then, before
the next query, we apply the adaptivity-aware refitting to the
front of the subtree B∗∪B f instead.

Our refitting algorithm is optimal if the contribution of each
governor to the bounds can be computed in O(1) time and
every MBV B ∈ L f has O(1) governors. In the next sub-
section we present an efficient O(1) computation of tight
bounds. The number of governors can be controlled during
the meshing process, by ensuring low enough sampling at
each mesh M j. As a reference, the required mesh size ratio

is
‖M j‖
‖M j+1‖ ≥

√
8 for a cube with uniform sampling.

5.2. Tight Bounds in Simplex Interpolation

We now present a novel and fast method for computing tight
bounds along a direction x of a set of points V interpolated
inside a simplex T (in our case, a tetrahedron). It is more
efficient than evaluating the points even for very small sets,
and often yields much tighter bounds than simply bounding
the simplex. We use it for computing tight AABBs in the
dynamic refitting of MBVs on or below the front of B.
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Using planes of minimum and maximum barycentric
coordinates in rest configuration, we define a convex
polyhedron that bounds V and is entirely contained in
T . This polyhedron constitutes an 8-DOP for a tetra-
hedron, and the same concept has been used before
for bounding skinned surfaces [KZ05]. Given vertices
{VA,VB,VC,VD}, the 8-DOP is defined by barycentric inter-
vals {[aA,bA], [aB,bB], [aC,bC], [aD,bD]} (See Figure 6 (left)
for a 2D example). At runtime computation of the AABB,
we conservatively bound V by bounding the 8-DOP instead.

Instead of evaluating the corners of the 8-DOP, we propose
a novel method that sorts the vertices of T and computes
bounds in close-form. Note that every front tetrahedron con-
stitutes typically an effective governor for many MBVs, but
it only needs to be sorted once per time step. For a direction
x, we sort the vertices of T , resulting in x0 ≤ x1 ≤ x2 ≤ x3 for
a tetrahedron (Figure 6 (right) shows a 2D example). Then,
we efficiently compute AABB bounds [ax,bx] by indexing
the barycentric intervals according to the sorted vertices as:

ax = b0x0 +a3x3 +a2x2 +(1−b0−a3−a2)x1,

bx = b3x3 +a0x0 +a1x1 +(1−b3−a0−a1)x2. (8)

This procedure is not guaranteed to optimally bound the 8-
DOP, as it may make a wrong, but conservative, assump-
tion on the intersection of barycentric planes that define the
8-DOP corners. However, in practice it provides very tight
bounds, as demonstrated in Figure 3. The method is extensi-
ble to simplex interpolation in higher (or lower) dimensions.
It is important to note that the 8-DOP may not be replaced by
an AABB or an OBB in rest configuration, because their cor-
ners may not be defined by convex combination in T , there-
fore they may not bound V during deformation.

5.3. Self-Collision Handling

We also exploit knowledge about the multigrid hierarchy M

to devise an adaptivity-aware test for self-collision detec-
tion. We combine features of spatial hashing [THM∗03] and
BVHs to design a self-collision detection algorithm with a
best-case (i.e., no collision) cost linear in the number of front
tetrahedra near the surface. If the front mesh M f is notably
coarser than the surface S, our algorithm largely outperforms
those linear in the size of S. Moreover, performance degrades
gracefully under actual self-collisions, and many areas are
pruned with a minor cost as shown in Figure 8.

5.3.1. Potentially Self-Colliding Patches

Given a front mesh M f that contains S and does not self-
intersect in the rest configuration, let us first define a patch
Sa ⊂ S as potentially self-colliding if one (or more) of its ef-
fective governors G∗(Sa) ∈ M f intersects some other tetra-
hedron in M f . Then, our algorithm builds on the following
lemma: Given two patches Sa,Sb ⊂ S that do not intersect in
the rest configuration, Sa and Sb do not collide if at least one
of them is not potentially self-colliding. The same lemma is

Figure 6: Tight Fitting k-DOP. Left: 2D example showing

a set of vertices (in blue) enclosed in a triangle, and the

6-DOP (in red) defined by barycentric coordinate bounds.

Right: To compute the bounds [ax,bx] of the 6-DOP along x,

it suffices to sort the vertices of the triangle and evaluate a

close-form definition of the extreme corner of the 6-DOP.

valid for a self-collision (Sa,Sa). We do not consider tetrahe-
dra that share only a vertex, an edge, or a face, as intersect-
ing, thus pruning potential self-collisions due to adjacency.

5.3.2. Hierarchical Self-Collision Query

Before a self-collision query, we perform a CCD intersec-
tion test (using spatial hashing) between front tetrahedra of
M f that are effective governors of some MBV (They are the
tetrahedra enclosing S). Then, we flag a front MBV B∈ L f as
potentially self-colliding if at least one of its effective gover-
nors G∗(B) intersects some other front tetrahedron. We prop-
agate the information up in B by flagging a MBV as poten-
tially self-colliding if at least one of its children is flagged. If
a collision query descends below the front L f , we flag MBVs
using information from the effective governors directly.

Hierarchical self-collision pruning can then be easily im-
plemented as follows. A self-collision test (Ba,Ba) can be
pruned if Ba is not potentially self-colliding. Otherwise, one
must split Ba and test its children. Notice that, in most hi-
erarchical algorithms, a test (Ba,Ba) can never be pruned
( [VMT94] is an exception, but its cost is linear in the size of
S), but in our case a self-collision query may be pruned right
at the root of the BVH! A self-collision test (Ba,Bb) can be
pruned if at least one MBV is not potentially self-colliding,
or if the AABBs do not collide (as in a regular query).

5.4. Extension to Adaptive Meshes

With adaptive meshes, the front of M may combine multiple
meshes M j, therefore effective governors cannot be known
a priori. We extend the basic BVH refitting algorithm de-
scribed in §5.1 by including governors at multiple levels, a
definition of BVH front for the adaptive setting, and an al-
gorithm for efficiently determining effective governors.

We extend the self-collision algorithm by flagging a MBV
as potentially self-colliding if some effective governor inter-
sects other tetrahedra, or the effective governors lie on dif-
ferent mesh levels. The spatial-hashing test between front
tetrahedra must be carried out at each level independently.

5.4.1. Multiscale Governors

As a preprocessing, and for every MBV B ∈ L j, j ≤ m,
we identify the governor tetrahedra G(B) at coarser levels,

c© Association for Computing Machinery, Inc. 2007.



M. A. Otaduy, D. Germann, S. Redon & M. Gross / Adaptive Deformations with Fast Tight Bounds

G(B)∈ {Mk},m≥ k≥ j, that may contribute to the dynamic
definition of the bounds of B, and we store them in a directed
graph, as shown in Figure 7 for a 2D example. We set an
edge from a governor tetrahedron Ta ∈M j to a coarser gov-
ernor tetrahedron Tb ∈M j+1, if both Ta and Tb bound at least
one common vertex in the set V (B) to be bounded by B.

5.4.2. Definition of the BVH Front

A MBV B ∈ L j is a potential front MBV if at least one of
its governors at the corresponding level, T ∈ G(B)∩M j, is
a front tetrahedron. Then, B is a front MBV if it is a po-
tential front MBV and it has no potential front descendants.
With this definition, the front of B is formed by roughly
as-coarse-as-possible MBVs that can be conservatively refit
with O(1) cost each, and with an adaptivity-aware cost alto-
gether, i.e., linear in the number of front tetrahedra in M .

To find the front of B at runtime, we first mark the MBVs
governed by each front tetrahedron at its corresponding
level. Then we perform a bottom-up flooding toward the root
of B, marking other visited MBVs, and finally we perform a
top-down pass to detect the boundary of the marked region.

5.4.3. Effective Governor Tetrahedra

In order to compute the bounds of a front MBV B, we seek
to identify those governors that effectively define the posi-
tion x of some surface vertex V bounded by B. We refer to
them as effective governors G∗(B), and they are, according
to §4.4, the finest active enclosing tetrahedra {T F} of all
vertices bounded by B. Given a front MBV B ∈ L j, we find
G∗(B) by performing a bottom-up search on G(B), seeded at
governors from the corresponding mesh, {T} ∈ G(B)∩M j.

Finding effective governors varies slightly for MBVs up-
dated on-demand during a collision detection query. In the
traversal of B during the query, every MBV B passes to its
children the level j of its finest effective governor. Then, the
children seed the search for finding their effective governors
at level j in the governor graph. The rest of the fitting algo-
rithm is identical as for front nodes.

6. Results

We have performed all our simulations on a dual 3.2 GHz.
processor PC with 2 GB of memory. They include a scene
with multiple gummy bears suffering impacts and deforma-
tions (See Figure 4), a knot falling on the ground and experi-
encing self-collisions (See Figure 5), and the interactive de-
formation of a dragon model also undergoing self-collisions
(See Figures 1 and 8).

The bears experience drastic yet smooth and stable changes
in the refinement of the multigrid hierarchy, due to impact-
induced deformations, as can be clearly seen in the accom-
panying video. Each bear is described by a 6-mesh hierar-
chy, from 85 tetrahedra in M6 to 6418 in M1. We have com-
pared our adaptive algorithm to full resolution conjugate gra-
dient and a non-adaptive FAS multigrid solver, as shown in

Figure 7: MBV Governors in 2D. Left: Two triangles, T11 ∈
M1 and T12 ∈ M1 (in red), and their bounding triangles in

M2 (in green) and M3 (in blue); Right: Graphs of governors

for the MBVs B(T11), B(T12), and B(T11∪T12).

Table 1, in scenarios with 1 and 8 bears. The first conclu-
sion is that FAS multigrid imposes no overhead on the so-
lution. Second, our adaptive algorithm offers about 10x av-
erage speed-up both in the dynamics update as in the com-
plete simulation, even though the bears reach full resolution
(locally) at times. Constraint-based collision response be-
comes the bottleneck, and our integrated algorithm for adap-
tive simulation and collision detection shows its power at
best when the bears come close to rest in a large contact
group, reaching a frame rate of 12 fps in this situation.

The falling knot in Figure 5 shows the ability to robustly
handle smooth contact areas, even for self-collisions. We
have also evaluated the performance of collision detection,
as outlined in Table 2, using a surface mesh S = ∂M1 with
42254 triangles and a non-adaptive simulation mesh M f =
M4 with 558 tetrahedra. Our algorithm shows an average
performance of 23.6 fps. Even though this benchmark is a
worst-case scenario, as large regions of the BVH are visited
due to the large contact areas, we obtain 7x average speed-up
over full refitting of the BVH, and 3x speed-up over spatial
hashing applied to the surface S (Not to be confused with our
use of spatial hashing for tetrahedra). Speedups would grow
with a denser surface S, thanks to the sublinear cost of our
algorithm, as well as with smaller contact regions.

A compelling application of our unified treatment of adap-
tive simulation and collision detection is the interactive de-
formation of the self-colliding dragon. The model suffers
global deformations as well as detailed localized deforma-
tions due to contact with the bear. However, note that po-
tential colliding areas are inherently large as we solve a
self-collision detection problem. We used a surface mesh
S = ∂M1 with 13480 triangles, and a simulation mesh M f =
M4 with 2552 tetrahedra. We disabled adaptive refinements
to ensure that constraint-based collision response remained
tractable at interactive rates. The frame rate varied from 8
to 15 fps when playing a pre-recorded bear trajectory (Per-
formance halves when the haptic device is connected at run-
time). The time per frame can be approximately decomposed
into: 50 ms for the forward dynamics update, 15 ms for the
intersection query of front tetrahedra through spatial hash-
ing, 20 ms for the update of the BVH, 5 to 25 ms for the
BVH self-collision query (notice the fast query due to hier-
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Figure 8: Hierarchical Pruning of Self-Collisions. (i) A dragon with a surface S = ∂M1 with 13480 triangles is simulated

using (ii) a mesh M4 (with 2552 tetrahedra). (iii) In the level L3 of the BVH, only the MBVs depicted in blue need to be updated,

as our hierarchical self-collision detection algorithm can prune regions governed by non-intersecting tetrahedra at high levels

of the BVH. (iv) The self-collision between back and neck is handled accurately and effiicently.

Num. Fw. Update (fps) Total (fps)

Bears CG MG Ours CG MG Ours

1 15.3 17.8 383.2 3.07 3.37 58.2
8 1.89 2.15 26.7 0.40 0.36 2.98

Table 1: Comparison of Solvers. The benchmark of Fig-

ure 4 is executed with 1 and 8 bears: (i) at full res. with con-

jugate gradient (CG); (ii) at full res. with a multigrid solver

(MG); (iii) with our adaptive multigrid solver. Average total

performance and for forward dynamics update are shown.

archical pruning), and up to 250 ms for collision response
(10 ms per constraint anticipation, and 40 ms for the final
response computation).

Our algorithm exploits simulation adaptivity to produce
considerable speed-ups in collision detection even for
moderately-sized surface meshes (tens of thousands of trian-
gles), and speed-ups would be higher with denser surfaces.
Although not shown here, our framework can also incorpo-
rate interruptible collision detection and/or perceptual error
metrics. Examples like the dragon show the ability to sim-
ulate in real-time challenging self-collisions, but our frame-
work is also applicable to offline simulations, for example
for fast preview of simulations of complex embedded sur-
faces. One can compute a coarse simulation (and render a
coarse preview surface) while conforming to the boundary
conditions of the full resolution surface, therefore guaran-
teeing that the final rendering will be collision-free.

7. Summary and Future Work

Motivated by the observation that setting boundary condi-
tions in previous adaptive deformable simulation methods
required handling the boundary in a non-adaptive manner,
we have designed data structures and algorithms for seam-
less integration of adaptive simulation and collision detec-
tion. In particular, our novel multiscale bounding hierarchies
link mesh hierarchies employed in adaptive simulation with
BVHs for collision detection. Coupled with novel adaptive
multigrid simulation and collision detection methods, they
enable robust and accurate handling of contact boundary
conditions with a cost independent on the boundary’s com-
plexity. As an example, self-collision of complex surfaces

Full Hash W/o W/o Ours

BVH Grid k-DOP Sort (1) (2) (3)

282.5 111.9 314.8 62.4 21.6 2.8 18.0

Table 2: Self-Collision Detection Timings (in ms.). Our

algorithm (1: MBH refit, 2: tet hashing, 3: query) Vs. (i) a

full BVH-based query, (ii) spatial hashing on the full surface,

(iii) no k-DOPs, and (iv) no tet sorting, on a 42254-triangle

knot simulated with 558 tetrahedra (See Figure 5).

with tens of thousands of triangles, governed by a few thou-
sand DoFs, can be simulated interactively.

As with other hierarchical and/or adaptive techniques, per-
formance comes with the price of memory consumption
(O(n lgn) for our multiscale bounding hierarchies) and the
algorithms require slightly more elaborate implementation.
This was not a major issue in our case, because the collision
detection builds on well-known algorithms, and our contri-
butions in the adaptive simulation enable the use of the very
same algorithms as in the past (but now on irregular meshes).

Although we have not suffered lack of convergence prob-
lems in the simulations, it is recommendable to analyze the
influence of our interpolation and relaxation strategies for ir-
regular meshes. From a performance point of view, collision
response becomes the bottleneck in our simulations in situ-
ations with large contact areas. We plan to explore solutions
for contact clustering that exploit adaptivity as well. And, in
the future, we would also like to extend our method to handle
the simulation of 2D manifolds embedded in 3D.
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