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Summary. A pattern often found in regions of recirculating flow is the vortex ring.
Smoke rings and vortex breakdown bubbles are two familiar instances of this pattern.
A vortex ring requires at least two critical points, and in fact this minimum number
is observed in many synthetic or real-world examples. Based on this observation, we
propose a visualization technique utilizing a Poincaré section that contains the pair
of critical points. The Poincaré section by itself can be taken as a visualization of the
vortex ring, especially if streamlines are seeded on the stable and unstable manifolds
of the critical points. The resulting image reveals the extent of the structure, and
more interestingly, regions of chaos and islands of stability. As a next step, we
describe for the case of incompressible flow an algorithm for finding invariant tori in
an island of stability. The basic idea is to find invariant closed curves in the Poincaré
plane, which are then taken as seed curves for stream surfaces. For visualization
the two extremes of the set of nested tori are computed. This is on the inner side
the periodic orbit toward which the tori converge, and on the outer side, a torus
which marks the boundary between ordered and chaotic flow, a distinction which
is of importance for the mixing properties of the flow. For the purpose of testing,
we developed a simple analytical model of a perturbed vortex ring based on Hill’s
spherical vortex. Finally, we applied the proposed visualization methods to this
synthetic vector field and to two hydromechanical simulation results.

1 Introduction

Vector field topology, introduced by Helman and Hesselink [HH89], can be
summarized as the use of concepts from the theory of continuous dynamical
systems (see e.g. [GH83]) in scientific visualization. The main motivation for
vector field topology is its ability to provide a condensed representation of a
vector field. The most popular such representation is the topological skeleton
which is usually defined as the set of all critical points and all separatrices. In
two dimensions, the topological skeleton provides a segmentation of the do-
main into regions of similar flow behavior. The separatrices can be obtained
by computing the stable and unstable manifolds of all critical points of saddle
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type. However, unless the vector field is irrotational, there may also exist peri-
odic orbits that behave like sources or sinks. If this is the case, the topological
skeleton computed this way is incomplete. Only if the set of (isolated) periodic
orbits is explicitly added to the skeleton, the full segmentation is obtained.
An algorithm for finding isolated periodic orbits was developed by Wischgoll
and Scheuermann [WS01].

When going to three dimensions, the topological skeleton can again be
defined as the set of all critical points and all separatrices. The separatrices
are the stable and unstable manifolds of saddles and spiral saddles (saddle
foci), coming in pairs of a 1D and a 2D manifold, i.e. a streamline and a
stream surface. The 1D manifolds are obviously not very useful for the pur-
pose of segmenting a 3D domain. Only in the case of spiral saddles, they have
some relevance, as they are sometimes understood as vortex core lines. The
2D manifolds theoretically provide segmentation, but in practical flows, these
stream surfaces can become very convoluted. An alternative is to show only
their pairwise intersections, known as saddle connectors [TWHS03] or hete-
roclinic orbits, resulting in a visualization of the connectivity between critical
points.

The usage of vector field topology for scientific visualization is not re-
stricted to showing topological skeletons. For example, critical points can be
used for streamline placement [YKP05]. Even if the full set of critical points
is used without any type analysis, this strategy was shown to yield effective
visualizations by Weinkauf et al. [WHN∗03]. Alternatively, a visualization of
the local flow behavior near critical points can be obtained by displaying icons
showing the linearized flow defined by the critical point type and by the eigen-
vectors of the Jacobian of the vector field [GLL91]. The same information can
be used to seed short streamlines near critical points [LDG98], giving a slightly
more global picture of the flow.

It is interesting to notice that most work done so far in topology-based
visualization falls in one of two categories, either giving a global picture of
the entire domain or a local picture of neighborhoods of critical points. While
global effects are an interesting part of dynamical systems and chaos theory,
it can be argued that for flow visualization, they are less relevant because of
issues such as domain boundaries, simulation accuracy, or time-dependence.
But also the other extreme, independent visualization of critical points, can
be regarded as unsatisfactory, since much of the topological information is
left unused. We believe that vector field topology has much to offer for flow
structures which fall in between the two extremes. One such structure is the
vortex ring, which is essentially determined by two critical points and a small
number of periodic orbits. In an earlier paper [SP07], we used a specialized
stream surface algorithm for the visualization of such middle-scale flow fea-
tures. Garth et al. [GTS∗04] and Tricoche et al. [TGK∗04] demonstrated how
complex flow structures such as vortex breakdown bubbles can effectively
be visualized by using stream surfaces and volume rendering, respectively. In
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this paper we present complementary visualization techniques which are more
closely oriented at the topology.

There has of course been previous work on visualization of dynamical
systems. In particular for visualizing the behavior near critical points of a
3D system, Löffelmann et al. introduced various techniques such as glyphs
[LDG98], Poincaré maps [LKG97] directly visualized in the context of the 3D
field, and bundles of trajectories [LG98] rendered as illuminated streamlines
[SZH97]. In all these cases, the object to be visualized was a given dynamical
system. What we show in this work is that vector fields originating from
other sources, such as synthetic flow fields or industrial CFD results, are just
as well suited for being visualized as dynamical systems. In particular, we
believe that is worth looking at further concepts of the dynamical systems
theory than those which have made their way into the toolbox of vector field
topology. As a source of inspiration, the book by Abraham and Shaw [AS92]
can be recommended.

2 Topology of vortex rings

A typical feature occurring in recirculation regions is a connected pair (C0, C1)
of critical points where C0 is a 1:2 spiral saddle (1 incoming and 2 outgoing
dimensions) and C1 is a 2:1 spiral saddle. By “connected” we mean that
the 2D unstable manifold Wu(C0) and the the 2D stable manifold W s(C1)
intersect. The intersection is then a set of saddle connectors. If the spiraling
at both C0 and C1 is sufficiently strong, the surface pair (Wu(C0),W s(C1))
roughly delimits a recirculation region. In its simplest form this region is a
vortex ring, as is illustrated in Figure 1. The saddle connectors alone give
already some idea of the geometry of the recirculation region. However, there
is usually more topological information available for visualization than just the
saddle connectors. Such features include chaotic regions, islands of stability,
and invariant tori having rational or irrational rotation numbers (i.e. frequency
ratios).

If the (3D) vector field is divergence-free any such transversal intersection
of the 2D (un-)stable manifolds of two spiral saddles with sufficient spiraling
automatically implies a heteroclinic tangle. This phenomenon which is also
known as Shilnikov chaos [Sil65, SVL01] is well known in the dynamical sys-
tems literature and can be described as follows. In general, the two manifolds
Wu(C0) and W s(C1) do not coincide, but intersect transversally. In this case
they intersect at an even number of saddle connectors, usually a pair σ and
σ′ of them. Between the windings of the saddle connectors, the manifolds
form two “tubes” that are wrapped around the structure. The tubes have
constant flux (i.e. independent of cross sections) because the 2D manifolds
are stream surfaces, and the sum of the two fluxes is zero because of the
divergence-free condition. This implies that toward the critical points, where
velocities approach zero, the tubes must either have increasing cross section
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Fig. 1. Unstable manifold (blue) and stable manifold (red) of spiral saddles C0 and
C1, respectively. Their intersection is a pair of saddle connectors σ and σ′.

area or develop folds that extend into regions of higher velocities. These folds,
known as lobes, are typical of vortex breakdown bubbles (see e.g. [SMH98]). It
might seem strange to use the term vortex ring not only for structures such as
smoke rings but also for the chaotic structure of a vortex breakdown bubble.
However, this is consistent with the literature [KF02].

Much of dynamical systems theory deals with the special case of Hamil-
tonian systems, because of their area-conserving maps which are mainly re-
sponsible for chaotic behavior. Among the vector fields, the divergence-free
ones play a similar role, and in fact they are related to Hamiltonian systems. In
2D, divergence free-vector fields (written as ODEs) and Hamiltonian systems
are even the same, with the stream function Ψ (with ∂Ψ

∂x = −ẏ and ∂Ψ
∂y = ẋ)

playing the role of the Hamiltonian function. In 3D, a divergence-free vec-
tor field is volume preserving, but does not necessarily have area-conserving
Poincaré maps. Nevertheless, the Poincaré map is at least flux-conserving,
which is the reason for the above mentioned Shilnikov chaos to occur.

The use of topological methods for time-dependent flow is sometimes ques-
tioned. Haller [Hal01] says that structures such as chaotic tangles or KAM tori
(i.e. invariant tori of a Hamiltonian system) do not exist in finite-time tur-
bulent data sets. Nevertheless we believe that it is interesting to search for
such structures, first of all in steady flow fields (where time can be viewed as
infinite). It can be demonstrated that these topological features exist in prac-
tical flow data, meaning that the catalog of features to be studied in vector
field topology must include invariant tori, chaotic regions, intersecting stable
and unstable manifolds and multiple saddle connectors. Clearly, the definition
of stable and unstable manifolds requires infinite-time flows, but this already
holds for the separatrices in the commonly treated 2D case. Practical flow has
often small enough time-dependence that their visualization as steady flow is
a good enough approximation. The fact that vortex breakdown bubbles have
been photographed in experiments [SMH98] confirms that this holds even if
chaos is involved. Furthermore, the shapes observed in experiments have been
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shown to be consistent with the manifolds of critical points in a steady vector
field [SVL01].

3 Analytical vortex ring model

For testing our algorithms, we developed a simple analytic vortex ring model
based on Hill’s spherical vortex (see e.g. [Saf92]). An analytical vector field
has the advantage that artifacts due to discretization and interpolation can
be excluded. A second motivation was to demonstrate that a rich topology
(Figure 7) is possible even if the vector field has only two critical points and
can be expressed with only quadratic terms (Eq. 3).

An instance of Hill’s spherical vortex can be described by the two velocity
fields

ui (x, y, z) =

xz
yz
z2 + 1 − 2r2

 (1)

for points inside the unit sphere r =
√

x2 + y2 + z2 <= 1 and

uo (x, y, z) =

xzr−5

yzr−5

z2r−5 − 1
3r−3 − 2

3

 (2)

for points outside it (r >= 1).
The field is divergence-free, and it solves the Navier-Stokes equations (to-

gether with a matching pressure field). Furthermore, the field has zero vorticity
outside the unit sphere. See Figure 2.

By adding a swirl (ωy,−ωx, 0), a rotating vortex ring model is obtained.
This simple model does no more solve the Navier-Stokes equations but is ca-
pable of generating the topological phenomena that can be observed in vortex
rings. Physically correct variants of Hill’s vortex with swirl exist, but they are
more expensive to compute since Bessel functions have to be evaluated [Saf92].
A different kind of generalization of Hill’s spherical vortex are the Norbury
vortex rings [Nor73] where the vorticity is confined to toroidal regions instead
of the sphere.

In order to obtain the chaotic behavior of a real vortex ring, the symmetry
must be broken. In our model we do this by tilting the x-axis, which is mo-
tivated by experimental studies of vortex rings (see [TH03]). By substituting
z′ = z + εx for z and w′ = w + εu for w in Eq. 1, and by adding the swirl, we
get the velocity fields

ui
εω (x, y, z) =

 ωy
−ωx

0

 +

xz′

yz′

zz′ + 1 − 2r′2

 (3)

for points inside the distorted unit sphere r′ =
√

x2 + y2 + z′2 <= 1 and



6 Ronald Peikert and Filip Sadlo

C0

C1

PP

Fig. 2. Hill’s spherical vortex (axial
slice). C0, C1: critical points (spiral sad-
dles), P : periodic orbit.

Fig. 3. Hill’s spherical vortex with
swirl (ω = 2π) and tilt (ε = 0.313).
Slice of the stable manifold of the criti-
cal point at (0, 0, 1).

uo
εω (x, y, z) =

 ωy
−ωx

0

 +

xz′r′−5

yz′r′−5

zz′r′−5 − 1
3r′−3 − 2

3

 (4)

for points outside of it.
This modified field is still divergence-free. It can be shown that the only

critical points are two spiral saddles at (0, 0,−1) and (0, 0, 1).
Figure 6 shows a x = 0 slice of the unstable manifold of the critical point at

(0, 0, 1), computed by seeding 200000 streamlines near the critical point and
allowing for a maximum of 200000 intersections with the plane. The coloring
of intersection points represents time, expressed in number of intersections
with the plane. A rainbow color map is used, starting with violet and ending
with red for intersection number 1000 and above. The system of three ODEs
was solved with the 4th order Runge-Kutta-Fehlberg routine from the Netlib
library.

If an even simpler model is needed, it is also possible to use just the inner
part ui

εω for the entire domain, see Figure 7.

4 Visualization techniques for vortex rings

The visualization technique we propose for vortex rings consists of three steps.
First, the set of critical points is computed, and candidates for vortex rings are
generated among pairs of spiral saddles of opposite type. Then, a plane passing
through the two critical points is chosen, and a Poincaré section of Wu(C0)
and W s(C1) is taken. If an intersection of these is observed, the vortex ring is
confirmed. Finally, the Poincaré section is used to extract islands of stability,
i.e. to segment regions of chaotic and ordered flow.
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4.1 Detection of vortex rings

The set of critical points is computed with the standard cell-by-cell method.
Only cells where all three vector components have a zero crossing have to be
processed. For classifying the critical points, the eigenvalues of the Jacobian
are needed. One positive real eigenvalue and a pair of complex eigenvalues with
negative real parts indicate a 2:1 spiral saddle, while opposite signs indicate
a 1:2 spiral saddle. Pairs (C0, C1) of these two kinds of spiral saddles are now
taken as candidates for vortex rings. We choose pairs simply based on vicinity
and leave it to the verification step described in Section 4.2 to eliminate wrong
pairs. Alternatively one could extract vortex core lines and make use of the
fact that critical points of spiral saddle type lie on core lines because they fulfill
both the Sujudi-Haimes and Levy criterion. Yet another approach would be
to compute the set of saddle connectors which gives the correct pairs directly.

4.2 Poincaré section

We choose a plane passing through C0 and C1, using the remaining degree
of freedom to fit the plane to the two real eigenvector directions of the two
critical points. This way, the section is taken close to the center line of the
vortex ring. Then a uniform grid is defined on the plane with an extent chosen
based on the distance d = ||C1 − C0||. We found a square with edge length
2d to be sufficient in most cases. The two manifolds Wu(C0) and W s(C1) are
now computed based on a discrete set of seed points, and the intersections
with the Poincaré section are stored as two (texture) images. Seed points for
the manifold of, say, C0 are generated as follows. A first seed s0 is chosen
at a small offset from C0 on the Poincaré plane where it intersects the plane
spanned by the two complex eigenvectors. From s0, a streamline is integrated
in the time direction where the distance from C0 increases. Its next iterate (i.e.
intersection with the Poincaré plane) is denoted by s1. Further seed points
are now generated on the straight line segment between s0 and s1 by loga-
rithmically interpolating the distance of the seed points to C0. Logarithmic
interpolation is appropriate because close to C0 streamlines are logarithmic
spirals, and the error introduced by interpolating along a straight line falls off
with the streamlines converging to the 2D manifold.

Integrating streamlines for all seed points and for a given maximum num-
ber of intersections with the Poincaré plane results in an image showing the
intersection curve of the 2D manifold. By overlaying the images of C0 and
C1 it can be decided if the manifolds intersect. An example pair is shown in
Figure 10. In that case the image shows the lobes (folds) extending toward the
second critical point. It also shows the chaotic region formed by the inward
extending lobes, and it typically shows a hierarchy of islands of stability. The
islands of stability are toroidal regions around a periodic orbit of minimal pe-
riod. The inner part of stability islands is typically filled with nested invariant
tori with no flux across them (stream surfaces, known as KAM tori in the
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case of Hamiltonian systems). Further out, chains of secondary islands can
often be seen. These can be separated from the primary island by first regions
of chaos. When the chaotic region is reached, so-called cantori [MMP84] can
appear. These are porous tori of measure zero, which in some cases (if the
rotation number is a “noble” irrational number) have very little flux across
them, and act therefore as partial barriers.

4.3 Islands of stability

From the previous step the Poincaré sections of Wu(C0) and W s(C1) are now
given as scalar fields on a regular 2D grid (or image) where the data values
(or color indices) store the integration time or zero for cells that were not
intersected. The goal is now to segment in the overlay of the two images the
islands of stability. First, to clean the boundaries, a morphological closure
operation is performed. This is followed by a component labeling step. Any
component which does not extend to the image boundary is now checked for
being an island of stability. A problem here is to distinguish islands of stability
from holes that are formed by inward folding lobes. It can be observed that the
latter are reached after much shorter integration time, hence when the average
data value on their boundary is computed, this value is small compared to
that of stability islands (see Figures 6, 7, 9, 10).

The obtained candidates for islands of stability are now processed in order
of decreasing size. First, a streamline is seeded at the center of the island’s
bounding rectangle and whenever the Poincaré plane is intersected, the labeled
component of the intersection point is marked as being part of the same
island. If the streamline intersects the Poincaré section at a point outside of
a component with a valid label, the test has failed.

Given now an island of stability, we want to visualize its internal structure
which is a periodic orbit surrounded by nested invariant tori, with possible
island chains interspersed in the outer part. For the Hill’s vortex example, the
primary and secondary islands are shown in Figure 4.

We will visualize as two characteristic features the periodic orbit in the
center and the outermost torus. The streamline seeded at the center of the
island’s bounding rectangle is integrated for a few “rounds” (detectable by
increasing/decreasing x and y coordinates in the Poincaré plane). This should
produce a set of points lying densely on a closed curve, otherwise it has to
be retried from a slightly offset seed point. If a closed curve is obtained, the
center of its bounding rectangle can be used for the next iteration of the
process which is repeated until a fixed point is found.

This algorithm exploits the special structure of nested tori and is signif-
icantly faster than the general approach of looking for fixed points of the
Poincaré map, especially since in the case of secondary islands no fixed points
are found and successive powers of the Poincaré map must be computed and
searched for fixed points, too.
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Fig. 4. Internal structure of primary
and secondary island of Figure 3.

Fig. 5. Primary (yellow) and secondary
(red) islands rendered as stream sur-
faces.

For finding the boundary of the island of stability, an iterative search is
started with a seed curve consisting of the outermost black (zero) pixels. At
pixels which are mapped to a pixel outside the boundary, the seed curve is
corrected inward by a pixel. This is repeated until all pixels of the seed curve
are mapped to pixels inside the island. Finally, on these pixels the map is
iterated a few times in order to reach a fixed curve. The obtained curve can
be used as a seed curve for a simplified stream surface algorithm which requires
only integration until the same component of the Poincaré plane is intersected
again. Figure 5 shows a pair of stream surfaces obtained this way.

With a similar technique, the manifolds Wu(C0) and W s(C1) can be ob-
tained as stream surfaces with seed curves extracted from the Poincaré section.
The stream surface can of course be computed directly, but this requires a
robust algorithm to cope with the highly curved lobes.

5 Results

We applied the techniques described in Section 4 to two CFD simulation re-
sults. In both cases, the data are given at the nodes of unstructured hexahedral
grids. In principle, the computed velocity fields are divergence-free, however
this is only true for the integrals over the control volumes, but not for the
trilinearly interpolated data. Since we observed that any residual divergence
left in the data causes the chaotic region to shrink, we did a divergence clean-
ing of the data prior to the visualization. The standard method for divergence
cleaning is the Hodge projection method [BB80, Tot00] which is based on
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the decomposition of u into a divergence-free part and an irrotational part,
u = u0 + ∇s. It follows ∇ · u = ∇ · ∇s which is a Poisson equation for s.

5.1 Vortex ring in Francis draft tube

In the time-dependent simulation of the draft tube of a Francis turbine, we
found a vortex ring extending spanwise and with a temporally quite stable
behavior. An overview of the flow with the vortex ring and the rectangle used
for the Poincaré section can be seen in Figure 8. The stable and unstable 2D
manifolds of the two critical points show the structure of the vortex ring with
two primary islands of stability, see Figure 10. The abrupt change of colors
near the islands of stability corresponds to jumps in integration time and
therefore indicates cantori. These are toroidal surfaces which act as partial
barriers for the mixing of the fluid.

In an earlier paper [SP07], we visualized the same flow structure with a
volumetric technique but without divergence cleaning. As a result, most of the
chaotic folding was lost because the flow was quickly attracted to a toroidal
surface.

5.2 Vortex ring in simulation of a river power plant

Our second example is the flow in a river power plant developing two large
vertical vortices at the surface, see Figure 9. We selected the left one of them,
and chose a Poincaré section in the vertical plane through the two critical
points. The result is shown in Figure 11.

In this example, the vortex ring extends to the (free slip) water surface
where one of the two spiral saddles is located. The unstable manifold of the
latter coincides with the stable manifold of a periodic orbit of saddle type
which is also located at the water surface. In order to be able to integrate
streamlines at the water surface, the normal velocity component had to be
set to exactly zero, i.e. residual normal velocities from the simulation had to
be removed.

The seemingly ring-shaped lobes are an artifact of the slice plane which
does not follow well the curved center line of the structure. The effective shape
of the lobes is similar to the one in Figure 4.

6 Conclusion

We presented an algorithm for finding vortex rings in velocity fields and visu-
alizing them by means of a Poincaré section. Based on the latter, we described
how islands of stability can be identified and seed curves for invariant tori are
obtained, in particular for the outermost of the nested tori. A fast method
was presented for computing the central periodic orbit of an island of stability.
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By applying these techniques to CFD data, we were able to find vortex rings
and visualize them. Finally, we developed an analytical model of a perturbed
vortex ring.

Part of the underlying theory requires divergence-free vector fields and thus
incompressible flow. However, some of the proposed visualization techniques
are also applicable to compressible flow. As an interesting future work we see
the application of the proposed techniques, possibly modified, to examples of
compressible flow such as smoke rings.

Although most of the vortex rings we found in CFD results contain just
two critical points, some others have four or more of them. Additional critical
points appear during events such as merging or splitting of vortex rings. Often
there are small additional vortex rings which exist only for a short time and
can thus be considered as noise. It would be an interesting topic to study how
the various topology simplification techniques could improve our visualization
technique.

Acknowledgment

We thank the anonymous reviewers for their valuable suggestions and France
Suerich-Gulick for the river power plant data. This work was supported by the
Swiss Commission for Technology and Innovation (CTI) under grant 7338.2
ESPP-ES.

References

[AS92] Abraham R. H., Shaw C. D.: Dynamics, the Geometry of Behavior.
2nd ed. Addison-Wesley, 1992.

[BB80] Brackbill J., Barnes D.: The effect of nonzero ∇·B on the numerical
solution of the magnetohydrodynamic equations. J. Comput. Phys. 35
(1980), 426430.

[GH83] Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Sys-
tems and Bifurcations of Vector Fields. Applied Mathematical Sciences,
Vol. 42. Springer, New York, Berlin, Heidelberg, Tokyo, 1983.

[GLL91] Globus A., Levit C., Lasinski T.: A tool for visualizing the topology of
three-dimensional vector fields. In Proc. IEEE Visualization ’91 (1991),
pp. 33–40.

[GTS∗04] Garth C., Tricoche X., Salzbrunn T., Bobach T., Scheuermann
G.: Surface techniques for vortex visualization. In VisSym (2004),
pp. 155–164, 346.

[Hal01] Haller G.: Lagrangian structures and the rate of strain in a partition
of two-dimensional turbulence. Phys. Fluids 13 (2001), 3365–3385.

[HH89] Helman J., Hesselink L.: Representation and display of vector field
topology in fluid flow data set. IEEE Computer (August 1989), 27–36.

[KF02] Krasny R., Fritsche M.: The onset of chaos in vortex sheet flow. J.
Fluid Mech. 454 (2002), 47–69.



12 Ronald Peikert and Filip Sadlo
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Fig. 6. Hill’s spherical vortex with
swirl (ω = 2π) and tilt (ε = 0.313).
Slice of the stable manifold of the criti-
cal point at (0, 0, 1).

Fig. 7. Inner part ui
εω of Hill’s spheri-

cal vortex with swirl (ω = 2π) and tilt
(ε = 0.442).

Fig. 8. Overview of the flow in the
draft tube. Poincaré section used for
Figure 10 shown as blue rectangle, vor-
tex core lines shown in red.

Fig. 9. Overview of the flow in the river
power plant. Poincaré section used for
Figure 11 shown as blue rectangle.
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Fig. 10. Stable (left) and unstable (right) manifolds of vortex ring in draft tube
dataset.

Fig. 11. Left: Stable manifold of spiral saddle C0 in river power plant dataset.
Right: unstable manifold of periodic orbit P , approximated by seeding just below
spiral saddle C1, close-up on primary island of stability.


