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This paper takes a look at the visualization side of vector field analysis based
on Lagrangian coherent structures. The Lagrangian coherent structures are
extracted as height ridges of finite-time Lyapunov exponent fields. The re-
sulting visualizations are compared to those from traditional instantaneous
vector field topology of steady and unsteady vector fields: they often provide
more and better interpretable information. The examination is applied to 3D
vector fields from a dynamical system and practical CFD simulations.

1 Introduction

Vector field topology (VFT) is often used to obtain a simplified representation
of a vector field or phase space of a dynamical system. Introduced to the vi-
sualization community by Helman et al. [HH89], it also allows deeper insight
into the structure of vector fields. VFT deals with the detection, classifica-
tion and global analysis of critical points (isolated zeros of the vector field).
The manifolds that are defined by the eigenvectors of the velocity gradient at
these points can be computed by integrating streamlines (for 1D manifolds)
or stream surfaces (for 2D manifolds). According to the eigenvalues, the man-
ifolds can be stable (negative real part) or unstable (positive real part). In
other words, a stable manifold is the set of all trajectories that converge to
the critical point in positive time [Asi93]. The manifolds are also called separa-
trices because they separate regions of different flow behavior in the respective
direction of time.

However, there is one important drawback of the method: it is meaningful
in a direct sense only for steady vector fields (autonomous dynamical systems).
One reason for this limitation is that pathlines usually diverge from stream-
lines and that critical points often move in unsteady vector fields. Unsteady
vector fields are often analyzed by VFT of isolated time steps. Although this
is hard to interpret and gives no precise information about the true behavior,
it gives an instantaneous picture and can give insight especially when applied
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to derived fields. Other approaches to a time-dependent topology based on
path lines are that of Theisel et al. [TWH*04] and Shi et al. [STW*06].

The advantage of the concept of coherent structures (Section 2) is that
it shows the true behavior, is clearly physically motivated, scale-aware and
therefore noise-insensitive, and easy interpretable, even for unsteady vector
fields.

This paper describes the concept of Lagrangian coherent structures and
how they are obtained by filtered ridge extraction from finite-time Lyapunov
exponent in Section 2. In Section 3 FTLE ridges are extracted from steady
and unsteady 3D vector field examples and compared to vector field topology.

2 Lagrangian Coherent Structures

In recent years, the concept of Lagrangian coherent structures (LCS) is at-
tracting attention in the field of vector field analysis, especially since Haller
[Hal01] has shown that LCS can be obtained by detecting local extrema in
the finite-time Lyapunov exponent (FTLE) (explained in Section 2.1). Mate-
rial lines or surfaces (LCS) are attracting if infinitesimal perturbations con-
verge to these structures in forward time and repelling if they are attracting
in backward time. According to Haller [Hal01], attracting LCS can be ob-
tained as local maxima, or ridges (approximated as height ridges described
in Section 2.2), of backward-time FTLE, and the repelling ones as ridges in
forward-time FTLE. Stable and unstable manifolds tend to have its analog
in repelling and attracting material lines or surfaces, at least for steady vec-
tor fields (see also results in Section 3). In contrast to vector field topology,
LCS tend to be insensitive to short-term perturbations and small-scale noise,
such as turbulence, due to their Lagrangian definition. Additionally, LCS are
usually more appropriate for unsteady vector fields due to their clear physi-
cal motivation and interpretability. Note that LCS of unsteady fields usually
deform and move over time but are still easy to interpret.

2.1 Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE) measures the separation (or ex-
pansion) rate of nearby particles when advected by the flow for a given time
T . For a n-dimensional vector field, there are n Lyapunov exponents. Here
we are only interested in the largest FTLE. It is a scalar Lagrangian measure
stored at the starting point of the respective trajectory. According to Haller
[Hal01] the FTLE can be computed by advecting each sample point x ∈ D

of an arbitrary grid at time t0 with the flow for time T , resulting in a flow
map φt0+T

t0
(x) that maps x to its advected position. We decided to stop the

advection if the point reaches a domain boundary and store the position on
the boundary in the flow map.
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The maximum separation of two close particles can be computed from the
gradient of the flow map: it is the spectral norm of its gradient. In other words:
to measure the maximum separation one has to seed the two particles along
the direction of maximum expansion, which is the direction of the eigenvector
belonging to the largest eigenvalue of

∆(x) = (∇φt0+T
t0

(x))> · ∇φt0+T
t0

(x). (1)

(1) is called the Right Cauchy-Green deformation tensor, measuring the square
of the distance change due to deformation. Accordingly, the maximum separa-
tion is the square root of the largest eigenvalue of ∆(x). Lyapunov exponents
are used to measure exponential growth rates of perturbations. Therefore the
logarithm of the resulting value is computed and additionally normalized by
absolute advection time |T |, leading to the following formulation for the largest
FTLE denoted as σT

t0
:

σT
t0

(x) =
1

|T | ln
√

λmax(∆(x)). (2)

The reader is referred to the work of Haller for further information on LCS
and FTLE [Hal01, Hal02], and vortices and FTLE [Hal05].

2.2 Height Ridges

Height ridges are local maxima in a relaxed sense. More precisely, height
ridges are locations where a scalar field s has a local maximum in at least
one direction. More general, height ridges are d-dimensional manifolds in n-
dimensional space with n > d ≥ 0.

The ridge criterion can be formulated using the gradient and the Hessian
of s. Note that for a height ridge, the eigenvectors belonging to the d largest
eigenvalues λi (i = 1, . . . , d) of the Hessian point along the ridge, whereas the
eigenvectors of the (n − d) smallest eigenvalues λj (j = d + 1, . . . , n) point
orthogonally to the ridge. One necessary condition for a ridge is that the
derivatives in λj-eigenvector directions are zero. This leads to the condition

ελj
· ∇s = 0 (3)

with ελj
the eigenvector belonging to λj . The other condition for a height

ridge is that the second derivatives in ελj
directions are negative, formulated

as
λj < 0. (4)

Valley lines (the opposite of height ridges) are obtained by computing height
ridges of the field −s. The reader is referred to the work of Eberly [Ebe96],
Lindeberg [Lin96], and the thesis of Majer [Maj00] for further details.

For the extraction of 2D ridges in the 3D domain, one would like to use
e.g. Marching Cubes. However, since an eigenvector is not oriented, direct ap-
plication of these methods to (3) fails because the eigenvectors at the nodes
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of a cell can be inconsistently oriented. For their Marching Ridges, Furst et
al. [FP01] use PCA to achieve local consistency of the eigenvectors of a cell.
Kindlmann et al. [KTW06] achieve per-cell eigenvector consistency by sam-
pling along each edge of the cell and observing eigenvector rotation. Inter-cell
consistency is circumvented by a subsequent pass over the triangles that fixes
their orientation.

In this work, per-cell eigenvector consistency is guided by PCA of the
eigenvectors at the nodes of the cell, according to Furst et al.. We experi-
enced non-orientable ridge surfaces in some applications. Flat shading and
bi-directional lighting was chosen in these cases.

2.3 FTLE Ridge Filtering

Because ridge extraction involves computation of second derivatives, noise
amplification can become an issue. Smoothing is applied in these cases in
order to obtain significant visualizations. One has to keep in mind however,
that this tends to deform the LCS, i.e. particles can permeate the computed
FTLE ridges to a certain degree. It is therefore advisable to verify the LCS
using trajectories (for steady vector fields) or animations of LCS and particles
(unsteady vector fields).

Smoothing is realized by incorporating it into the gradient computation.
In our case, the gradient at a given node is computed by fitting a linear
vector field to its neighboring nodes in a Least Squares sense. The degree of
smoothing can be controlled by adjustment of the neighborhood range.

The finite-time Lyapunov exponent measures the amount of separation.
It is therefore straight-forward to use it to filter out parts of ridges with
low separation property. This approach is physically motivated and therefore
results in relevant and consistent visualizations. It is therefore our favorite
method for FTLE ridge filtering.

Filtering connected components of the final mesh by their area is also an
effective method for improving the visualization. Small connected components
of ridges are likely to be noise, as long as the other filtering conditions did not
disrupt the ridges because of low tolerance.

Another approach is to use the second derivative across the ridge (λn) for
filtering out “flat” ridges. Although it turned out that its effect was compara-
ble to filtering by FTLE in our examples, it is only geometrically motivated
and therefore less preferable. Therefore it was not used for the results in Sec-
tion 3, except for the vortex ring in Section 3.4.

In order to filter out ridges that arise due to trajectories that reach the
domain boundary, it is allowed to filter out ridge regions by advection time of
the corresponding trajectories. As noted in Section 2.1, pathline integration
is stopped if the particle reaches a domain boundary. The advection time is
smaller than T in these cases and a threshold can be used for suppressing
them.

To appear in: Topology-Based Methods in Mathematics + Visualization, Springer 2007



Visualizing Lagrangian Coherent Structures and Comparison to Vector ... 5

During ridge extraction by marching ridges (Section 2.2), the necessary
ridge condition (4) and filtering conditions are tested at the vertices of the
resulting triangles and triangles that violate them are rejected. Triangle trim-
ming was not implemented in the current approach, leading to zigzag ridge
borders. Figures 9(c)–9(e) show an example of FTLE ridge filtering.

3 Results

The described methods are applied to different vector fields. The first example
is the analytic and steady ABC flow (Section 3.1). Then 3D saddles in isolated
time steps of an unsteady Francis water turbine CFD simulation are examined
(Section 3.2), and vector field topology is compared to FTLE ridges. In Sec-
tion 3.3 the flow around the divider of the same CFD result is analyzed but
this time both, in a steady and unsteady manner. Section 3.4 takes again a
look at the Francis dataset, but this time at two vortices. Finally, Section 3.5
examines a steady-type Pelton water turbine CFD simulation.

3.1 ABC Flow

Vector field topology and FTLE ridges are applied to the analytic steady ABC
flow field. This flow has three parameters A, B, and C, (in this example set
to

√
3,

√
2, and 1 according to Henon [Hen66]) named after the researchers

Arnold, Beltrami, and Childress, and can be written as the dynamical system

ẋ = A sin z + C cos y

ẏ = B sin x + A cos z

ż = C sin y + B cosx

. (5)

It is triple-periodic in space and divergence-free. Despite of its simple Eulerian
nature, it exhibits complicated Lagrangian structure such as invariant tori and
chaotic advection [HZD98] if considered as a three-dimensional torus. Other
interesting properties are that it is identical to its curl and therefore fully
helical. This is the cause why vortex core line detection based on helicity,
such as that by Levy et al. [LDS90], fail on this flow. The ABC field was
discretized on a regular grid in order to show the applicability of the method
to practical vector fields.

Figure 8(a) shows the VFT view to the field. Critical points have been de-
termined and streamlines have been computed in positive and negative time.
Streamlines are seeded on two rings of seeds around the critical point. The
circles are usually chosen coplanar with the 2D manifold, have user defined
radius and user defined offset along the direction of the 1D manifold. Un-
fortunately it turns out that the 2D manifolds are degenerate in this case of
the ABC flow, meaning that one eigenvalue of the velocity gradient is zero.
Therefore this is a steady case where the vector field topology approach fails
or may not be practical to give a complete image of the flow structure.
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Haller already investigated the ABC flow using FTLE [Hal01], but with-
out extracting ridges. Figures 8(b)–8(d) show the LCS view to the field using
ridges. It can be seen that the ridges are consistent with the manifolds: the
critical points are located at the intersection of positive-time and negative-
time FTLE ridges, and the streamlines in positive and negative time follow the
corresponding ridges. FTLE was only computed at the “original” nodes in the
first period of the ABC flow consisting of 303 nodes, but the integration time
of 2 caused the trajectories to reach neighboring periods of the ABC flow as
well. Ridges were only generated in regions with FTLE higher or equal to 0.9
for suppressing weak separation phenomena, gradient neighborhood range for
smoothing during ridge extraction was 2 (as in all examples), and connected
components below 50 triangles have been suppressed. The computation took
113 seconds. Figures 9(a) and 9(b) show another view and some of the tra-
jectories used for computation.

To also visualize the short-time separation aspect of the flow, short-time
FTLE was computed and color-coded on the long-time FTLE ridges. Fig-
ure 8(e) shows the result of integration time +0.001 (which took 22 seconds)
on the positive-time ridges. It can be seen that the short-time FTLE ex-
hibits local maxima near the critical points. Figure 8(f) shows additionally
the negative-time ridges with short-time FTLE of integration time -0.001.
There are also local maxima of the FTLE near the critical points in negative
time direction. From the streamlines it can be seen, that the local maxima are
not in upstream or downstream direction of the critical points, as one may
assume. It has to be investigated to what extent this situation is sensitive to
noise and if it is a specialty of the ABC flow or a general principle.

3.2 3D Saddles in Francis Draft Tube

In this section the LCS and VFT approaches are compared for non-spiralling
3D saddles. As a first step one would think of applying the methods to an
analytic linear vector field containing a saddle, described by a Jacobian with
real eigenvalues. VFT performs well in these cases, unless the 2D manifold of
the saddle is degenerate as in Section 3.1. However, the FTLE ridge approach
is not able to capture linear saddles because all trajectories through it would
exhibit the same FTLE value and therefore there would be no ridges corre-
sponding to its manifolds. This is a drawback of the FTLE ridge approach.

However, it is unlikely that purely linear saddle regions appear in practical
vector fields. Therefore the examination was applied to some of the saddles
in a CFD simulation of the draft tube of a Francis water turbine. As a first
approach, a single time step of the unsteady simulation was used for the
analysis. This results in instantaneous LCS based on streamlines, suited for
the comparison of VFT and LCS methods. The critical points were detected
and at each critical point two FTLE were computed on a regular grid of 603

nodes around the critical point, one with integration time +1 second and one
with −1 second. Computation at the first saddle took 321 and 427 seconds,
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respectively. Confer 9(d) and 9(e) for filtering details. The extracted ridges
are shown in Figures 9(f), 9(g), and 1. Figure 4 shows some streamlines used
for FTLE computation of Figure 1.

Fig. 1. Another 3D saddle in Francis draft tube. Same visualization as in Fig-
ures 9(f) and 9(g).

One can see that the 2D manifolds are well captured by the corresponding
ridges, resulting in smooth surfaces. It has to be noted that also the opposite-
time FTLE ridges result in surfaces, even though these surfaces exhibit more
curvature and folding. It can be seen that these ridges are well consistent
with the 1D manifolds of the saddles. We conclude that: the examined critical
points lie on the intersection curves of positive-time and negative-time FTLE
ridges. This was also observed in the ABC flow example of Section 3.1. The
2D manifolds have a ridge counterpart and the 1D manifolds are consistent
with the corresponding opposite-time 2D ridge. Therefore, generating FTLE
ridges in positive and negative time in regions around critical points tends to
convey more information than traditional VFT and can serve as topological
icons. Extracting and visualizing the intersection curves of positive-time and
negative-time FTLE ridges, similar to the saddle connectors of Theisel et
al. [TWH*03], seems promising and could serve as a kind of a topological
skeleton, which could be applicable even for unsteady vector fields.

Although our investigation did not result in any “purely linear” 3D saddle
regions in CFD simulations, it has to be examined how frequent they are
in practical vector fields and what extent they have. The extent is of some
importance because the FTLE ridge approach fails if the trajectories do not
escape from the linear regime of the vector field. Another thing to note is
that for short advection times |T | the FTLE ridges tend to be less smooth,
smaller, and less consistent with VFT. This turned out to be a problem for
getting the unsteady positive and negative time FTLE ridges on the saddles:
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the temporal domain of the simulation was too short with respect to the low
velocities in the region where the saddles reside.

3.3 Bifurcation in Francis Draft Tube

In this section the unsteady CFD flow around the divider of the Francis draft
tube is analyzed using steady and unsteady FTLE ridges. The divider is a
construct that divides the flow into the two channels. First, instantaneous
FTLE ridges were computed at the first time step of the simulation. Figure 2
(left) shows some of the positive-time streamlines used for FTLE computation,
Figure 2 (right) shows additionally the resulting ridge. One can see that the
ridge is deformed at the horizontal vortex core line (computed according to
Levy et al. as in all examples) in the upper part of the image. However, the
ridge does not exhibit a hole where it intersects that vortex core line. For the
instantaneous flow, this can be interpreted that the flow passes the vortex core
line at a critical point and is finally separated at the divider. On the other
hand, the ridge forms a tunnel around the vortex core line at the bottom of
the image. This is a case where the vortex is captured as a distinct LCS.

Next, the instantaneous FTLE ridge of the first time step is compared to
the unsteady FTLE ridge of the first time step. Figure 3 shows the correspond-
ing visualizations. Both steady and unsteady FTLE ridges were computed on
a 30 × 40 × 50 grid using an advection time of 0.4 seconds and filtered by
requiring a minimum FTLE of 7.1. The computation took 631 seconds in the
steady case and 1255 seconds in the unsteady case. In order to remove other
ridges that were not consistent with the ridge under consideration, the min-
imal connected component size was set to 2000 triangles. It is clearly visible
that the unsteady FTLE ridge differs in shape from the steady FTLE ridge.
One difference is that it does not divide the flow on the left hand side any-
more. Instead, it extends only to the right. Some trajectories are crossing the
unsteady ridge. This is likely to happen for unsteady LCS because they are
material surfaces at a given time whereas trajectories extend over time and
are immaterial. Trajectories with nearby seeds are visualizing the mechanisms
of separation.

3.4 Vortices in Francis Draft Tube

Vortices are coherent structures and therefore they should show up in FTLE
ridge visualizations. Two vortices are examined, both using instantaneous
FTLE ridges because of the small temporal domain of the underlying CFD
simulation. The first vortex is in front of the divider from Section 3.3, but
this time at the last time step. Figure 5 shows the positive-time FTLE ridges
of this vortex. The vortex is nicely captured by the FTLE ridge that is also
indicating the separation by the divider. The grid consisted of 30 × 40 ×
50 nodes, advection time was 0.4 seconds, ridge regions with FTLE smaller
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Fig. 2. Flow in Francis draft tube. Left: Vortex core lines (gray tubes) and some
streamlines used for FTLE computation (arbitrary colored tubes started at white
spheres). Right: Additionally instantaneous positive-time FTLE ridge visualizing
the bifurcation at the divider.

Fig. 3. Flow in Francis draft tube. Left: Unsteady positive-time FTLE ridge (blue)
visualizing the bifurcation at the divider with some path lines used for FTLE com-
putation (arbitrary colored tubes). Vortex core lines have been omitted because they
move in time. Right: Comparing instantaneous positive-time FTLE ridge (light blue)
with unsteady FTLE ridge.

than 5.5 were suppressed, as well as connected components smaller than 1000
triangles, and the computation took 774 seconds.

The second one is a vortex ring (vortex breakdown bubble) in the right
channel of the draft tube. Figure 6 shows its unstable manifold and negative-
time FTLE ridges. Interestingly, the corresponding ridge does not exhibit the
bubble shape of the manifold, it is simply cylindrical, although consistent
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Fig. 4. Opposite view to the visualiza-
tion of Figure 1 (left), with arbitrary-
color tubes visualizing some of the
positive-time streamlines.

Fig. 5. Steady positive-time FTLE
ridges (blue) around vortex core line
(gray tube) in front of the Francis di-
vider.

with the fold of the manifold. FTLE was computed on a 603 grid with 4
seconds advection time, which took 704 seconds to compute. Ridge regions
with λn < 300 were suppressed in order to remove noise, as well as connected
components smaller than 2000 triangles.

3.5 Bifurcation in Pelton Distributor Ring

In this section, the steady CFD flow inside the distributor ring of a Pelton
water turbine is examined using FTLE ridges. Figure 7 shows positive-time
FTLE ridges computed at the sickle of the distributor ring. A sickle is a
construct where part of the main flow is bifurcated into the injector that
forms one of the jets that drive the turbine. One FTLE ridge shows clearly
how the flow is split and an other FTLE ridge visualizes a recirculation zone.
The FTLE was computed on a 100 × 100 × 40 grid with advection time 0.1
seconds which took 1381 seconds. Ridge regions with FTLE smaller than 22
were suppressed as well as connected components smaller than 2000 triangles.

4 Conclusion

2D height ridges were extracted from 3D FTLE. Several ridge-filtering tech-
niques were proposed in order to suppress noise but also for achieving physi-
cally significant visualizations. The ridges were compared to the results from
vector field topology, usually resulting in a gain of information and inter-
pretability.
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(a) (b)

(c) (d)

Fig. 6. Vortex breakdown bubble in Francis draft tube. (a) Unstable manifold of
vortex breakdown bubble. (b) Same as (a) with instantaneous negative-time FTLE
ridges. Ridge is consistent with fold. (c) Ridge from (b): cylindrical inside bubble.
(d) Same as (b) with some negative-time streamlines used for FTLE computation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. ABC flow. (a) Seeds around critical points (green spheres), and correspond-
ing streamlines in positive time (red) and negative time (blue). 2D manifolds are
1D-degenerate. (b) Same as (a) with additional positive-time FTLE ridges. (c) Same
as (b) but with negative-time FTLE ridges instead of positive-time FTLE ridges
(red). (d) Positive-time FTLE ridges (blue) and negative-time FTLE ridges (red).
Ridges are well consistent with manifolds. (e) Same as (a) with negative-time FTLE
ridges colored with short negative-time FTLE. (f) Additionally positive-time FTLE
ridges colored with short positive-time FTLE.
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(a) (b)

(c) (d) (e)

(f) (g)

Fig. 9. (a)–(b): another view to the FTLE ridges from Figure 8(d) of the ABC
flow. (c)–(g): 3D saddle in Francis draft tube. Positive-time FTLE ridges (blue) and
negative-time FTLE ridges (red). (a) FTLE ridges. (b) Additionally positive-time
trajectories (arbitrary colors) started from nodes inside the first period of the ABC
flow, as used for FTLE computation. Trajectories are well consistent with FTLE
ridges. (c) No filtering. (d) Minimum FTLE 3.5 (positive-time) and 4.0 (negative-
time). (e) Additionally to (e) suppressing components smaller than 1000 (positive-
time) and 4000 triangles (negative-time). (f) Critical point (black) is close to the
intersection curve of the two ridges. (g) Seeds around critical point (green) and
streamlines in positive time (red) and negative time (blue) from seeds. Streamlines
visualizing the 1D manifold of the saddle lie inside positive-time FTLE ridge.
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