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Abstract

This paper presents a point-sampled approach for capturing three-dimensional video
footage and subsequent re-rendering of real-world scenes. The acquisition system is
composed of multiple sparsely placed 3D video bricks. The bricks contain a low-cost
projector, two gray-scale cameras and a high-resolution color camera. To improve on
depth calculation we rely on structured light patterns. Texture images and pattern-
augmented views of the scene are acquired simultaneously by time multiplexed
projections of complementary patterns and synchronized camera exposures. High-
resolution depth maps are extracted using depth-from-stereo algorithms performed
on the acquired pattern images. The surface samples corresponding to the depth
values are merged into a view-independent, point-based 3D data structure. This
representation allows for efficient post-processing algorithms and leads to a high
resulting rendering quality using enhanced probabilistic EWA volume splatting. In
this paper, we focus on the 3D video acquisition system and necessary image and
video processing techniques.
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1 Introduction

3D video is a novel technology for capturing the dynamics and motion of a
real-world scene during recording while providing the user with the possibility
to change the viewpoint at will during playback. It is seen as one of the many
promising emerging media technologies for next generation home entertain-
ment and spatio-temporal visual effects. Free navigation regarding time and
space in streams of visual media directly enhances the viewing experience,
degree of immersion and interactivity. However, in most existing systems such
virtual viewpoint effects have to be planned precisely and changes are no more
feasible after the scene has been shot. As an example, freeze-and-rotate effects
have been demonstrated in numerous feature films like The Matrix. It can
only be realized by using a huge number of digital cameras which have to
be placed very accurately. As another example, Digital Air’s Movia R© systems
applies high-speed, HD cameras which can be controlled precisely such that
no software view interpolation is needed for the desired effect. But as a con-
sequence for both approaches, changes to the view trajectory are not possible
during post-production.

Recently, several multi-view video systems have been presented which allow
for realistic re-renderings of 3D video from arbitrary novel viewpoints. How-
ever, for producing high-quality imagery, the capturing systems are restricted
to configurations where cameras are placed very close together. As an ex-
ample, the system by Zitnick et al. [1] uses 8 cameras covering a horizontal
field-of-view of 30◦, where only linear arrangements are possible. To allow for
more flexibility, i.e. configurations which cover an entire hemisphere with a
small number of cameras, either model-based approaches need to be employed
(e.g. Carranza et al. [2] with 8 cameras) or degradation in visual quality has
to be accepted (e.g. Gross et al. [3] with 16 cameras). The latter two systems
are also limited by the employed reconstruction algorithms to the capture of
foreground objects or even pre-defined objects only.

In Waschbüsch et al. [4] we introduced a scalable framework for 3D video of
dynamic scenes. Our work is motivated by the drawbacks of the aforemen-
tioned systems and by the vision of bringing 3D video to a new level where
capturing, editing and subsequent high-quality re-rendering is cost-effective
and convenient as with the 2D counterpart. For this purpose, special hard-
ware solutions for real-time depth estimation, such as 3DV Systems’ ZCam
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(http://www.3dvsystems.com), and Tyzx’s DeepSea High-speed Stereo Vision
System (http://www.tyzx.com) have recently become available. A central part
of our research is the view-independent representation of the captured 3D
geometry streams, with the goal to allow for similar authoring and editing
techniques as carried out in common 3D content creation and modeling tools.
Thereby, creation of spatio-temporal effects becomes straight-forward and one
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has no longer to cope with the common limitations of image-based represen-
tations. In this paper we focus on the capturing and geometry processing part
of our point-sampled 3D video framework.

2 Related work

This paper extends or integrates previous work in areas like point-based com-
puter graphics, depth-from-stereo, and 3D video. For the sake of conciseness,
we refer the reader to the ACM SIGGRAPH 2004 course on point-based com-
puter graphics [5] and to relevant depth from stereo publications [6]. In the
following, we will confine ourselves to related work in the area of 3D video.

In 3D video, multi-view video streams are used to re-render a time-varying
scene from arbitrary viewpoints. There is a continuum of representations and
algorithms suited for different acquisition setups and applications. Purely
image-based representations [7] need many densely spaced cameras for appli-
cations like 3D TV [8]. Dynamic light field cameras [9,10] which have camera
baselines of a couple of centimeters do not need any geometry at all. Camera
configuration constraints can be relaxed by adding more and more geometry to
image-based systems, as demonstrated by Lumigraphs [11]. Voxel-based rep-
resentations [12] can easily integrate information from multiple cameras but
are limited in resolution. Depth image-based representations [13,14] use depth
maps which are computed predominantly by stereo algorithms [1]. Stereo sys-
tems still require reasonably small baselines and, hence, scalability and flexi-
bility in terms of camera configurations is still not achieved. Redert et al. [15]
use depth images acquired by Zcams [16] for 3D video broadcast applications.
Appropriate representations for coding 3D audio/visual data are currently in-
vestigated by the MPEG-4 committee [17]. On the other end of the continuum,
there are model-based representations which describe the objects or the scene
by time-varying 3D geometry, possibly with additional video textures [2,18].
Almost arbitrary camera configurations become feasible, but most existing
systems are restricted to foreground objects only.

Besides data representations, one has to distinguish between online and offline
applications. Matusik et al. [19,20] focused on real-time applications, e.g. 3D
video conferencing or instant 3D replays. However, they are restricted to cap-
turing foreground objects only due to the nature of their silhouette-based
depth reconstruction algorithms. Gross et al. [3] used a 3D video system based
on a point sample representation [21] for their telecollaboration system blue-c

and share the same limitation of only being able to reconstruct foreground
objects. Mulligan et al. [22] also target telepresence. They compute geometric
models with multi-camera stereo and transmit texture and depth over a net-
work. Carranza et al. [2] presents an offline 3D video system which employs
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an a-priori shape model which is adapted to the observed outline of a human.
However, this system is only able to capture pre-defined shapes, i.e. humans.
The 3D video recorder [23] handles point-sampled 3D video data captured by
silhouette-based reconstruction algorithms and discusses data storage issues.
No full scene acquisition is possible with the last two systems but almost arbi-
trary camera configurations are possible. Zitnick et al. [1] proposed a layered
depth image representation for high-quality video view interpolation. Recon-
struction errors at depth discontinuities are smoothed out by Bayesian mat-
ting. However, this approach again needs a quite dense camera setup to gen-
erate high-quality renderings in a limited viewing range. Scalability to larger
setups is not addressed by the authors.

Cockshott et al. [24] also propose a 3D video studio based on modular acquisi-
tion units and pattern-assisted stereo. For concurrent texture acquisition, the
patterns are projected using strobe lights requiring custom-built hardware.
Only foreground objects are modeled using implicit surfaces.

3 Overview

Our 3D video acquisition system consists of several so-called 3D video bricks
that are capturing high-quality depth maps from their respective viewpoints
using calibrated pairs of stereo cameras (cf. figure 1). The matching algorithm
used for depth extraction is assisted by projectors illuminating the scene with
binary structured light patterns. Alternating projection of a pattern and its in-
verse allows for concurrent acquisition of the scene texture using appropriately
synchronized color cameras.

Acquisition 

 

Depth Extraction 

Stereo
Matching

3D Video Brick 

Multiple Additional 3D Video Bricks... 
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3D Data
Model

Post-
processing

Rendering

View-depen-
dent blending
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Fig. 1. Overview of the 3D video framework.

The results from different viewpoints are unified into a view-independent,
point-based scene representation consisting of Gaussian ellipsoids. The data
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model is post-processed to remove remaining outliers. Novel viewpoints of the
dynamic scene are rendered using a probabilistic approach including view-
dependent blending and EWA volume splatting.

4 Scalable acquisition system

In this section we present the concept of our low-cost z -cameras realized by
3D video bricks allowing simultaneous acquisition of textures and depth maps.

4.1 3D Video Bricks

The basic building blocks of the 3D video setup are movable bricks containing
three cameras and a projector illuminating the scene with alternating pat-
terns. Two grayscale cameras are responsible for depth extraction, while a
color camera acquires the texture information of the scene. Figure 2 shows a
single brick prototype with its components. In our current implementation,
we operate with three bricks, each consisting of a standard PC with a gen-
lock graphics board (NVIDIA Quadro FX3000G), a projector synchronizing
to the input signal (NEC LT240K), and hardware-triggered cameras having
XGA resolution and a capturing frame rate of 12 Hz (Point Grey Dragon-
fly). The components are mounted on a portable aluminum rig as shown in
figure 2. The system is complemented by a synchronization microcontroller
(MCU) connected to the cameras and the genlock-capable graphics boards.

Fig. 2. 3D video brick with cameras and projector (left), simultaneously acquiring
textures (middle) and structured light patterns (right).

At a certain point in time, each brick can only capture depth information from
a particular fixed position. In order to span a wider range of viewpoints and
reduce occlusion effects, multiple movable bricks can be combined and indi-
vidually oriented to cover the desired working space as illustrated in figure 3).
Scalability of multiple bricks is guaranteed, because overlapping projections
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are explicitly allowed by our depth reconstruction and because the computa-
tion load of each brick does not increase during real-time recording. Each brick
performs the grabbing completely independently of the other bricks with the
exception of the frames being timestamped consistently by using a common
synchronization device.
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Fig. 3. Configuration of our 3D video prototype system.

In order to compute valid depth maps and merge the information gained from
several bricks, all cameras in the 3D video system must be calibrated intrinsi-
cally and extrinsically. We determine imaging properties of all cameras using
the MATLAB camera calibration toolbox [25]. Using a large 85 × 120cm2

checkerboard calibration target at the center of the scene for extrinsic calibra-
tion, we are able to achieve a re-projection error of less than a quarter of a
pixel. The projectors do not need to be calibrated.

4.2 Simultaneous texture and structured light acquisition

Each brick concurrently acquires texture information with the color camera
and depth information using the stereo pair of grayscale cameras. Because
texture and stereo cameras do not share exactly the same view, the depth
images are warped into the view of the color camera.

Stereo vision (cf. section 5) generally requires a highly texturized scene to find
good correlations between different views. It generally fails in reconstructing
simple geometry of uniformly colored objects, e.g. white walls. Additionally,
the textures should be non-periodic to guarantee unique matches. As a conse-
quence, we add artificial textures to the scene by projecting structured light
patterns, as originally proposed by Kang et al. [26]. We use a binary vertical
stripe pattern with randomly varying stripe widths. It yields strong and unique
correlations in the horizontal direction of the stereo baseline and is at the same
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time insensitive to vertical deviations which may occur from inaccuracies in
the camera calibration. To avoid untexturized shadows, the scene is illumi-
nated by patterns from all bricks at the same time. Unlike pure structured
light approaches or stereo matching between a single camera and a projector,
our approach has the advantage of also working with multiple overlapping
structured light projections, and it does not need a projector calibration.

Sequentially
Projected Patterns

Exposure of 
Stereo Cameras

Exposure of
Texture Camera

Fig. 4. Camera exposure with inverse pattern projection.

Alternating projections of structured light patterns and the corresponding
inverses allow for simultaneous acquisition of the scene textures using an ap-
propriately synchronized texture camera as illustrated in figure 4. Note that
this camera does not see the patterns emanating from the projector, but only
a constant white light, which preserves the original scene texture (cf. figure 2).

Since the patterns are changing at a limited rate of 60 Hz (projector input
frequency), flickering is slightly visible to the human eye. Alternative solutions
using imperceptible structured light [27] do not show any flickering, but require
faster, more sensitive and therefore more expensive cameras for reliable stereo
depth extraction.

5 Depth from stereo

Over the last decades, a large variety of stereo algorithms has been developed.
A survey of different methods and their implementations can be found in
Scharstein et al. [6]. Traditional algorithms are based on matching of small
pixel neighborhoods within a small correlation window. However, due to their
local view on the image, they have difficulties at ambiguities occurring in
regions with uniform colors or repetitive textures. This can be easily solved
by generating artificial textures using random structured light projections [26].
Moreover, such a high-frequency, high-contrast texture improves the precision
of matching in the sub-pixel domain yielding very accurate depth values. A
second issue are depth discontinuities which cannot be modeled if they occur
inside the correlation window, leading to artifacts especially at silhouettes of
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objects. Previously, we therefore used space-time stereo [28,29] which extends
the correlation window into the time domain and thus allows to keep it small in
image space. Because this assumes a high time coherence, it was only applied
to static parts of the scene and thus there was still no solution for moving
objects [4]. In the following sections we present a novel discontinuity-preserving
stereo algorithm allowing for robust matching using large correlation windows
while preserving depth discontinuities. Because it does not consider time, it
can be applied uniformly on a whole video frame.

Global stereo matching algorithms [30,31] may be an alternative to our ap-
proach. By minimizing an energy composed of a correlation term and an
edge-preserving smoothness term, they are able to handle both ambiguities
and depth discontinuities. However, obtaining accurate sub-pixel estimates
remains difficult. In texture-less regions, they cannot reach the precision of
the structured-light approaches. In our experiments with structured light, the
global methods often got confused by the many additional texture edges, yield-
ing incorrect discontinuities in the computed depth image. Finding a globally
correct tradeoff between data and smoothness energy appeared to be difficult.

5.1 Stereo matching

Stereo reconstruction is basically a search for corresponding pixels in two
images. Those are finally used to compute the pixel depths by triangulation.
The search can be restricted to the epipolar lines such that for two rectified
images IL and IR one has to find for every pixel (u, v) its disparity d such that
IL(u, v) = IR(u + d, v). Following the notation of [28], this can be expressed
as a minimization of an energy

E(d) = e(IL(u, v), IR(u + d, v)), (1)

where e is an error function describing the difference between two pixels, for
example the squared difference metric e(a, b) = (a−b)2. In our implementation
we use the error metric of Birchfield and Tomasi [32].

Because all real images are augmented by acquisition noise, the colors of two
corresponding pixels will never be the same and the above pixel-wise mini-
mization will not succeed. This problem is solved by minimizing over a small
rectangular window W (u0, v0) around one pixel of interest (u0, v0):

E(d) =
∑

(u,v)∈W (u0,v0)

e(IL(u, v), IR(u + d, v)). (2)

Our minimization procedure for equation (2) is divided into five steps:
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S1. Matching cost computation: Construction of a disparity space image
(DSI) by evaluating e(IL(u, v), IR(u + d, v)) for every pixel (u, v) and a set
of discrete disparities d, i.e. all integer disparities within a specific range.

S2. Cost aggregation: Evaluation of the sum in equation (2) by applying
a box filter to every DSI layer of constant disparity d.

S3. Discontinuity preservation: Application of a minimum filter to every
DSI layer of constant disparity d.

S4. Minimization: Selection of the disparity with minimal cost for every
pixel (u, v).

S5. Disparity refinement: Non-linear optimization of the disparities with
sub-pixel accuracy.

S1, S2, S4 and S5 are common for many stereo matching algorithms, according
to the taxonomy by Scharstein et al. [6]. We introduce an additional step
S3 to improve the accuracy at depth discontinuities, which is explained in
section 5.2. Furthermore, we describe our approach for disparity refinement in
section 5.3.

5.2 Discontinuity preservation

Local stereo matching algorithms generally have difficulties in properly han-
dling depth discontinuities. Due to occlusions, pixels in the first image may not
have corresponding partners in the second image. Symmetric algorithms [33,34]
are able to correctly detect those cases and mask out all affected pixels. One
of the simplest symmetric approaches is cross checking. The stereo matching
is performed twice: search in the right image for pixels corresponding to left
image, and vice versa. Corresponding pixels in both disparity maps should
have the same values, otherwise they belong to occlusions.

Due to the spatial extend of the correlation window, a second issue arises at
discontinuities which is illustrated in figure 5. Because depth discontinuities
generally come along with sharp color boundaries they cause a strong correla-
tion. This yields a low matching cost as soon as the pixel window overlaps the
color edge, no matter if the center pixel itself is part of that edge. Thus, the
matching algorithm tends to find similar disparities in neighborhoods on both
sides of color boundaries, which cannot be correct at depth discontinuities.

To solve that, we extend our matching algorithm to a multi-window approach.
At each pixel we consider all matching windows of equal size that still contain
the pixel of interest and choose the one with the best correlation. The cho-
sen window usually has minimal overlaps with possible depth discontinuities,
yielding a more reliable disparity value. A similar algorithm has already been
proposed by [35] who considered 5 different dilated windows around each pixel
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Fig. 5. Corresponding left (top row) and right (bottom row) pixel windows at
depth discontinuities: desired correct correspondence (left), wrong correspondence
detected by single-window matching (middle), correct correspondence detected by
multi-window matching.

at the cost of a 5 times higher computation time. By sharing computations
among neighboring pixels, our algorithm is able to consider all possible di-
lated windows containing the pixel of interest with low computational costs
(see table 1). It is implemented as a minimum filter on the DSI layers of equal
disparity, using the shape of the matching window as structuring element. The
filter is applied after the cost aggregation in step S3 of the stereo pipeline:

As can be seen in figure 6, our extension produces less artifacts at disconti-
nuities. It allows us to consider quite large correlation windows, e.g. 25 × 25
pixels, increasing the overall robustness.

5.3 Disparity refinement

The disparities computed so far are only approximations on a coarse level.
Besides from being integer valued they may deviate from the ground truth by
a few pixels because equation (2) assumes a constant disparity over the whole
correlation window. This is, however, only correct for planar surfaces parallel
to the image plane. To obtain accurate results at subpixel level, we extend
the minimization by also searching for the gradient (du, dv) of the disparity,
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Fig. 6. Discontinuity preservation. Upper row: scene without and with structured
light illumination. Disparity maps using a 7 × 7 (left) and 25 × 25 (right) pixel
matching window, without (middle) and with (lower row) discontinuity preservation.

similar to [28]:

E(d, du, dv) =
∑

(u,v)∈W (u0,v0)

e(IL(u, v), IR(u + d̃, v)), (3)

where

d̃ = d + du(u − u0) + dv(v − v0). (4)

This corresponds to linearly changing disparities in the matching window
which is exact for all planar surfaces and a good local approximation of the
scene geometry.

By using the previously computed coarse disparities as starting values, equa-
tion (3) can be minimized using the Levenberg-Marquardt algorithm or sim-
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ilar non-linear optimization methods. We handle discontinuities by masking
those pixels in the correlation window whose coarse disparities differ too much
from the one of the center pixel, yielding a non-rectangular window at depth
boundaries. The additionally computed disparity gradients are also used later
to compute the 3D scene representation (section 6.1).

The computational effort of our C implementation of the whole stereo match-
ing pipeline is summarized in table 1. Most of the time is used by the disparity
refinement because we are still using a non-optimized standard implementa-
tion for that step.

Table 1
Stereo matching performance for an image pair of 791× 524 pixels, using a 25× 25
pixels correlation window. Timings were measured on a 3GHz Pentium-4 PC. Note
that steps S1 to S4 denote the overall time for two matching processes which are
necessary to perform cross checking.

S1 matching cost computation 9.0s

S2 cost aggregation 4.7s

S3 discontinuity preservation 9.3s

S4 minimization 1.2s

S5 disparity refinement 348s

6 View-independent scene representation

To model the resulting three-dimensional scene, we propose a view-independent,
point-based data representation. The distinct reconstructed views are merged
by back-projecting their image pixels to a common three-dimensional world
reference frame. With this approach, we achieve a convenient, scalable rep-
resentation which allows for easy adding of additional views. Our model is
in principle capable of providing a full 360◦ view if the scene has been ac-
quired from enough viewpoints. Unlike image-based structures it is possible
to keep the amount of data low by removing redundant points from the ge-
ometry [36]. Compared to mesh-based methods, points provide advantages in
terms of scene complexity because they reduce the representation to the abso-
lutely necessary data and do not carry any topological information, which is
often difficult to acquire and maintain. As each point in our model has its own
assigned color, we also do not have to deal with texturing issues. Moreover,
our view-independent representation is very suitable for 3D video editing ap-
plications since tasks like object selection or re-lighting can be achieved easily
with standard point processing methods [5].
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6.1 Point-based data model

Our point-based model consists of an irregular set of samples, where each
sample corresponds to a point on a surface and describes its properties such
as location and color. The samples can be considered as a generalization of
conventional 2D image pixels towards 3D video. If required, the samples can be
easily extended with additional attributes like surface normals for re-lighting.

To avoid artifacts in re-rendering, we have to ensure full surface coverage of the
samples. Thus, our samples cannot be represented by infinitesimal points, but
need to be considered as small surface or volume elements. One obvious repre-
sentation are surfels [37], which are small elliptical disks aligned tangentially
to the surface. However, surfels do not handle noise due to inaccurate 3D re-
construction or camera calibration very well, and require accurate geometries
and therefore stable surface normals.

Therefore, we have chosen a different approach, similar to Hofsetz et al. [38].
Every point is modeled by a three-dimensional Gaussian ellipsoid spanned by
the vectors t1, t2 and t3 around its center p. This corresponds to a probabilis-
tic model describing the positional uncertainty of each point by a trivariate
normal distribution

pX(x) = N(x;p,V)

=
1

√

(2π)3|V|
e−

1

2
(x−p)TV−1(x−p) (5)

with expectation value p and covariance matrix

V = ΣT · Σ =
(

t1 t2 t3

)T

·
(

t1 t2 t3

)

(6)

composed of 3 × 1 column vectors ti.

To estimate V, Hofsetz et al. [38] have chosen an approach based on the qual-
ity of the pixel correlation of the stereo matching. It turns out that these
resulting heuristic uncertainties are quite large compared to the high-quality
disparities we are able to obtain from our structured light assisted approach.
Consequently, we propose a different approach which constrains the uncertain-
ties to cover only small but well-defined acquisition errors. We assume that
most disparities are correctly estimated up to small errors caused by devia-
tions in the camera calibration and compute point sizes which just provide
full surface coverage.

Assuming a Gaussian model for each image pixel uncertainty, we first compute
the back-projection of the pixel into three-space which is a 2D Gaussian par-
allel to the image plane spanned by two vectors tu and tv. Extrusion into the
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third domain by adding a vector tz guarantees a full surface coverage under
all possible views. This is illustrated in figure 7.

uσ

t

t

u

z

Camera: center of projection

Image plane

Depth

Pixel

Sample

Gaussian ellipsoid
of sample

tv

v
σ

Geometry surface

Fig. 7. Construction of a 3D Gaussian ellipsoid.

Each pixel (u, v) is spanned by orthogonal vectors σu(1, 0)T and σv(0, 1)T in
the image plane. Assuming a positional deviation σc, the pixel width and
height under uncertainty are σu = σv = 1 + σc. σc is estimated to be the
average re-projection error of our calibration routine.

The depth z of each pixel is inversely proportional to its disparity d as defined
by the equation

z = −
fL · ‖cL − cR‖

d + pL − pR

, (7)

where fL is the focal length of the left rectified camera, cL and cR are the
centers of projection, and pL and pR the u-coordinates of the principal points.
The depth uncertainty σz is obtained by differentiating equation (7) and aug-
menting the gradient ∆d of the disparity with its uncertainty σc:

σz =
fL · ‖cL − cR‖

(d + pL − pR)2
· (∆d + σc) . (8)

Now, we can construct for each pixel its Gaussian in ray space with

ΣR =















σu · z 0 σz · u

0 σv · z σz · v

0 0 σz















. (9)
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It is transformed into the world coordinate system by

Σ = P−1 · ΣR (10)

using the camera projection matrix P. The centers p of the ellipsoids are
constructed by back-projection as

p = P−1 · (u, v, 1)T · z + c, (11)

where c is the center of projection of the camera.

Finally, the resulting point-cloud is post-processed to remove remaining arti-
facts. Apart from standard outlier removal techniques [39], we clean the data
by ensuring photo-consistence with the input images [4]. Redundant points
are removed using a clustering algorithm [36].

7 Rendering

We render novel viewpoints of the scene using the GPU and CPU coopera-
tively. Smooth images are generated using the uncertainties of the Gaussian
ellipsoids. Our method combines the advantages of two probabilistic image
generation approaches described in Broadhurst et al. [40]. Additionally we
perform a view-dependent blending similar to Hofsetz et al. [38].

7.1 Probabilistic rendering

Broadhurst et al. [40] use probabilistic volume ray casting to generate smooth
images. Each ray is intersected with the Gaussians of the scene model. At
a specific intersection point x with the sample i, the evaluation N(x;pi;Vi)
of the Gaussian describes the probability that a ray hits the corresponding
surface point. To compute the final pixel color, two different approaches are
described. The maximum likelihood method associates a color with the ray
using only the sample which has the most probable intersection. The sec-
ond approach employs the Bayes rule: It integrates all colors along each ray
weighted by the probabilities without considering occlusions. Thus, the color
of a ray R is computed as

cR =

∫

x∈R

∑

i ciN(x;pi,Vi)
∫

x∈R

∑

i N(x;pi,Vi)
. (12)

The maximum likelihood method generates crisp images, but it also sharply
renders noise in the geometry. The Bayesian approach produces very smooth
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images with fewer noise, but is incapable of handling occlusions and rendering
solid surfaces in an opaque way.

Fig. 8. Comparison of maximum likelihood (left) and Bayesian rendering (center)
with our approach (right).

We propose a rendering method which combines both approaches in order to
benefit from their respective advantages. Our idea is to accumulate the colors
along each ray like in the Bayesian setting, but to stop as soon as a maximum
accumulated probability has been reached. Reasonably, a Gaussian sample
should be completely opaque if the ray passes its center. The line integral
through the center of a three-dimensional Gaussian has a value of 1

2π
and for

any ray R it holds that

∫

x∈R
N(x;p,V) ≤

1

2π
. (13)

Thus, we accumulate the solution of the integrals of equation (12) by travers-
ing along the ray from the camera into the scene and stop as soon as the
denominator of equation (12) reaches 1

2π
. Assuming that solid surfaces are

densely sampled, the probabilities within the surface boundaries will be high
enough so that the rays will stop within the front surface.

We compare the maximum likelihood and Bayesian rendering with our ap-
proach on noisy data in figure 8. Notice the large distortions in the maximum
likelihood image that get smoothed out by the other two methods. However,
the Bayesian renderer blends all the points including those from occluded sur-
faces, while our method renders opaque surfaces and maintains the blending.
Thus, our renderer provides the advantages of both previous methods.

In our implementation, we replace the ray caster by a volume splatter [41] run-
ning on graphics hardware. After pre-sorting the Gaussians according to their
depths by the CPU, the GPU splats them from front to back. The pixel col-
ors are blended according to the Gaussian alpha masks until the accumulated
alphas reach a level of saturation. This is directly supported by the OpenGL
blending function GL SRC ALPHA SATURATE.
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7.2 View-dependent blending

Fig. 9. Rendering without (left) and with (right) view-dependent uncertainty blend-
ing (right).

One specific sample usually looks most accurate from the view it has been
acquired from. As the angle between the acquisition and the virtual view be-
comes larger, the quality decreases depending on the depth uncertainty of the
Gaussian. Projections of samples with high uncertainty become more and more
stretched, introducing visible artifacts, while samples with low uncertainties
look good from all views. We treat this issue by applying the view-dependent
blending of Hofsetz et al. [38]. The authors compute an alpha value repre-
senting the maximum opacity of each Gaussian in its center using the view-
dependent criteria of Buehler et al. [42], weighted by the individual depth
uncertainty σz. This method largely improves the resulting image quality, as
can be seen in figure 9.

8 Results and discussion

For the results presented in this section, we have recorded a dynamic scene
with our setup consisting of three sparsely placed bricks covering an overall
viewing angle of 70◦ horizontally and 30◦ vertically. The left side of figure 10
shows novel views of the acquired scene in figure 2, rendered from our recon-
structed 3D model. Moreover, our point-based, view-independent data model
conveniently provides possibilities 3D video editing and special effects (fig-
ure 10, right).

Our re-renderings have a decent look with a high-quality texture. Acquisition
noise is smoothed out by our blending method. We are even able to reconstruct
highly detailed geometry like the folds in the tablecloth shown in figure 11.
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Fig. 10. Re-renderings of the 3D video from novel viewpoints (left) and actor cloning
as a special effect (right).

Fig. 11. Geometric detail in the tablecloth. For illustration we recomputed smooth
surface normals and rendered the scene with Phong lighting under two different
illumination conditions.

However, there are still some artifacts at silhouettes which we would like to
eliminate in the future. This is possible by using matting approaches as done
by Zitnick et al. [1]. Some remaining outliers are also visible in the images.
They could be reduced by enforcing time coherence in the whole reconstruction
pipeline. Time coherence may further help in filling remaining holes caused by
occlusions.

With our system we are able to acquire a large viewing range with a relatively
low amount of cameras. To support increasingly large ranges, our system is
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scalable up to full spherical views. To fully cover 360◦ in all dimensions about 8
to 10 3D video bricks are needed. Note that this is not constrained to convex
views. Although overlaps in the geometry can help to improve the overall
quality, they are not required as each brick reconstructs its own scene part
independently.

The use of projectors still imposes some practical constraints because of the
visible light spots and shadows that are created in the scene. We accept this
limitation for the sake of a maximum 3D reconstruction quality. Using cali-
brated projectors it would be possible to compute the incident light at each
surface point and compensate for the artifacts.

9 Conclusions and future work

We presented a system for recording and re-rendering 3D video of dynamic
scenes. The brick concept combined with a point-based, view-independent data
model allows for scalable capturing of a large viewing range with sparsely
placed components. We are able to obtain high-quality depth maps using
discontinuity-sensitive stereo on structured light while concurrently acquiring
textures of the scene. Decent-quality images of novel views are achieved us-
ing Gaussian ellipsoid rendering with view-dependent blending methods. Our
data representation can directly benefit from a large variety of available point
processing algorithms, e.g. normal estimation for re-lighting effects.

In the future, we would like to improve the resulting image quality by exploit-
ing inter-brick correlation and eliminating remaining artifacts at silhouettes
using matting approaches. It would also be desirable to achieve a comparable
rendering quality using passive reconstruction algorithms only, which would
make our system suitable for large outdoor scenes. In addition, we would like
to address compression of time-varying point-sampled 3D video streams and
investigate novel possibilities of 3D video editing for special effect creation.
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