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Parallel Vectors Criteria for Unsteady Flow Vortices

Raphael Fuchs, Ronald Peikert, Helwig Hauser, Filip Sadlo, and Philipp Muigg

Abstract—Feature-based flow visualization is naturally dependent on feature extraction. To extract flow features, often higher-order
properties of the flow data are used such as the Jacobian or curvature properties, implicitly describing the flow features in terms of
their inherent flow characteristics (e.g., collinear flow and vorticity vectors). In this paper we present recent research which leads
to the conclusion that feature extraction algorithms need to be extended to a time-dependent analysis framework (in terms of time
derivatives) when dealing with unsteady flow data. Accordingly, we present extensions of the parallel vectors vortex criteria to the time-
dependent domain and show the improvements of the feature-based flow visualization results in comparison to the steady versions
of this extraction algorithm both in the context of a high-resolution dataset, i.e. a simulation specifically designed to evaluate our new
approach, as well as for a real-world dataset from a concrete application.

Index Terms—Vortex Feature Detection, Time-Varying Data Visualization
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1 INTRODUCTION

In this paper we present a solution to the challenge of feature extrac-
tion when dealing with time-dependent simulation data from computa-
tional fluid dynamics. We aim at feature-based flow visualization with
focus on vortices and their central locations. In an extension of the
state of the art we present two new methods for the extraction of vor-
tex core lines (aka. vortex axes1) in unsteady flow which are truthful to
the time-dependent nature of the extracted features.

A lot of work has been done in the field of feature extraction from
steady/time-independent flow data, especially with focus on vortices.
In the context of time-dependent flow previous work focussed on ex-
tracting features from individual time steps by interpreting the flow
data as a “stack” of steady flow fields (one per time step) and by ap-
plying extraction methods for steady flow data accordingly. The time-
dependent nature of these features was taken into account by connect-
ing them afterwards over time, e.g., by tracking. In Section 2 we go
into more detail with respect to related previous work.

It is favorable to inherently consider time already during feature
extraction and not separately in a second step. Doing so, we find our-
selves aligned with others (such as Hussain already in 1983 [10]), who
demand the joint consideration of space and time when investigating
features in time-dependent flow data. Accordingly, we propose to for-
mulate the extraction criterion in a way that temporal derivatives are
used for the local characterization of vortices and not only the Jacobian
of the flow. This is synonymous to considering pathlines for feature
extraction from unsteady flow instead of streamlines. Even though
we experienced in exchange with colleagues, reviewers, and others
that this extension is easily and quickly considered to be logical and
straight forward, the results improve more than expected.

Very often, flow phenomena such as gas flow during combustion
or air flow around a vehicle are time-dependent in their nature and
steady representations are just an approximation. Datasets with time-
independent flow are useful for domain experts as they provide infor-
mation, about general or large-scale characteristics of the flow, at a
relatively low cost in terms of dataset size, simulation time, as well as
analysis time. However, we still observe a clear trend towards more
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1 In other fields, e.g., in fluid mechanics, vortex cores are considered to be
of regional type (and not of line type). In this paper we use the term vortex core
line for line-type curve features which represent central locations in vortices.

unsteady flow data in scientific as well as in commercial applications
mostly because of better results, especially when doing a more care-
ful or detailed flow analysis, and also because of the availability of
increased computing and storage resources.

Accordingly, we consider it important to explicitly demonstrate that
feature extraction based on time, is not only logical to do, but indeed
yields better results. In certain cases, we can even observe that the tra-
ditional, streamline-oriented approaches lead to displaced “features”.
Furthermore, we can find an improved agreement of the new approach
with physical extraction schemes such as the low-pressure assumption
in the midst of vortices (no need for a correction step). In Sections 3
and 5 we exemplify our point by means of selected cases both in an-
alytic and computed form. The need for a new approach is demon-
strated as well as the gain through improved results. The contribu-
tions of this paper include two mathematical examples that model real
world problems. Based on the results of these examples we derive
simple modifications of existing vortex core line detection algorithms
to extend them to the unsteady flow domain. Real world applications
where the original approaches fail are presented and it is shown that
the results improve using the modified approach. Finally a numerical
study evaluates the impact of time-derivative estimation on the feature
extraction process. In the appendix we give details on implementation
details for unstructured grid data.

2 RELATED WORK

Feature-based flow visualization has been an active field of research
for many years and it is beyond the scope of this paper to provide
a comprehensive discussion of all of this work – we refer to Post et
al. [18], who published an extended overview recently. In this section
we focus on selected pieces of previous work, which are tightly related
to our new approach.

The algorithms, which we take as a basis for developing our new
approach, are the proven method for extracting vortex core lines from
steady flow data by Sujudi and Haimes [24] as well as the related,
higher-order method by Roth and Peikert [21]. Both approaches were
successfully applied in many cases, especially when dealing with time-
independent data. As such, we consider them as a strong starting point
for approaching the case of unsteady flow data. To do so, we adopt
the principle of the parallel vectors operator [16] for extracting the
vortex core lines in conjunction with modified extraction criteria that
are based on temporal derivatives.

Reinders et al. [19] use a graph view to show the development of
flow features over time and to indicate events such as birth, death,
and annihilation of features. Bauer et al. [2] discuss the tracking of
vortices in scale space, which improves the consideration of important
features. Garth et al. [6] show the movement of singularities relative to
an axis, which is of special importance compared to the others. Theisel
and Seidel [25] introduce the concept of the feature flow field and
use it to improve feature tracking: the paths of the critical points are
tracked as the streamlines of a new vector field, i.e., the feature flow
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field constructed from the original vector field.
The idea of considering pathlines when analyzing time-dependent

flow data is not new as such. Theisel et al. [26] present a pathline-
oriented approach to extracting the topology of 2D time-dependent
vector fields – similar to a streamline-based approach, they distin-
guish features according to attracting, repelling, or saddle-like be-
havior. Haller [7] describes vortices through the stability of manifold
structures which are related to fluid trajectories, i.e., pathlines, and ex-
tracts vortex regions in unsteady flow data based on this information.
Sadlo and Peikert [22] extract ridges from 3D finite-time Lyapunov
exponents (FTLE) for the extraction of Lagrangian coherent structures
(LCS). And Garth et al. [5] present a method for the direct visualiza-
tion of 2D FTLE information which results in expressive images of
time-dependent flow.

In general, we observe a new motivation in the field to approach
even very complex cases in 3D time-dependent flow visualization.
Peikert and Sadlo [17] discuss feature-based visualization for the in-
vestigation of vortex rings and vortex breakdown bubbles in recirculat-
ing flow, and Tricoche et al. [27] describe a slice-based visualization
for understanding intricate flow structures where the slices are placed
orthogonal to trajectories of the flow.

Another interesting class of approaches are physical criteria (in-
stead of geometric ones) for feature extraction. Banks and Singer [1]
propose a method to find vortex core lines based on a predictor/correc-
tor method that steps through the field in the direction of the vorticity
vector. At each step the normal plane is constructed and the point is
reset to the nearest local pressure minimum. Jankun-Kelly et al. [11]
present an improvement of this approach using a function fitting proce-
dure to locate the extreme values, stepping along the real eigenvector
of the velocity gradient. Stegmaier et al. [23] present an algorithm that
combines the λ2 method of Jeong and Hussain [12] with the predic-
tor/corrector method of Banks and Singer. For growing the skeleton
they step in the direction of the vorticity vector. In this context of
physical approaches, several more methods have been presented, e.g.,
the Q-criterion of Hunt et al. [9], also known as the elliptic version
of the Okubo–Weiss criterion by Okubo [15] and Weiss [29], or the
extension of considering acceleration terms by Hua et al. [8], which
includes temporal derivatives and expresses the feature extraction pro-
cess from the Lagrangian perspective. In an upcoming paper Weinkauf
et al. [28] approach the question of vortex core line extraction in a
similar fashion. For finding ”swirling particle cores” they analyze the
real eigenvector of the velocity gradient and the acceleration vector.
Even though they arrive at a similar extraction method, they motivate
their approach differently. In the present paper the underlying theory
is based on physical principles resulting in a slight modification of
existing algorithms. The swirling particle cores method is based on
the space-time framework and builds on a more geometric approach.
In future work we would like to evaluate and compare the two ap-
proaches. Another difference lies in the validation of the presented ap-
proach: it is demonstrated to work on real world examples, compared
to other quantities related to vortices and it shows good numerical be-
havior regarding time step with in the data set.

3 ANALYTIC CONSIDERATIONS

In the following, we discuss two analytic examples which can be con-
sidered as models for related phenomena in actual flow data. This way
we can concentrate on the demonstration of the need for a new ap-
proach. Looking at analytic cases we can avoid issues such as aspects
related to sampling and reconstruction, for example. This approach is
analogous to the work of others who use analytic examples for moti-
vation and for demonstration [24, 21, 7].

3.1 A Tilting Vortex

To construct our first synthetic vortex example, we aimed at an as sim-
ple as possible flow model that still can demonstrate the difference
between a streamline- and a pathline-based approach. To avoid a si-
multaneous discussion of whether our approach is Galilean invariant
we decided to go for one simple vortex which tilts over time.

(a) (b)

(c) (d)

z z

zz

Fig. 1. A synthetic example of a tilting vortex is shown before the tilt
(at the left) and a bit later (on the right). The top row shows the vortex
core line (grey tube) according to Sujudi and Haimes [24] and several
streamlines – the tilt into the x-direction is obvious. The bottom row
shows pathlines (in color) which exhibit an additional tilt towards the
viewer (yellow vortex core line).

Accordingly, we specify our flow model as

u(x,y,z, t) =





−y+ tz
x− tz

z



 .

The vortex in u is linearly strained in the z-direction and contains a tilt
which increases over time. Considering u in just one time step t = ta
and analyzing its – in all locations equal – Jacobian

J|t=ta =





0 −1 ta
1 0 −ta
0 0 1



 ,

by considering the only one real eigenvector (ta,0,1)T of this matrix
we observe a virtual2 rotation of the instantaneous flow field around an
axis which is aligned with this vector and which tilts into the positive
x-direction. In the top row of Fig. 1 this situation is illustrated for two
time steps ta = 0 (left) and ta = 0.3 (right).

We abandon the restriction to only consider the flow in just one time
step and see a different picture (bottom row of Fig. 1). In addition to
the above mentioned x-tilt, there is another tilt towards the viewer.
The corresponding vortex core line illustrated in yellow in Fig. 1 (d)
reflects this additional y-tilt.

The design of this flow model allows to analytically find explicit
solutions for stream- and pathlines. If we first consider just one time
step t = ta, we derive the streamline for seed location (x0,y0,z0)

T in
parameterized form as

x(τ) = (x0 − taz0)cos(τ)− y0 sin(τ)+ taz0eτ ,
y(τ) = (x0 − taz0)sin(τ)+ y0 cos(τ),
z(τ) = z0eτ .

2 We consider this rotation as “virtual” as it only exists for an infinitesimal
short moment of time – the vortex axis which is detected locally in time does
not yield any tightly related finite-time rotation of particles around this axis.
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The taz0eτ term in the x-component of streamlines reflects the above
discussed x-tilt. In the y-component of streamlines we do not see any
corresponding tilt term.

Considering pathlines next, we derive the following solution (now
parameterized with time t):

x(t) = (x0 + 1
2 z0)cos(t)− (y0 + 1

2 z0)sin(t)+(t − 1
2 )z0et ,

y(t) = (x0 + 1
2 z0)sin(t)+(y0 + 1

2 z0)cos(t)− 1
2 z0et ,

z(t) = z0et .

Now we see corresponding tilt terms in both the x- and the y-
components of the pathlines and the vortex axis is found to be along
the vector (t,−t,1).

3.2 A Rotating Vortex Rope
As a second example, we construct a simple synthetic model of a ro-
tating vortex rope that has characteristics which are related to an im-
portant flow phenomenon in the draft tube of large water turbines. To
start, we consider the flow field

u =





−(y− y1) · s
(x− x1) · s

1



 .

For the degenerated case of x1 = y1 = 0, this simply is a rigid rotation
about the z-axis. Assuming that the points (x1,y1,z) lie on a helix with
radius R and pitch 2π

k , which rotates around the z-axis with angular
frequency ω and phase 0, i.e., with

x1 = R · cos(kz+ωt) and
y1 = R · sin(kz+ωt),

we get a rotating vortex, i.e., a time-dependent flow field as desired –
see Fig. 2 for selected stream- and pathlines. Note, that we assume |k+
ω| < s to ensure that the structure of the helix dominates the rotation
about it.

Based on this model, we can analytically derive several variants of
vortex core lines (according to different extraction schemes). In all
cases we obtain a helix with the same pitch, frequency, and phase, but
with different radii. See table 1 for an overview of the results.

The employed methods are three state of the art approaches for
steady flow data: the method proposed by Levy et al. (curl parallel
to velocity [13]), the one by Sujudi and Haimes (parallel first and sec-
ond derivatives of streamlines [24]), and the higher-order method by
Roth and Peikert (parallel first and third derivatives of streamline [21]).
We apply them to the flow data of individual time steps as discussed
above.

We contrast these results with those of our new approach, i.e.,
the unsteady extension of Sujudi and Haimes’s (as described in Sec-
tion 4.1) and the unsteady version of the higher-order approach (as
described in Section 4.2). We see that the traditional approaches miss
the rotation of the vortex rope (missing ’+ω’ terms in all cases), since
it obviously cannot be detected from considering an individual time
step only.

We also compute a correct vortex core line for this unsteady flow
by using a symmetry argument. On each slice orthogonal to the z-axis
(z = zconst), there is just one point (x,y,zconst)

T, with

x =
R · cos(kz)

1− (k +ω)/s
and y =

R · sin(kz)
1− (k +ω)/s

,

such that a particle which is released from this point at time 0 moves
along a pathline of exact helical shape. Particles that are released
from any other location yield pathlines of more complicated geometry
(Fig. 2). In this case, we see that the material line (time line), which
consists of all of these special particles, coincides with the correct vor-
tex core line. This curve has the same radius as the helical pathlines,
but exhibits a different pitch of 2π

k vs. 2π
k+ω . We note, however, that

the fact that the vortex core line also is a material line is specific to this
example and does not generally hold for arbitrary cases.

(a) (b)

x x

Fig. 2. Streamlines and pathlines in a model of a rotating vortex rope.
(a) The vortex core line based on streamlines (according to Sujudi and
Haimes [24]) is shown as a grey tube (it is the only grey line which also
is a helix). (b) The vortex core line based on pathlines (shown in yellow
on the right) has the same pitch but a larger radius (it is the only helical
pathline, shown in magenta).

streamline-based pathline-based

Levy et al. (1+ k
2·s )R

Sujudi & Haimes (1+ k
s )R (1+ k+ω

s )R

higher-order (1+ k
s +( k

s )2)R (1+ k+ω
s +( k+ω

s )2)R

correct (1− k+ω
s )−1R

Table 1. Different extraction schemes all result in helical vortex core
lines, but with different radii. We compare the results for the algorithms
of Levy et al. [13], Sujudi and Haimes [24], the higher-order method by
Roth and Peikert [21], and an analytically determined correct variant.

By comparing the different radii from table 1 with the correct so-
lution and by considering the geometric series (1− p)−1 = (1 + p +
p2 + . . .), here with p = (k +ω)/s, we can see a nice alignment of our
new approach with the correct solution. The modified variant of the
approach by Sujudi and Haimes is the first-order approximation of the
correct solution and the modified variant of the higher-order approach
is its second-order approximation.

The deviation of the Sujudi-Haimes lines from the correct vortex
core lines is the phenomenon first observed in the ”bent helix” example
[20], and it is due to the combination of a weakly rotating vortex and
a strongly curved vortex core line. The error becomes negligible if
|k +ω | � |s|, i.e. if the sum of the spatial and the temporal frequency
is much smaller than the parameter s controlling the swirl around the
vortex core line. The higher-order method yields an additional term of
the Taylor series in this example.

We have seen that the extension to unsteady flow for both methods
results in improved results in comparison with the time frozen anal-
ysis of vortex flow features. To understand what is happening with
unsteady vortices it is necessary to extend the steady versions of the
vortex extraction criteria.

4 PATHLINE GEOMETRY BASED FEATURE DETECTORS

We can generalize existing feature extraction algorithms to unsteady
flow data by replacing streamlines with pathlines in the underlying
model. This way they remain unchanged for steady flows.
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Fig. 3. For the vortex rope in the depicted dataset iso-values of pres-
sure give good insight on where the vortex core line is located. We
can clearly see how the yellow core line extracted using the classical
approach of Sujudi and Haimes deviates from the center of pressure
isosurface. The modification to time derivative aware extraction of the
vortex coreline improves the results visibly.

4.1 Sujudi-Haimes
In this section we modify the approach by Sujudi and Haimes [24] to
include time derivatives.

4.1.1 Original Definition
In the original definition the first step is to compute the eigenvalues of
∇u per tetrahedral cell. Only cells where a pair of complex eigenvalues
exists are further processed. The existence of two complex eigenvalues
is determined by the discriminant of the characteristic polynomial [4].

The next step is to compute the single real eigenvector εr for the
candidate cells to extract the local direction of the vortex core line.
In the final step the algorithm searches for locations where εr is par-
allel to u. Linear interpolation is used between the nodes of a grid
cell when searching for parallel locations. A modification in order to
get connected lines instead of disjoint straight line segments is to es-
timate velocity gradients per node and compute parallel positions on
cell faces.

4.1.2 Equivalent Definition
The eigenvector computation required by the original method is quite
expensive. A more efficient method [16] is to compute the matrix-
vector product as = (∇u)u instead. Given that εr is the only real
eigenvector of ∇u, it is parallel to u exactly if as is. Hence, Sujudi-
Haimes vortex core lines can be equivalently defined as the locus of
points where u and as are parallel, restricted to points where the ve-
locity gradient has a pair of complex eigenvalues. In this context, two
vectors are said to be parallel also if one or both of them are zero.

4.1.3 Modification for Unsteady Flow
The original formulation of the Sujudi-Haimes criterion is expressed
in terms of the velocity field and its gradient tensor field. Using this
formulation we cannot include the time derivative information since
these quantities are the same for steady and unsteady flow. In contrast,

the parallel vectors formulation allows for a different extension to un-
steady flow. The vector as = (∇u)u can be viewed as the steady case
of the acceleration vector

at = Du
/

Dt = (∇u)u+∂u
/

∂ t

of a particle. An obvious modification is now to use the true accelera-
tion vector instead of the vector as, i.e. to look for points where at and
u are parallel. Besides the justification as being the natural extension
to unsteady flow, this modification is also backed up by the following
observation.

Sujudi-Haimes vortex core lines can be defined in a third equiva-
lent way, namely as the locus of zero streamline curvature, again con-
strained to points where the velocity gradient has a pair of complex
eigenvalues. The equivalence is shown as follows. The curvature of a
curve with (time) parameter is κ = ‖ẋ× ẍ‖/‖ẋ‖3 where the dots de-
note temporal derivatives. For a streamline, ẋ = u and ẍ = as, so the
streamline curvature is zero exactly where the Sujudi-Haimes crite-
rion is met. For a pathline, ẍ is Du/Dt so the pathline curvature is
zero exactly where the modified Sujudi-Haimes criterion is met.

In principle, the zero curvature points of streamlines or pathlines
could be computed to yield vortex core lines according to the original
or modified Sujudi-Haimes criterion. However, numerical integration
and curvature computation are too expensive operations to make this a
practical alternative to the parallel vectors method.

It was a long standing open question from our application partners
why the vortex core lines resulting from the original algorithm of Su-
judi and Haimes very often exhibit a small phase-shift in relation to
regions of low pressure. Therefore it is a common approach to do a
correction step towards pressure minima when extracting vortex core
lines [1, 11]. In Figure 3 we can see that the yellow vortex core lines
extracted using the eigenvector method are shifted away from the cen-
ter of the pressure isosurface. Using the pathline based extraction ap-
proach we arrive at a solution located at the pressure minima without
a correction step. Therefore we can assume that the deviation in the
unmodified approaches results from not taking the temporal derivative
into account.

4.2 Higher Order Vortex Core Lines

In this section we modify the higher order approach to work on path-
lines.

4.2.1 Original Definition

Roth and Peikert [21] present an extension of the vortex extraction
approach by Sujudi and Haimes to bent vortices. The eigenvector is
based on a straight line model for the vortex core line. In real world
data sets we can find many types of bent vortices though. Common
types are hairpin, horseshoe, and ring shaped vortices. Roth and Peik-
ert showed [20] that the eigenvector method introduces an error as
soon as the vortex is bent.

To overcome these drawbacks we can weaken the conditions on a
vortex core line such that we can detect bent vortices as well, but the
amount of false positives will increase significantly. It is not possi-
ble to model a curved vortex based on linear fields, therefore one has
to take into account higher-order derivatives when searching for vor-
tex core lines. The second derivative following a particle in a steady
velocity field is bs = (∇a)u.

Based on the torsion of a parametric curve in R
3 we can relax the

condition on vortex core lines such that torsion is zero and that zero
torsion is preserved as well as possible when following the streamline.
The extraction algorithm is based on the fact that for the bent vortex
model the vector bs at the vortex core line is not only restricted to the
< u,as > plane but that the best choice is to require that bs is parallel
to u. Thus, we can state the following definition for a vortex core line:
the vortex core line is the location of all points where bs is parallel to
u.
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Fig. 4. Interactive visual analysis incorporating vortex core line. After
the vortex core lines are computed we use interaction to remove false
positive line segments. (1) The user can interactively specify the vol-
ume of interest in attribute views to select attribute ranges of interest
and another set of attribute selections that control the vortex region. (2)
The selected region of interest is visualized by volume rendering (in this
example the volume selection is defined by λ2 < −100) and the vor-
tex region controls which line segments are visible (we have selected
regions that have both complex velocity gradient eigenvalues and neg-
ative λ2 values). (3) From the vortex core lines we can derive additional
attributes such as an attribute measuring the distance from the core line
for further analysis.

4.2.2 Modification for Unsteady Flow

The problems observed for curved vortices in steady flow data [21]
obviously extend to curved vortices on unsteady flow data. In Section
3.2 we have seen that the modified version of the higher order model
will reproduce the correct vortex core line of the bent time dependent
model if we ignore the terms of higher order in the Taylor expansion.
Therefore, we can use the parallel vectors operator to apply the higher-
order approach to unsteady flows.

A criterion based on zero curvature in principle searches for straight
vortex core lines. The line that is classified as the vortex core line by
the parallel vectors approach of the previous section can deviate to
some extend from this restriction. But for strongly bent vortices the
result will show the same inconsistencies as observed for streamline
based geometries. For the higher order vortex core line detection algo-
rithm the required modification is therefore to replace the vector bs by
the actual jerk vector (rate of change of acceleration) bt = D2u

/

Dt2.
See Figure 7 for an example.

4.3 Interactive Vortex Core Line Extraction and Filtering

Both the eigenvector method and the higher order method produce
many line segments that cannot be considered as vortex core lines. For
this reason we use the interactive visual analysis features of the SimVis
framework to extract the meaningful vortex core lines. This way we
get confidence in the extracted vortex core lines and can improve their
quality. Here we rely on smooth expressions of vortex detectors to
select the vortex core lines of interest [3]. The other way round we use
the extracted core lines to derive other attributes in the data. Figure 4
illustrates this approach.

Fig. 5. Multiple views and brushing allow the user to apply vortex core
line filter rules interactively. Starting with a large number of spurious
solutions we can select the main part of the largest vortex core line
applying two brushes.

To our knowledge there is no fully satisfying approach to extract
only the relevant vortex core lines automatically from the data. The
interactive multi-field approach of SimVis handles this problem using
visual analysis. To be able to do this we modify the parallel vectors
algorithm slightly:

1. Generate additional field at or bt (see Section 4.1.3, Section 4.2.2
and Appendix A).

2. Compute closed parallel vectors lines without additional criteria
(see Section A.3).

3. Use interactive region of interest specification to extract correct
subsections of the lines (see Figure 4).

The delta discriminant used as an additional criterion both by the
method of Sujudi and Haimes and the higher order method was intro-
duced by Chong et al. [4]. This physics-based criterion does not take
into account the time-dependent components of the flow. Neverthe-
less physics-based criteria such as delta, Q, and λ2 are often directly
applicable to unsteady flow, when it is possible to derive them from
instantaneous properties of the flow. The delta criterion is prone to
finding false positives in large regions of the flow (e.g. in the turbine
dataset it is true almost everywhere). In our experience it has shown to
reduce the number of spurious solutions to use additional vortex core
region detectors in combination with the delta criterion. Another type
of additional criteria includes information derived from the vortex core
line [16]. Examples are the angle between flow and vortex core line,
number of core line segments or vortex strength. These are difficult to
tune optimally. By combining multiple vortex region criteria as sug-
gested in [3] we can avoid criteria involving the extracted vortex core
line.

Building on the information we get from the extracted vortex core
lines, we get access to a whole new type of information that we can
use in further analysis steps. To include information on the vortex core
line we derive for each cell an attribute that measures the distance from
the final vortex core line in a simple breadth-first traversal starting with
cells that contain a vortex core line segment.

5 APPLICATION STUDY - ENGINE DATASETS

We have implemented the presented vortex core line detection algo-
rithms in the SimVis framework [31] and applied it to two engine
datasets to verify the approach on real world data. For these datasets
we have found that using the Green-Gauss approach for computing
gradients gives better results than a least-squares approach (see Ap-
pendix A).

The first dataset results from a simulation of the compression and
combustion phase in the combustion chamber of a standard engine
model. In Figure 6 we can see the vortex core lines based on the
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Fig. 6. We compare the vortex core lines found by the original method
of Sujudi and Haimes and the modified version. Two views of the same
timestep show the benefits of the modification. Both views show the
same vortex core line and isosurface. (1) In one case the original
method does not detect a vortex core at all. (2) The time-aware modifi-
cation traverses the full length of the vortex core and continues into the
region of strong turbulence at the top of the cylinder. (3) The original
vortex core line leaves the core region of the vortex and vanishes in a
substantial portion of the vortex region.

higher order

method

eigenvector

method

Fig. 7. In this early timestep of the combustion chamber dataset we
can see that the extracted vortex core lines for the modified version of
the eigenvector method and the modified higher order method differ at
the weakest part of the vortex. The cutting plane with color mapped to
pressure shows that the modified method of Sujudi and Haimes fails to
detect the exact core line of the vortex in this case.

original and the modified versions of the parallel vectors criteria. Ob-
viously the results differ significantly and one of the vortex core lines
is not extracted at all using the original algorithm.

The second dataset is a high-performance two-stroke engine
dataset, which contains the complete simulation results from the in-
jection and the combustion of fuel during one crank revolution. The
engine geometry is shown in Figure 8. Table 2 shows a comparison of

combustion

chamber

intake

exhaust

crank

shaft

Fig. 8. Overview of the geometry of the two-stroke engine dataset.

Cell Type Comb. Chamber Two-stroke Eng. T-Junction

Tetrahedra 40 1156 46792

Hexahedra 8493 – 23877 129658 – 148247 0

Prisms 483 – 2188 11849 – 13241 125960

Pyramids 214 – 428 6505 0

Timesteps 48 91 1570

Table 2. Comparison of the datasets evaluated in the application study
and for the numerical evaluation. Since the grids of the engine datasets
vary over time the number of cells changes accordingly.

the datasets discussed in the following sections.

5.1 Impact of Time-derivatives
The question remains whether and where the time derivative informa-
tion has significant impact on the vortex core line extraction results. In
the engine datasets we have found the vortex core lines extracted by the
modified and the unmodified methods to be similar but shifted for most
timesteps. But in Figure 6 we can observe that in a timestep shortly
after ignition the vortex core line based on as and the vortex core line
based on at can differ significantly. This is due to the strong impact of
the time derivative in these time steps. To illustrate the close correla-
tion between these two vectors in early timesteps and the large impact
of the time derivative after ignition we show the magnitudes of the
vectors normalized with mean and standard deviation in scatterplots
(see Figure 9). Very often the timesteps that include large changes
over time are critical for the application. They have vital impact on
mixing, material wear and engine performance and therefore the anal-
ysis benefits from improving vortex core line extraction in these time
steps.

5.2 Equivalence Ratio
One key attribute that is related both to emission and engine perfor-
mance is equivalence ratio (ER), which is the relation between fuel
and air within a volume cell. It is crucial that ER lies in the opti-
mal interval between 0.7 and 1.4 for most fluid cells at the moment
of ignition. The mixing process happens at earlier time steps during
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(a) (b) (c)central

tumble

vortex 

region

1

2

3

Fig. 10. We compare the of computed corelines with respect to λ2 and equivalence ratio. (a) The modified algorithm detects two vortex core lines
(red) whereas the original version only detects the main vortex core line (white) (b) An isosurface of equivalence ratio at 0.7 containing the region
of optimal mixing. (c) The surface containing the region of equivalence ratio of 0.5 and λ2 ≤ 1000.

time steps after ignitionbefore ignition

||du/dt||

||Du/Dt||a =t a  t

a =s
a  s

Fig. 9. Comparison of acceleration vector magnitudes: The scatterplots
show that the magnitudes of the two variants of the acceleration vectors
can differ significantly in the crucial timesteps after ignition (we have
normalized the magnitudes such that the center of gravity corresponds
to the origin).

compression when the influence of the time derivative is less than after
ignition. Even though the difference between the core lines generated
by the modified version is smaller it is still not negligible. In Figure
10 (a) we show iso values of the λ2 vortex detector and concentrate
on the vortex core lines detected for this vortex. In the center of the
combustion chamber of the two-stroke engine we can see the large
vortex region that plays a central role in the mixing process. The ques-
tion in this example is, why the vortex core region is not of tubular
shape. The second vortex core line (3) is not detected by the original
approach. Combining (1) and (3) we can gain insight into the con-
trolling skeleton of the main tumble vortex. In Figure 10 (b) we can
distinguish the regions of sub-optimal and optimal to very high con-
centrations of fuel at iso value surface of 0.7. The bend part of vortex
core line (3) closely follows the boundary of this region. In Figure 10
(c) the surface describes the boundary of the region defined by slightly
sub-optimal to high mixing and high λ2 values. The core line gener-
ated for this vortex with the original vortex core extraction method (1)
and the modified approach (2) are similar and both traverse the full
region detected by the λ2 vortex region detector. Another core line is
not detected though. Obviously we miss an important aspect without
the second vortex core line since we can see in Figure 10 (c) that it
influences the region of the vortex where non optimal mixing occurs.

6 ASSESSMENT OF NUMERICAL BEHAVIOR

In engineering applications it is not common to store all the infor-
mation computed in the course of the CFD simulation permanently.

Especially time derivative information is not generally stored in the
data. Furthermore, the solver does not include all the timesteps com-
puted in the solution file. In general we can expect the simulation
design regarding cell types and cell sizes to be adequately chosen by
the simulation designer. The simulation designer considers the nec-
essary resolution for postprocessing such that reliable streamlines and
pathlines can be constructed. From experience we know these set-
tings to work well for computing vortex core lines in the steady case.
Since time-derivative information is not stored and not all time steps
are written out into the final dataset we need to evaluate the impact of
larger step widths on the feature extraction process. Our application
partners from Arsenal Research [30] have computed an unsteady so-
lution to a pulsating flow in a tube t-junction (see Figure 11). Time
dependent boundary conditions are used to produce flow separation
inside the tube. The total mesh size is about 170000 cells.

During simulation 1570 timesteps have been generated resulting in
26 GB of compressed information. This is 10 times the temporal reso-
lution our application partners would have stored usually for this sim-
ulation setting. To exclude possible interference from numerical prob-
lems introduced by the plane fitting technique we use to estimate the
material derivatives also the Jacobian computed during the simulation
have been included in the dataset. This way we can analyze how strong
the impact of larger timesteps is when computing vortex core lines. We
can use the time derivative computed for step width 1 as reference for
the other step widths and measure the influence of larger step widths
by computing the difference between the reference derivative and the
respective derivative for the given step width. In Figure 11 the mag-
nitude of this difference is mapped to color. To analyze the impact
on vortex extraction, we focus on a horseshoe vortex directly behind
the top inlet. We see the difference between the acceleration vector
from step width of 1 and step widths 10 and 20. The vortex core lines
resulting from smaller step widths than 10 do not differ significantly
from each other. This is exactly the default step width resulting from
the standard simulation procedure. For larger step widths the resulting
vortex core line begins to deteriorate due to the noise introduced by the
time derivative component of the acceleration vector. At step width of
20 we still get a similar but jagged result. At larger step widths the
extracted line no longer resembles the horseshoe vortex in the data set.
At step width 100 the line breaks into 3 unconnected components that
follow the vortex core line for some length and then trail off in random
directions.

We conclude that for standard step widths in well prepared sim-
ulations the time-aware vortex core line extraction method produces
reliable results. Both for the especially designed dataset and the real
world examples (where the Jacobian had to be estimated) we did not
find the estimation of the time derivatives to introduce significant ad-
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Fig. 11. Impact of time derivative estimation. The different step widths are measured in 1000−1 sec. The vortex core lines for stepwidths 1 to 10 do
not differ visibly. Color is mapped to the difference between the time derivative for step width 1, and the respective step width (for step width 20 we
have changed the color mapping by one order of magnitude).

ditional noise.

7 CONCLUSION

This paper proposes a new method to find vortex core lines in unsteady
flows. Localization of vortices has been shown to be dependent on the
temporal developments of the flow. We have given examples where
vortex core extraction on time-frozen fields fails and have shown how
to solve this problem. This result is not only relevant to vortex core
extraction algorithms but to unsteady flow feature extraction methods
in general. Since we could demonstrate that vortex core extraction
algorithms have to include the temporal developments of the flow, it
can be expected that similar results can be achieved for other flow
features as well. Therefore we expect to see significant similar results
in this direction in the future.

Based on the insight that it is necessary to include the time-
derivative information into the feature extraction process we proposed
a natural extension of the feature extraction process to unsteady flow
data. By changing the underlying geometry from a streamline to a
pathline based approach we can generalize existing feature extraction
algorithms to unsteady flow data in a way that does not change their
behavior on steady flows. We presented an algorithm that follows this
approach extending parallel vectors operator criteria. Due to the con-
sistent extension of the approach the algorithms change in a natural
way and (given an implementation of the parallel vectors operator)
the extension can be implemented quickly. The additional computa-
tion cost amounts to computing finite differences to estimate the time
derivatives, therefore the difference to the original parallel vectors im-
plementation is small.

We could confirm on real world data that the extracted vortices can
differ significantly in position from the method of Sujudi and Haimes
and in the large majority of the cases the extracted corelines are the
same or better than those we got with the standard methods.

We conclude that for unsteady data the modified version of the al-
gorithm of Sujudi and Haimes is the default choice. The higher order
method generally performs very similar to the method of Sujudi and
Haimes but it intensifies numerical issues. Also it requires additional
computation. Therefore, only if after inspection of the data the results
of the unsteady version of Sujudi and Haimes does not perform as ex-
pected, we suggest to switch to the modified higher order method.
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APPENDIX

A ALGORITHM DETAILS

The vortex core line extraction process consists of three stages:

1. estimate velocities at vertices and faces (Subsection A.1)

2. reconstruct gradients at vertices and faces using estimated veloc-
ities (Subsection A.2)

3. for each cell subdivide into tetrahedra and use reconstructed gra-
dients to find vortex core positions (Subsection A.3).

Depending on the type of simulation data storage can be either ver-
tex or cell centered (see Figure 12). In the third vortex core line extrac-
tion step we need gradients at the nodes of the grid, and the gradient
reconstruction step varies slightly for the two storage types.

A.1 Velocity Estimation
To reconstruct velocities we use a standard inverse geometric weighted
interpolation scheme.

For estimating face velocities from cell centers, we define the dis-
tance between the center of a cell and one of its faces as the distance
between the cell center and the center of gravity of the face. The ve-
locity at face u f is computed as

u f := αuC +(1−α)uN

where C and N are the two cells adjacent to the face f . Here the
weighting geometric factor α can be computed as α := d( f ,N)

d( f ,C)+d( f ,N)
,

where d(�, �) denotes the Euclidean distance (see Figure 13 (a)). The
velocity at a face can be computed from vertex centers by taking the
average of the surrounding vertices.

control volume

storage location

interpolation 

location

(a) (b)

Fig. 12. Control volume variants used for numerical solution for CFD. (a)
Cell-centered volume representation. (b) Vertex-centered volume repre-
sentation. The segments surround the median dual control volume, i.e.,
the positions inside the cells are computed using the center of gravity
for each cell.

neighboring cell 

center N

current cell

center C

face f

}
} d(f, N)

d(f, C)

u

u
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N

current vertex v

neighboring cell 

center N

neighboring vertex

d(v, N)

}

face f

uN

uv

(a) (b)

Fig. 13. Velocity estimation (a) estimating face velocities from cell cen-
tered data can be done by inverse distance weighting of the adjacent
cell velocities. (b) estimating vertex velocities from cell centered data
can be done by inverse distance weighting of the surrounding cell ve-
locities

The velocity at a node v can be computed from the surrounding cell
centers by using the cell values of the surrounding cells. Again the
weight is taken as the inverse of the distance of the node from the cell
center. Let NC be the number of cells surrounding v, Ci the center
of the i-th neighboring cell, and uCi its velocity vector. Then we can
compute the velocity uv at v as

uv := ∑ i = 0NC α−1
i

NC

∑
i=0

uCi αi

where the weight of the i-th cell is αi := d(v,Ci)
−1 (see Figure 13

(b)). The velocity at a cell center from the surrounding vertices for
vertex centered grids can be computed by taking the inverse distance
weighted average of vertices of the cell.

A.2 Gradient Reconstruction
A.2.1 Green-Gauss Linear Reconstruction
Let Ω be a volume (a cell of the mesh for cell centerd representation
or the median control volume for vertex centered representations), S =
∂Ω the bounding surface of Ω, ϕ some scalar function defined on Ω,
and ∇ϕ the derivative of ϕ . Then the Green-Gauss theorem states that
the surface integral of the scalar function ϕ times the normal vector
of the surface over the surface S is equal to the volume integral of the
gradient ∇ϕ over the volume Ω:

∫

Ω
∇ϕdΩ =

∫

S
ϕndS.

To compute the derivative at the center of the control volume we
assume that ∇ϕ is constant over the control volume and the volume
integral over ∇ϕ reduces to the volume of Ω times ∇u:

|Ω|∇ϕ ≈
∫

Ω
∇ϕdΩ =

∫

S
ϕdS.
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Fig. 14. Gradient estimation at a vertex (red) using the Green-Gauss
theorem requires to estimate cell center velocities and mid-point veloc-
ities. (a) The surrounding surface uses cell centers (green) and mid-
points (gray). (b) In this detail illustration of the lighter gray section from
(a) we see the full configuration for a single surrounding tetrahedron.

Finally, we can approximate the integral over the bounding surface
using face values. That is

∇ϕ =
1
|Ω| ∑

f aces
ϕ ·area( f acei) ·n f

where area(triangle) is the surface area of a triangle.
To compute the derivative at a vertex we can use the control volume

depicted in Figure 14 and get

|ΩC|∇u ≈
Nt(v)

∑
t=0

3

∑
i=1

area(st,i) ·us
t,i.

Here Nt(v) is the number of tetrahedra at vertex v. Here we are using
an interpolated velocity vector at the mid-points um

t,i := 1
2 (uv + ut,i)

and the velocity at the cell center to construct the surface velocity
us

t,i := 1
3 (um

t,i + um
t,i+1 + uc) (with um

t,4 := um
t,1). See Figure 14 for an

illustration.

A.2.2 Least-Squares Linear Reconstruction

Here the gradient is estimated by fitting a hyperplane to the cell such
that the difference between the extrapolated value for the surrounding
cells and the present values of the surrounding cells are minimized.

For each edge of the resulting mesh incident to the vertex v0, an
edge projected gradient constraint equation is constructed using in-
verse distance weights αi for each edge:

αk(∇u) · (xk − x0) = αk(ϕk −ϕ0).

The gradient construction is obtained by solving a least-squares op-
timization problem to minimize the sum of the distances between
the estimated values and the vertex values. This approach implic-
itly smoothes the data and can improve the results when working with
noisy data.

Which weighting scheme works best is still an open question.
Mavriplis [14] stresses that the minimization problem will be much
better conditioned when using inverse distance weighting. On the
other hand when the mesh is irregularly sampled and on one side of a
cell we have a large number of small triangles and on the other side
just a few larger triangles this can lead to a gross misrepresentation
of small triangles. Therefore we use unweighted direct neighbors for
estimating the gradient at a cell by default and only change this proce-
dure when necessary.

A.3 Pseudocode

INPUT : u n s t r u c t u r e d g r i d
OUTPUT: a r r a y o f l i n e segmen t s

l i n e s ∗ c o r e = new l i n e s ( ) ;
/ / pre−p r o c e s s i n g
c e l l s ∗c = g r i d−>g e t V e r t e x C e l l s ( ) ;

/ / check each c e l l f o r v o r t e x−core
foreach c e l l ∈ c {

/ / q u i c k : check f o r two f a c e i n t e r s e c t i o n s
v e c t o r<t r i > ∗ t r i s = c e l l . g e t T r i F a c e s ( ) ;
r e s u l t = checkFaces ( t r i s ) ;

i f ( r e s u l t . s i z e ( ) == 2)
co re−>add ( r e s u l t ) ;

/ / f a l l b a c k : check a l l t e t s
e l s e {

/ / g e t t e t r a h e d r a l i z a t i o n
t e t s ∗ t = c e l l . g e t T e t s ( ) ;
foreach t e t ∈ t

co re−>add ( checkFaces ( t e t ) ) ;
}

}

re turn c o r e ;

Fig. 15. General algorithm outline. The method ’getTriFaces()’ returns
a vector of triangulated faces for a cell. The method ’checkFaces()’
applies the parallel vectors operator to each face in a list and returns a
list of points where v and w are parallel. The method ’getTets()’ returns
a tetrahedralization of a cell using face centers and the cell center as
additional points.

INPUT : t r i a n g l e ( t1 , t2 , t 3 ) , f l ow ( v1 , v2 , v3 ) , a c c e l (w1 , w2 , w3)
OUTPUT: p a r a l l e l p o s i t i o n , n u l l

/ / compute i n c r e m e n t s
mat inc rV = ( v2−v1 , v3−v1 , v1 ) ;
mat incrW = (w2−w1 , w3−w1 , w1 ) ;
/ / f i n d p a r a l l e l p o s i t i o n
i f ( d e t ( inc rV ) != 0) {

mat i n v = inc rV . i n v e r s e ( ) ;
mat s o l = i n v ∗ incrW ;
v e c t o r ∗ e i g = s o l . r e a l E i g e n V ( ) ;
v e c t o r ∗pos ;
f o r e a c h e ∈ e i g {

f l o a t s = e−>x / e−>z ;
f l o a t t = e−>y / e−>z ;

i f ( s>=0 && t >=0 && s+t <=1)
pos . add ( t 1 +s∗ t 2 + t∗ t 3 ) ;

}

re turn pos ;
}

Fig. 16. Pseudo code of the parallel vectors operator on a triangle. If the
determinant of incrV is zero, also incrW has to be checked. The method
’inverse()’ returns the inverse matrix. The method ’realEigenV()’ returns
a list of eigenvectors of a matrix having real eigenvalues.
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