
A Transform, Lighting and Setup ASIC for Surface
Splatting

Simon Heinzle, Olivier Saurer, Sebastian Axmann, Diego Browarnik,
Andreas Schmidt, Flavio Carbognani, Peter Luethi, Norbert Felber, Markus Gross

ETH Zurich, Switzerland, Email: simon.heinzle@inf.ethz.ch

Abstract— This paper presents the first ASIC implementation
of the transform, lighting and setup stages of the elliptical
weighted average (EWA) surface splatting algorithm, a high
quality method for anti-aliased rendering of point sampled
objects in computer graphics. The algorithm has been integrated
on a small core size of 8.15 mm2 in a 180 nm process using
massive resource sharing. It achieves the high throughput of 2.94
million points per second at the operating frequency of 147 MHz,
with a power dissipation of 300mW.

I. INTRODUCTION

In recent years the polygonal complexity in computer graph-
ics has exploded, while the number of screen pixels has only
grown moderately. This trend has lead to an ever and ever
increasing ratio of polygons to screen pixels. As a result,
tiny triangles often fall between sampling points and get lost
during rasterization, thus causing unwanted aliasing artifacts.
Therefore, triangles may not be the optimal rendering primitive
in all cases.

Moreover, constructing optimal triangle meshes from mod-
els is very costly. Current and next-generation 3D camera sys-
tems, for example, are able to capture three dimensional scenes
very similar to photographs, by combining a two dimensional
color sampling with a depth sampling of a scene. Immediate,
high-quality rendering of the captured scene is a key issue for
mobile 3D camera devices. However triangulating the aquired
point samples combined with traditional polygon rendering
leads to very slow frame rates. Therefore, directly displaying
the point samples generated from such 3D cameras could be
a better option.

Elliptical weighted average surface splatting [1] addresses
the issue of high-quality rendering of point samples as an
alternative to triangle based rendering. It also comes with
implicit anti-aliasing under minification and it does not suffer
from deficiencies stemming from very small points. In EWA
splatting, a point sample is represented as a disk-shaped
colored region with a fuzzy influence on neighboring points.

The first hardware accelerated geometry system for com-
puter graphics has been presented in [2], a relevant follow-up
work focused on triangle rasterization [3]. But also other ren-
dering paradigms, such as ray tracing, have been investigated
for hardware architectures [4]. However, the predominant
rendering technique on the graphics processor market is still
triangle rasterization, due to its simplicity, matureness and
good characteristics in terms of memory bandwidth.

Fig. 1. Left image shows the head of a chameleon model, rendered using
EWA surface splatting. The right image shows a close-up of the eye, with
reduced point radius to illustrate the point samples.

Although implementations of EWA surface splatting for
commercial, general purpose graphics processors (GPGPUs)
exist [5], they still suffer from incompatibilities in the ras-
terization stage. Therefore, they exhibit poor performance
when considering the massive silicon resources present in
such graphics accelerators. In the recent publication [6], a
dedicated hardware architecture for EWA surface splatting has
been introduced. While the rasterization unit of the system in
[6] was implemented as a custom ASIC design with fixed point
arithmetic, the floating point computations of the transform,
lighting, and setup stages were committed to four digital signal
processors (TigerSHARC ADSP-TS201S by Analog Devices).

This paper presents the first ASIC implementation for the
transform, lighting, and setup stages of the architecture [6].
It features full floating point arithmetic and exploits much
less resources in terms of chip surface and power dissipation
than the signal processing units of [6], while achieving similar
performance.

II. EWA SURFACE SPLATTING

This section briefly reviews the concept of EWA surface
splatting, which is essential for understanding the hardware
design. Point samples – or splats – are represented by their
position c in space, two tangent axes (u,v) spanning an
elliptical reference system, and a diffuse color d. Splats can
be considered as overlapping elliptical disks in space.

More specifically, the tangent axes span an elliptical Gaus-
sian reconstruction kernel on top of the disk. The kernel
leads to a smooth blending of overlapping splats for high
quality results. To avoid the problem with anti-aliasing under
minification, a band-limiting pre-filter is applied to each splat.

c
uv

c’’
u’’

v’’

Camera Space

x

y

Bounding Box

Object Space

M w

x
z

y

World Space

M c

c u

v

Fig. 2. Mapping of point samples from object space to screen. Point
samples are defined in the geometric space of their object. The points are first
transformed to world space using the object-to-world-space transformation
matrix Mw, that is positioned in the scene. Finally the points are transformed
into the coordinate system of the camera and projected onto the screen using
the world-to-camera-space projection matrix Mc.

This filter is also Gaussian, hence it can easily be convolved
with the blending Gaussian.

A. Transform and Lighting

In the Transform and Lighting stage, similar to triangle-
based rendering, all splats are transformed into the camera
space and the lighting equation is evaluated on each splat.
See Figure 2 for an illustration. The concepts of the different
coordinate systems as well as its transformations are similar
to triangle rendering pipelines [7].

A model is represented by the point samples S =
{(ci,ui,vi,di)}. First, the splats are transformed from their
object space to world space, using the homogeneous transform
matrix Mw. Then the lighting equation is evaluated per splat,
where the angle between light source direction and splat
normal defines the amount of light hitting the surface. All point
samples are then transformed from world space into camera
space, using the homogeneous transform Mc.

An overview on the arithmetic complexity of the transform
and lighting stage can be found in Table I.

B. Splat Setup

After all points are transformed to camera space, in a first
step the tight, axis aligned bounding box is evaluated. This
bounding box surrounds the splat and limits its extent in screen
space (see Figure 2). The camera-space ellipse, represented by
the tangent axes u′′ and v′′, is then expressed using the general
quadratic equation of a conic section:

f(x, y) = a x2 + 2b xy + c y2 ≤ 1. (1)

Finally, the pre-filter is applied. An overview on the arith-
metic complexity of the splat setup stage can be found in
Table I.

C. Splat Rasterization

The rasterizer finally draws the ellipse into the rendering
memory. For each pixel inside the bounding box, the rasterizer
evaluates Equation 1 with f(x − c′′i,x, y − c′′i,y). This result
defines a relative distance of the pixel to the center of the
ellipse. If f ≤ 1, then the pixel is inside the ellipse and the
influence of the splat onto this pixel is weighted using the
filtered Gaussian reconstruction kernel, and accumulated in
case of overlapping splats.

Due to the overlap of the splats, multiple splats can con-
tribute to a single pixel with different weights. Therefore, all
pixels need to be normalized by the sum of weights at the
end of a rendering cycle. The overlap is also one of the most
relevant differences to opaque polygon rendering, where only
one polygon contributes to a pixel.

III. IMPLEMENTATION

A high-level overview of the architecture can be found in
Figure 3 while a photograph of the chip is shown in Figure 4.

Configuration and splat data are sent to the input block using
a handshake direct memory access (DMA) protocol: if the
input buffers and the chip are ready, the sender is then allowed
to send bursts of up to 512 words. The input buffers include
a dual-port RAM of size 512 × 32 bit.

A parameter register bank stores constant scene data: the
screen space filter size, cut-off radius, screen width and height,
the World to Screen 4 × 4 homogeneous transformation matrix
and the camera position.

The “World to Screen” block computes the transformation
of all splats, the “Lighting & Culling” block evaluates the

Transform and Lighting
c′i = Mwci Object to world transformation
u′i = (M−1

w)> ui
v′i = (M−1

w)> vi
n′i = u′i × v′i Determine normal
vi = ccamera − c′i Determine viewing direction
v′i ·n′i ≤ 0→ discard Back-face culling: discard points facing away
d′i = ci·li

‖ci‖‖li‖
di Evaluate lighting equation

c′′i = Mcc′i Transform from world to camera space
u′′i = (M−1

c)> u′i
v′′i = (M−1

c)> v′i
Splat Setup

ri,d = o
√

u2
i,d + v2

i,d + f Extent of screen space splat. o is cut-
off radius, f is screen space filter size

bbmini,d = ri,d − vi,d Determine the bounding box
bbmaxi,d = ri,d + vi,d

M =

(
ux vx
uy vy

)
Parameters of quadratic equation
(conic matrix)(

A B
B C

)
= MM> +(

f 0
0 f

) Extend quadratic equation by screen
space filter size

Q = 1
AC+B2

(
C −B
−B A

)
Determine conic matrix

x>Qx = 1 Quadratic equation, with x = (x, y)>

TABLE I
ARITHMETIC OPERATIONS.

World to Screen

Lighting &
Culling

Axis scaling &
Angle computation

Bounding Box Synchronizer

Input
DMA

Output
DMA

Frame con�guration

RAM
512 x 32 2 x 512 x 36

RAM

Ra
st

er
iz

er

In
pu

t

Transform and Lighting and EWA Setup ASIC

Fig. 3. High level overview of the architecture.

lighting equation, and discards splats facing away from the
camera. The “Bounding Box” block determines the screen
space extent of a splat. To save bandwidth communication
to a subsequent rasterizer ASIC, the quadratic equation is
transformed in the “Axes scaling & Angle computation” block
for better accuracy using fewer bits.

A synchronizer gathers all the information from the separate
blocks and stores them into output block using two dual-port
RAMs of size 512 × 36. The output block uses the same DMA
protocol as the input block.

A. Axes Scaling and Angle Computation for Better Accuracy

The parameters of Equation 1 have quadratically inverse
influence on the size of the ellipse. This makes it hard to
control the error of the ellipse in fixed point representation.

To control and reduce the error, the explicit properties of the
ellipse (length of the main axes and rotation) are determined
and transmitted. This way, the error is limited effectively:
using an 8 bit fixed point representation for the rotation angle,
the error is at most 0.35◦. For the length of the axes, a custom
floating point format with 8 bits exponent and 7 bits mantissa
has been used, to limit the error relatively to the size of the
splat.

The axis scalings are determined by the eigenvalues of the
matrix Q, defined in Table I. The rotation of the ellipse is
determined by the angle of an eigenvector of the matrix Q
to the x-axis. Note that the angle computation requires the
evaluation of an arcus tangent, the implementation of which
will be discussed in Section III-C.

B. Resource Sharing

Unfortunately, EWA rasterization setup computation cannot
be bound numerically and needs to be carried out in floating
point precision. The proposed implementation uses the IEEE
754 single precision number format for all calculations. The
isomorphic implementation of the algorithm would require
a massive amount of floating point units: 106 adders, 137
multipliers, 12 multiplication inverses and 4 inverse square
roots.

However, the algorithm exhibits potential for arithmetic
reuse at a high level. For example, the “World to Screen”

World to Screen 2.07 mm
Lighting

Data I/O 0.76 mm
Bounding box 1.31 mm& Culling

Axis scaling & Angle computation 1.66 mm
2.35 mm

2

2

2

2

2

Fig. 4. Die photograph highlighting the different blocks of the architecture.

function performs similar computations on the position and
the tangent axes. Additionally, the “Bounding Box” block
performs similar computations on the separate dimensions.
Applying high-level resource sharing, the number of final
floating point units used in the design reduces to 46 adders,
70 multipliers, 5 multiplication inverses and 2 inverse square
roots.

C. Arcus Tangent Implementation

The arcus tangent is a highly non-linear function. For high
accuracy, a polynomial approximation would require a large
amount of hardware, whereas iterative algorithms such as the
Cordic, would need many iterations.

As the output accuracy of the arcus tangent for this system
is fixed to 8 bit, a look-up table approach has been preferred.
The symmetry of the arcus tangent function, i.e. arctan(−x) =
−arctan(x), allows the reduction of the look-up table by half.
Naively storing the arcus tangent using the x values as indices
and the function values as data leads to large errors, especially
near x = 0, where the arcus tangent function is steeper (see
Figure 6). The better solution is to use an inverse look-up table
approach: the function values of the arcus tangent are used as
indices into the look-up table, whereas the associated x values
are stored as data.

Fig. 5. Four sample renderings.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30

Arcus Tangent
LUT Entries

Absolut Error

x

ar
ct

an
(x

)

π/2

π/64

Fig. 6. The arcus tangent approximation, illustrated for 32 LUT entries. The
absolute error is always below 1

32
π
2

.

To find the best function value corresponding to a given
x, a binary search algorithm has been adopted. By using the
inverse look-up table of size 128, the maximum absolute error
of the output is constantly bound by 1

128
π
2 , An illustration for

a inverse look-up table of size 32 is given in Figure 6.

D. Design for Testability

Various test modes have been used. The DMA I/O circuits
can be bypassed to feed data directly to the computational
units. Furthermore, built-in self test circuits for fast RAM test-
ing performing different write and read patterns are included.
The design is also fully scan-chain testable.

IV. RESULTS

The chip has a core size of 1.887 mm × 4.322 mm in a
180 nm technology and is located in a PGA 144 package. Pad
supply is 3.3V, core supply is 1.8V.

The chip operates at a maximum frequency of 147 MHz,
with a throughput of 2.941 million splats per second and 300
mW power dissipation. This performance is very close to the
peak performance of 3 million splats per second achieved by
the implementation of [6] using four digital signal processors,
however using significantly fewer resources. The work of [5]
achieved a peak performance of 26 million splats per second
on a NVIDIA GeForce 6800 GPU, however using a much

bigger die size: this work and the rasterizer ASIC from [6]
combined only represent 6.58% of the GPU die area, see
Table II. A few sample renderings can be found in Figure 5.

Chip Process Area Frequency
NVIDIA GeForce 6800 Ultra (es-
timate)

130 nm 287 mm2 400 MHz

Rasterizer ASIC from [6] 250 nm 25 mm2 196 MHz
This work 180 nm 8.16 mm2 147 MHz

TABLE II
DIE SIZE COMPARISON.

V. CONCLUSION

This paper presents the first dedicated VLSI implementation
of the transform, lighting and rasterization setup stages for
EWA surface splatting. The achieved performance is similar
to [6], but it exploits significantly fewer resources. Compared
to a GPGPU implementation of EWA surface splatting, the
performance is very good considering the resources used. The
prototype proves that EWA surface splatting is indeed well
suited for hardware architectures. It further gives evidence that
an integration into traditional triangle pipelines as presented
in [6] would be a valuable addition for GPUs.

REFERENCES

[1] M. Zwicker, H. Pfister, J. V. Baar, and M. Gross, “EWA splatting,” IEEE
Trans. on Vis. and Comp. Graph., vol. 8, no. 3, pp. 223–238, 2002.

[2] J. H. Clark, “The geometry engine: A VLSI geometry system for
graphics,” in ACM Computer Graphics (Proc. ACM SIGGRAPH 1982).
ACM, 1982, pp. 127–133.

[3] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The triangle
processor and normal vector shader: a VLSI system for high performance
graphics,” in ACM Computer Graphics (Proc. ACM SIGGRAPH 1988).
ACM, 1988, pp. 21–30.

[4] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable ray
processing unit for realtime ray tracing,” ACM Trans. Graph., vol. 24,
no. 3, pp. 434–444, 2005.

[5] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-quality
surface splatting on today’s GPUs,” in Proc. of EG Symp. on Point-Based
Graphics. Eurographics, 2005, pp. 17–24.

[6] T. Weyrich, S. Heinzle, T. Aila, D. Fasnacht, S. Oetiker, M. Botsch,
C. Flaig, S. Mall, K. Rohrer, N. Felber, H. Kaeslin, and M. Gross,
“A hardware architecture for surface splatting,” ACM Transactions on
Graphics (Proc. ACM SIGGRAPH 2007), vol. 26, no. 3, pp. 90–11, 2007.

[7] T. Akenine-Möller and E. Haines, Real-Time Rendering, 2nd ed. A. K.
Peters Ltd., 2002.

