
Wavelet Turbulence for Fluid Simulation

Theodore Kim
Cornell University

Nils Thürey
ETH Zurich

Doug James
Cornell University

Markus Gross
ETH Zurich

Figure 1: A 50×100×50 smoke simulation with eight turbulence bands added to synthesize an effective resolution of 12800×25600×12800.
Post-processing averaged 170s a frame on an 8 core machine and needed 180 MB of extra memory. Particles were used to track density.

Abstract

We present a novel wavelet method for the simulation of fluids at
high spatial resolution. The algorithm enables large- and small-
scale detail to be edited separately, allowing high-resolution de-
tail to be added as a post-processing step. Instead of solving the
Navier-Stokes equations over a highly refined mesh, we use the
wavelet decomposition of a low-resolution simulation to determine
the location and energy characteristics of missing high-frequency
components. We then synthesize these missing components using a
novel incompressible turbulence function, and provide a method to
maintain the temporal coherence of the resulting structures. There
is no linear system to solve, so the method parallelizes trivially and
requires only a few auxiliary arrays. The method guarantees that
the new frequencies will not interfere with existing frequencies, al-
lowing animators to set up a low resolution simulation quickly and
later add details without changing the overall fluid motion.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modelling; I.6.8
[Simulation and Modeling]: Types of Simulation—Animation;

Keywords: turbulence, wavelets, noise, fluids, simulation control

1 Introduction

Considerable progress has been made in the last decade in the vi-
sual simulation of fluids, but scalability and user interaction still

remain significant problems. Most recent methods directly solve
the Navier-Stokes or incompressible Euler equations over a mesh.
However, if features smaller than a mesh element are required, as
is common when simulating large-scale phenomena such as explo-
sions or volcanic eruptions, the mesh must be refined in some way.
This results in a linear increase in memory use and a greater than
linear increase in the running time.

We instead propose an algorithm that generates small-scale fluid de-
tail procedurally. We use a wavelet decomposition to detect where
small-scale detail is being lost, and apply a novel incompressible
turbulence function to reintroduce these details. Instead of enforc-
ing the Navier-Stokes equations over all spatial scales, we enforce
Navier-Stokes over low frequencies and Kolmogorov’s turbulence
spectrum over high frequencies. We have eliminated the global de-
pendencies of a linear solver over the grid, so the high-resolution
portion of the algorithm parallelizes trivially. The derivation of
our method additionally provides insight into the popular Perlin
turbulence() function [Perlin 1985] and suggests a physical ba-
sis for its success. The algorithm requires only the velocity field
of an existing fluid simulation as input, and can be run as a fully
decoupled post-processing step. This allows users to rapidly iter-
ate on fluid simulation designs until the desired overall behavior
is achieved, then later add small-scale details prior to rendering.
The fluid solvers commonly used in graphics do not allow this. In-
creasing the resolution changes the effective viscosity of the fluid,
produces significantly different motions at a higher resolution, and
invalidates much of the design work done on lower resolutions.
In contrast, our method introduces new energies in a band-limited
manner that guarantees existing structures are preserved.

Our contributions are as follows:
• An incompressible turbulence function that can generate arbi-

trary energy spectra.
• A method for estimating the small-scale turbulence that is lost

by a simulation, and re-synthesizing it in a way consistent
with Kolmogorov theory.

• A method of preserving the temporal coherence of the synthe-
sized turbulence.

• A large- and small-scale fluid detail decoupling that allows
the latter to be edited independently.

Velocity Field u of
Coarse Simulation
with Resolution n

Wavelet
Decomposition

Advect Texture
Coordinates

Evaluate Turbulence Bands

Detailed Advection
with Resolution N

. . .

Compute
Energy

Regenerate
Coordinates

2
5
6

2
5 2
6

2
5 k
6

Figure 2: Overview: A low-resolution n3 velocity field u is used to synthesize a high-resolution N3 density field. Procedural turbulence is
added according to the wavelet decomposition of the energy, and the resulting eddies are advected via texture coordinates until they scatter.

2 Previous Works

Jos Stam [1999] introduced to computer graphics the combination
of implicit Poisson solvers and semi-Lagrangian advection that is
widely used to visually simulate fluids today. Many subsequent
works have refined this initial algorithm. Vorticity confinement
[Fedkiw et al. 2001], vortex particles [Selle et al. 2005], Back and
Forth Error Compensation and Correction (BFECC) [Kim et al.
2005], and MacCormack [Selle et al. 2008] methods all attempt
to maximize the detail resolved on a grid by suppressing dissipa-
tion. Recent variational methods [Elcott et al. 2007; Batty et al.
2007] have designed discretizations that pursue the same goal. In
the best case, these methods allow fluid features that are near the
Nyquist limit to be robustly resolved. We consider this “dissipation
suppression” problem to be orthogonal to our own, because we are
concerned with efficiently resolving frequencies greater than the
Nyquist limit. We consider this a separate “frequency extension”
problem. Consequently, any of the above methods could be used to
complement our method.

The simplest method of capturing subgrid fluid detail is uniform re-
finement. However, this scales memory usage by a factor of eight
and increases the running time of the Poisson solver. Adaptive
methods [Losasso et al. 2004; Klingner et al. 2006] address this
problem, but are not a panacea. Adaptive data structures introduce
more memory overhead, and increase implementation and runtime
complexity. We instead propose a synthetic turbulence model like
the ones used in Large Eddy Simulation to capture subgrid details
[Scotti and Meneveau 1999; Basu et al. 2004]. These prior methods
work to preserve the statistical properties of the sub-grid fluid, but
tend to introduce dyadic visual artifacts which our method avoids.

Our method is most similar to the 4D Kolmogorov method in Stam
and Fiume [1993] and the procedural method of Bridson et al.
[2007]. Stam and Fiume [1993] uses a 4D FFT to generate “ambient
turbulence” that is used to add new eddies. While Kolmogorov the-
ory is primarily intended for fully developed, homogeneous turbu-
lence, it provides acceptable visual results. However, small eddies
tend to form without a larger precursor, and do not advect along
the flow, making the static uniformity of the turbulence apparent.
Our more flexible approach generates eddies only where they would
physically form and advects the results. Our approach is also en-
tirely local, so, unlike the FFT, it parallelizes trivially. The approach
of [Bridson et al. 2007] computes the curl of a user-input potential
to produce a velocity field with eddies proportional to the finite dif-
ference step size. Our method is complementary, as it could be
used to then add smaller eddies in the same way as with any other
low-resolution flow.

Rasmussen et al. [2003] used the method of Stam and Fiume [1993]
to break up artifacts when emulating a full 3D simulation using 2D
slices, and Lamorlette and Foster [2002] used it to add detail to a
procedural flame modeling system. Neyret [2003] used the same
multi-scale intuition as Kolmogorov to animate textures. Our tech-
nique is related, but because we are advecting eddies specifically,
we can use a more physically based method to regenerate the tex-
ture coordinates.

Recent work on fluid control has focused on keyframe-driven ani-
mation [McNamara et al. 2004; Fattal and Lischinski 2004] and mo-
tion filaments [Angelidis et al. 2006] that control the low-frequency
flow. Our approach complements such control methods because it
supports editing of high-frequency components without disturbing
low-frequency flow.

3 Procedural Wavelet Turbulence

In this section we describe how to efficiently construct an incom-
pressible turbulence function. We adopt the following notation for
the remainder of this paper. Bold denotes a vector, and non-bold
denotes a scalar. The special variable x denotes a spatial position,
k denotes a spectral band, and u denotes a velocity field. A carat
denotes a wavelet transform, so û(x,k) denotes the spectral compo-
nent of velocity field u at position x in spectral band k. Additionally,
n always refers to the grid resolution, n3, of u, and vx, vy, vz refer
to the Cartesian unit vectors, ie vx =

[
1 0 0

]T .

Incompressible, Band-Limited Noise: Wavelet Noise [Cook
and DeRose 2005] was developed as a replacement for Perlin Noise
[Perlin 1985]. The noise is guaranteed to exist only over a narrow
spectral band, which makes more sophisticated filtering possible.
We will use this band-limited property as a first step in constructing
an incompressible turbulence function.

The Wavelet Noise function ω is a scalar function, whereas we are
interested in vector fields. As was recently demonstrated for graph-
ics [Bridson et al. 2007], a calculus identity can be used to construct
a divergence-free vector field by taking the curl of a scalar field. We
can respectively construct 2D and 3D vector fields using ω:

w2D(x) =
(

∂ω

∂y
,−∂ω

∂x

)
(1)

w(x) =
(

∂ω1

∂y
− ∂ω2

∂z
,

∂ω3

∂z
− ∂ω1

∂x
,

∂ω2

∂x
− ∂ω3

∂y

)
(2)

We primarily use the 3D case (Eqn. 2) unless otherwise stated.
The 3D case requires three different noise tiles, which we have de-

noted ω1,ω2 and ω3, but in practice we use offsets into the same
noise tile. The derivatives can be evaluated directly because ω

uses B-spline interpolation. Instead of the usual quadratic B-spline
weights,

[
t2

2 , 1
2 + t(1− t), (1−t)2

2

]
, we apply the derivative weights,

[−t,2t−1,1− t], in the desired directions. The resultant vector
field is guaranteed to be incompressible. The field retains the same
band-limited properties of the original signal because differentia-
tion is a linear high-pass filter in the frequency domain, which does
not add new frequencies by definition. This is sufficient to ensure
that the 2D vector field is band limited. Additionally, we observe
that adding two signals together is also linear, so the 3D case is also
band limited.

From a visual perspective, w generates a vector field of randomly
distributed, tightly packed eddies of fixed size. Two bands of the
function can be seen in Figure 2. Next, we will use w to generate a
vector field according to Kolmogorov’s theory of turbulence.

Kolmogorov Wavelet Turbulence: Kolmogorov famously
showed that, for a homogeneous inviscid fluid, while the local
structure of its velocity field may be perpetually chaotic, the global
energy spectrum approaches an equilibrium state that can be
described in very simple terms [Frisch 1995]. The energy density e
of some grid cell x is its kinetic energy,

e(x) =
1
2
|u(x)|2. (3)

The total energy et of a grid is then the sum over all grid cells. Kol-
mogorov’s theory deals with the frequency spectrum of et . While
the original theory used the Fourier transform, we use a wavelet
transform because it provides both spatial and frequency informa-
tion. If we compute et for each band k of û(x,k) we obtain an
energy spectrum et(k). One of the key results of Kolmogorov the-
ory is that the energy spectrum of a turbulent fluid approaches a
five-thirds power distribution:

et(k) = Cε
2
3 k−

5
3 . (4)

Where C and ε are the Kolmogorov constant and the mean energy
dissipation rate per unit mass. The − 5

3 scaling exponent holds for
both Fourier and wavelet spectra [Perrier et al. 1995], and the sub-
stitution is common in fluid dynamics [Farge et al. 1996].

Using our noise function w, we can procedurally construct a veloc-
ity field that produces this power distribution. We first observe that
(4) can be rewritten as the recurrence relation:

et(2k) = et(k)2−
5
3 , et(1) = Cε

2
3 .

The velocities can then be stated analogously using (3):

|û(x,2k)|= |û(x,k)|2−
5
6 , |û(x,1)|= 2

1
2 C

1
2 ε

2
6 . (5)

Since w(x) is band limited, it can be substituted in for û(x,k). Our
final wavelet turbulence function is then a series version of (5):

y(x) =
imax

∑
i=imin

w(2ix)2−
5
6 (i−imin). (6)

The variables [imin, imax] can be used to control the spectral bands
that y(x) applies to.

Discussion: Eqn. 6 shares much of the appeal of Perlin’s
widely used turbulence() function [Perlin 1985]. Perlin’s
turbulence() also sums successive bands of a noise function p(x)
to obtain a “visually turbulent” scalar function. It can be stated in
terms very similar to ours:

turbulence(x) =
imax

∑
i=imin

p(2ix)
1
2

i−imin

. (7)

Our function is essentially a vector version of (7) that is also
band-limited, guarantees incompressibility, and produces the Kol-
mogorov power distribution. Interestingly, 2−

5
6 ≈ 0.56, which is

close to the heuristic 1
2 value used by Perlin. If scalar wavelet noise

w were used instead of p, and 2−
5
6 instead of 1

2 , a Kolmogorov-
Obukhov-Corrsin scalar turbulence spectrum would be obtained
[Shraiman and Siggia 2000], which suggests a physical reason for
Perlin’s success at generating visually turbulent textures.

4 High-Resolution Fluid Synthesis

We now show how to use the turbulence function y(x) to add new
high-frequency components to u. First, we motivate our approach
by discussing the intuition that underlies Kolmogorov’s theory.

Background: Physically, the five-thirds distribution occurs be-
cause of scattering [Frisch 1995]. As an eddy is advected by an
incompressible field, it is stretched in one direction and compressed
in another. Eventually these deformations break the eddy into two
eddies of half the size. This process is called forward scattering.
The opposite phenomena, back scattering, occurs when smaller ed-
dies combine to form larger ones, but forward scattering usually
dominates. Kolmogorov’s five-thirds spectrum describes the energy
distribution after sufficient time has passed that eddies injected at a
fixed scale (the integral scale) have forward scattered into higher
frequencies. At much higher frequencies, viscosity becomes dom-
inant, so at a second scale (the ultraviolet cutoff) the energies start
to dissipate at a much faster rate than the five-thirds exponent. In
graphics, dissipation damps out interesting fluid detail, so the vis-
cous term is usually dropped from the Navier-Stokes equations.
Theoretically this places the ultraviolet cutoff at the Nyquist limit,
n
2 for an n3 mesh. As mentioned in §2, significant dissipation still
occurs before the Nyquist limit, and many techniques have been
developed to address this issue. We instead focus on the separate
problem of placing the ultraviolet cutoff beyond the Nyquist limit.

Injecting Turbulence: Our goal is to synthesize a high-resolution
N3 density field D from a low-resolution n3 velocity field u. We
use lowercase to denote variables at the lower n3 resolution and
uppercase for fields at the higher N3 resolution. We define an inter-
polation function I (u,X) that interpolates u at the high-resolution
location X, and A(U,D) as the advection of D by U.

We will now focus on synthesizing an N3 velocity field U. The
simplest method is interpolation: U(X) = I (u,X). This smooths
out the velocities according to the interpolation method, but it does
not generate any new eddies in the new [n, N

2] spectral bands. A
more sophisticated method is to compute the energy et(n

2) of the
smallest eddies in u, and use it to weight our turbulence function:

U(X) = I (u,X)+2−
5
6 · et

(n
2

)
·y(X) (8)

We only want to inject energy into the new [n, N
2] bands, so we set

imin = log2 n and imax = log2
N
2 in y(X). Intuitively, this approach

assumes that the energy spectrum of u follows the Kolmogorov dis-
tribution, computes the last resolved value, et(n

2), and uses it to
extrapolate energies over the new [n, N

2] bands.

This method approximates the high-frequency components of U as
fully developed, homogeneous turbulence in a manner similar to
Stam and Fiume [1993]. While this can produce acceptable results,
because y(X) is weighted globally, it can spontaneously produce
small-scale eddies in regions where there is no larger-scale precur-
sor. The weighting should instead vary spatially, with turbulence
added only when an eddy in u forward scatters into a previously
unresolvable frequency. The resulting turbulence then needs to be
advected along with the flow.

Detecting Scattering: Forward scattering can be detected by
weighting y(X) by ê(x, n

2) instead of et(n
2). This locally extrap-

olates the energy spectrum using the same intuition as Eqn. 8.
Like Neyret [2003], we then advect a set of texture coordinates
c = (cu,cv,cw) along with the flow, and evaluate y using the ad-
vected value. If we detect that the local texture coordinates are
causing y to deviate too far outside of its original spectral band,
they are regenerated to the original local values. The method in
Neyret [2003] uses a heuristic strain criterion to trigger regenera-
tion because it is intended for generic texture advection. We are
specifically advecting eddies, so we can use more physically based
criteria. We quantify the amount of local deformation using the
Jacobian of the texture coordinates, which we denote J(c(x)).

For the eigenvalues λ(c(x)) of J(c(x)), if max(|λ(c(x))|)≥ 2, from
the physical standpoint, the local eddy has forward scattered into
a higher spectral band. If min(|λ(c(x))|) ≤ 1

2 , then the eddy has
back scattered to a lower band. In both cases, the eddy is no longer
physically (or visually) coherent, so the texture coordinate should
be regenerated.

Texture Distortion: As the advected texture coordinates stretch
and rotate, y does as well. This potentially violates incompress-
ibility because, as the texture coordinates deform, the derivatives
[∂ω/∂cu, ∂ω/∂cv, ∂ω/∂cw] no longer correspond to derivatives
along the Cartesian axes, [∂ω/∂x, ∂ω/∂y, ∂ω/∂z]. The derivatives
can be obtained by projecting the Cartesian axes into texture space
and taking the directional derivative:[

∂ω

∂cu

∂ω

∂cv

∂ω

∂cw

]
J(c(x))−1 [

vx vy vz
]
=

[
∂ω

∂x
∂ω

∂y
∂ω

∂z

]
The resulting Cartesian derivatives are then used in (2). We denote
a modified turbulence function that takes in a texture coordinate and
performs this projection as z(c).

Final Algorithm: Our final equation for generating a high-
resolution velocity field is:

U(X) = I (u,X)+2−
5
6 I

(
ê
(

x,
n
2

)
,X

)
z(I (c,X)). (9)

As before, the values of imin = log2 n and imax = log2
N
2 are used to

evaluate z over the appropriate spectral bands. The full algorithm is
described below, and illustrated in Figure 2:

SYNTHESIZE-FLUID(u)
1 A(u,c)
2 Compute ê(x, n

2), J(c(x)), λ = λ(c(x))
3 if max(|λ|)≥ 2 or min(|λ)|)≤ 1

2
4 then Regenerate c(x).
5 Synthesize U using (9)
6 A(U,D)
7 return D

Complexity: Almost all the steps occur on the smaller n3 grid,
with the N3 grid only being used for the final generation of U and
advection of D. The algorithm requires six additional arrays of size
n3: c, min(|λ|), max(|λ|) and ê. The values of J can be discarded
once λ is computed. The large N3 arrays for U and D are a draw-
back because they increase memory use to O(N3). However, if
A(U,D) is implemented using a semi-Lagrangian scheme, only D
is instantiated explicitly because each U(X) is discarded after com-
puting D(X). If particles are used to track the density, even the
explicit D is unnecessary and O(n3) memory use is achieved.

Obstacles and Control: Obstacles can be incorporated with mi-
nor modifications. The main issue is that, if velocities inside an
obstacle are set to zero, the discontinuity in u can cause a jump
in ê(x, n

2). To prevent this we extrapolate energy values from the
obstacle boundary inwards using a fast marching method prior to
computing ê(x, n

2). In order to give a user control over the turbu-
lence, y can be weighted by an arbitrary volumetric function v(X)
in addition to ê(x, n

2). A user can amplify turbulence in regions by
setting v(x)> 1 or can suppress detail by specifying v(x)< 1. In
either case, the initial ê(x, n

2) value provides a good default setting.

5 Results

The I method in §4 is ideally the wavelet upsampling method.
However, we compared the results of the upsampler with simple
linear interpolation and found the difference negligible, and so fa-
vored the slightly faster linear interpolation. The A method we
used was the MacCormack method of Selle et al. [2008]. We used
a standard fluid solver [Fedkiw et al. 2001] for our low- resolution
simulations, but added a small amount of heat diffusion to stimu-
late velocities outside of existing low-resolution densities. We used
co-located grids to minimize the number of times (9) is evaluated.
On a staggered grid, cell-centered averages could be computed and
then sent to (9) to achieve similar savings.

Figure 1 shows a particle simulation of smoke, and Figure 5 shows
a close-up of the same simulation with an obstacle. We are able to
achieve a very high effective resolution because a high-resolution
grid is unnecessary. In Figures 3 and 6, we show a simulations
of smoke interacting with static obstacles. In Figure 4, the control
possible with our method by activating alternating vertical slabs of
turbulence can be seen. Complete descriptions are available in the
figure captions. Comparisons of our algorithm to Stam and Fiume
[1993], Bridson et al. [2007], and an explicit full-resolution simu-
lation are available in the enclosed video. For the explicit compar-
ison, we downsampled an existing high-resolution simulation and
then re-synthesized the discarded bands. Our algorithm appears
to resolve more high-frequency detail, as it does not suffer from
dissipation near the Nyquist limit. Preliminary timings suggest our
method is significantly faster than an equivalent full-resolution sim-
ulation. For a 2503 simulation, the single-threaded version of our
method ran roughly seven times faster than the full solver.

All the steps of the complete algorithm only require local support,
so the computation parallelizes trivially. We successfully achieved
significant speedups by adding a single OpenMP directive to the
outermost loop. The main computation, the evaluation of z, runs
3.7 times faster on a four core workstation. This also suggests that
the algorithm will perform very well on GPUs.

6 Conclusions

We have demonstrated a wavelet method that is suitable for adding
detail to existing fluid simulations as a user-controlled post-process.
While we have demonstrated results using Eulerian grids, all our
method requires is the ability to point-sample a velocity field, so it

applies to Lagrangian simulations as well.

The method has several limitations. By design, it does not re-
produce the results of explicit high-resolution simulations. This
is partly because back scatter from higher bands into the low-
resolution simulation has been explicitly suppressed. A physically
based method of estimating back scatter could be developed to ad-
dress this. Also, the quality of obstacle interaction is totally depen-
dent on the interaction quality at low-resolution. As low-resolution
results improve, our results will improve correspondingly. It is
also possible for the wavelet transform to introduce small coeffi-
cients into the high-frequency bands, resulting in non-zero turbu-
lence breaking up an otherwise laminar flow. While clamping is a
coarse solution, the issue is worth further study.

Several issues were found to be visually unimportant. First, the
coordinates c should be regenerated on a per-band basis, as higher
frequency bands deform faster. Per-band coordinates were imple-
mented and did not make an appreciable visual difference, so they
were discarded for simplicity. The more relevant guarantee that
the bands of y do not impinge on those of u remains intact. Sec-
ond, a direct visualization of c shows significant popping because
we do not perform any blending during regeneration. However, the
popping does not introduce noticeable artifacts in the vector fields
because it only occurs after the eddy is no longer visually relevant.
Finally, the non-uniform weighting of z by ê(x, n

2) introduces some
compressibility. The solution is to project all the energies into tex-
ture space and weight the noise tile by ê(x, n

2). We found these
extra computations unnecessary, as the error introduced is small
compared to the error of the advection method.

The per-band weights of our method can be modified arbitrarily, al-
lowing for ‘spectral shaping’ in the same way as Perlin noise, and
allows many of the procedural texturing tricks used for scalar tex-
tures to be applied to the vector regime. The Kolmogorov theory
does not account for chemical effects such as those in explosions,
but since these effects primarily introduce perturbations to the en-
ergy spectrum, they could potentially be captured through shaping.
Automatic methods of coupling the weights to existing methods
[McNamara et al. 2004] also have the potential to generate very
specific, fine-grained fluid detail. Finally, the possibility of a sim-
ilar procedural method that simulates turbulence on a liquid free
surface remains to be investigated.

Acknowledgements: The authors would like to thank the SIG-
GRAPH reviewers for their comments and suggestions; Bernd
Bickel, Sebastian Martin, Miguel Otaduy, and Filip Sadlo for help-
ful discussions; support from the National Institutes of Health,
NSF CAREER (CCF-0652597), Alfred P. Sloan Foundation Re-
search Fellowship, and donations from Intel, Pixar, Autodesk and
NVIDIA.

References

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In ACM
SIGGRAPH/EG Symposium on Computer Animation (SCA).

BASU, S., FOUFOULA-GEORGIOU, E., AND PORTE-AGEL, F.
2004. Synthetic turbulence, fractal interpolation, and large-eddy
simulation. Physical Review E, 026310.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast vari-
ational framework for accurate solid-fluid coupling. In Proceed-
ings of ACM SIGGRAPH.

BRIDSON, R., HOURIHAN, J., AND NORDENSTAM, M. 2007.
Curl-noise for procedural fluid flow. In Proceedings of ACM
SIGGRAPH.

COOK, R., AND DEROSE, T. 2005. Wavelet noise. In Proceedings
of ACM SIGGRAPH.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial flu-
ids. ACM Transactions on Graphics.

FARGE, M., KEVLAHAN, N., PERRIER, V., AND GOIRAND, E.
1996. Wavelets and turbulence. Proceedings of the IEEE 84, 4,
639–669.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke
animation. In Proceedings of SIGGRAPH.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In Proceedings of ACM SIGGRAPH, 15–22.

FRISCH, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov.
Cambridge University Press.

KIM, B., LIU, Y., LLAMAS, I., AND ROSSIGNAC, J. 2005. Flow-
fixer: Using BFECC for fluid simulation. In Proceedings of Eu-
rographics Workshop on Natural Phenomena.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N., AND
O’BRIEN, J. F. 2006. Fluid animation with dynamic meshes. In
Proceedings of ACM SIGGRAPH.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling
of flames for a production environment. In Proceedings of ACM
SIGGRAPH.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating
water and smoke with an octree data structure. Proceedings of
ACM SIGGRAPH, 457–462.

MCNAMARA, A., TREUILLE, A., POPOVIC, Z., AND STAM, J.
2004. Fluid control using the adjoint method. In Proceedings of
SIGGRAPH.

NEYRET, F. 2003. Advected textures. In ACM SIGGRAPH/EG
Symposium on Computer Animation (SCA).

PERLIN, K. 1985. An image synthesizer. In Proceedings of ACM
SIGGRAPH, 287–296.

PERRIER, V., PHILIPOVITCH, T., AND BASDEVANT, C. 1995.
Wavelet spectra compared to fourier spectra. Journal of Mathe-
matical Physics 36.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW,
R. 2003. Smoke simulation for large scale phenomena. In Pro-
ceedings of ACM SIGGRAPH.

SCOTTI, A., AND MENEVEAU, C. 1999. A fractal model for large
eddy simulation of turbulent flows. Physica D, 198–232.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. In Proceedings
of SIGGRAPH.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable MacCormack method. Journal
of Scientific Computing (in press).

SHRAIMAN, B., AND SIGGIA, E. 2000. Scalar turbulence. Nature,
405, 639–646.

STAM, J., AND FIUME, E. 1993. Turbulent wind fields for gaseous
phenomena. In Proceedings of ACM SIGGRAPH.

STAM, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH.

Figure 3: Flow around a complex obstacle with grid-based densi-
ties. Wavelet turbulence synthesized a 720× 576× 576 grid from
a 80× 64× 64 grid. Each frame took less than two minutes on an
eight core workstation.

Figure 4: The user can control turbulence arbitrarily. Here turbu-
lence is activated in two vertical slabs, denoted on the bottom of the
top image.

Figure 5: Flow around a sphere with particle-based densities. The
low resolution simulation is shown in the left half of the top image.
Resolution and performance are identical to Fig. 1

Figure 6: Flow around a sphere with grid-based densities. The
low resolution simulation is shown in the left half of the top image.
Wavelet turbulence synthesized a 4003 grid from a 503 grid. Each
frame took an of average 30 seconds on a four core workstation.

