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ABSTRACT

Motivated by the growing interest in the use of ridges in scientific
visualization, we analyze the two height ridge definitions by Eberly
and Lindeberg. We propose a raw feature definition leading to a su-
perset of the ridge points as obtained by these two definitions. The
set of raw feature points has the correct dimensionality, and it can
be narrowed down to either Eberly’s or Lindeberg’s ridges by us-
ing Boolean filters which we formulate. While the straight-forward
computation of height ridges requires explicit eigenvalue calcula-
tion, this can be avoided by using an equivalent definition of the raw
feature set, for which we give a derivation. We describe efficient al-
gorithms for two special cases, height ridges of dimension one and
of co-dimension one. As an alternative to the aforementioned fil-
ters, we propose a new criterion for filtering raw features based on
the distance between contours which generally makes better deci-
sions, as we demonstrate on a few synthetic fields, a topographical
dataset, and a fluid flow simulation dataset. The same set of test
data shows that it is unavoidable to use further filters to eliminate
false positives. For this purpose, we use the angle between fea-
ture tangent and slope line as a quality measure and, based on this,
formalize a previously published filter.

Index Terms: I.3.8 [Computer Graphics]: Applications; I.4.6 [Im-
age Processing and Computer Vision]: Segmentation—Edge and
feature detection; J.2 [Physical Sciences and Engineering]: Engi-
neering

1 INTRODUCTION

Ridges and valleys are the main structures of a surface topography,
and their mathematical idealization as curves was an objective al-
ready in the mid-nineteenth century work by de Saint-Venant[1] and
Breton de Champ [3]. Ridges and valleys are still of importance for
geomorphology [25], but in addition, they have proved to be use-
ful in many other fields. In image analysis and computer vision, a
digital image can be seen as a sampled scalar field or height field,
making ridges available as characteristic structures [9, 15, 23, 17],
complementary to the more popular edges. Various existing defini-
tions of ridges can be extended to volumetric data, making ridges
an important tool also for scientific visualization [6]. Besides med-
ical visualization, ridges have become popular in flow visualiza-
tion, e.g. as indications of vortex cores [26] or flow separation [24].
Recently, also two-dimensional ridges, i.e. ridge surfaces, in volu-
metric data were used by Kindlmann et al. [13] for visualization of
diffusion tensor MRI data, by Sahner et al. [22] for visualization of
vorticity and strain, and by Sadlo et al. [21] for separating regions
of different flow behavior in unsteady vector fields.

A concept of ridges and valleys exists not only for height fields
but also for surfaces in space. This type of ridges, of which the
geodesic or maximum curvature ridge [20] is the one best known,
is used e.g. in non-photorealistic rendering for enhancing salient
features of a surface [11, 2]. At first glance the two problems of

∗e-mail: peikert@inf.ethz.ch
†e-mail:sadlo@inf.ethz.ch

finding ridges in height fields and on surfaces seem identical, at
least in the case of a 2D height field where the graph of the field
is a surface. However, for a geodesic ridge, an important property
is rotation invariance, i.e. it moves with the surface when that is
rotated. In contrast to this, a ridge in a height field is required to be
invariant not with respect to rotation in space but to scaling of the
height.

There are two fundamentally different approaches to the defini-
tion of a ridge in a height field. A well known concept is the water-
shed, and its counterpart, the watercourse. It is obtained by locating
all saddle points and by integrating from these along the positive
and negative gradient. In the terminology of vector field topol-
ogy [10], watersheds and watercourses constitute the topological
skeleton. The second approach is to define ridges and valleys not
as integral curves but as solution manifolds of algebraic equations
which involve the height field and its derivatives. The most promi-
nent ridge definition of this type is the height ridge [5]. There have
been disputes on whether watersheds or height ridges are the “cor-
rect” ridges. Koenderink and van Doorn used an example, which
they called the “curved gutter” [14], as an argument against height
ridges. However, as we show in Appendix A, similar examples can
be given that favor height ridges over watersheds.

The two types of methods yield different results in general and
should be understood as complementary approaches having both
their strengths and weaknesses. One the one hand, methods based
on point-wise information are limited by their inherently “narrow
view”. But on the other hand, methods based on integration have
the problems of sensitivity to small perturbations and of remote ef-
fects. In the case of watersheds this means for instance that any
monotonically ascending ridge is not recognized as a watershed,
but if it is almost horizontal at some point, then a small perturba-
tion suffices to create a saddle point that causes the ridge to become
a watershed. This is illustrated by an example in Appendix B. It
might be interesting to note that already the famous mathematician
Camille Jordan pointed out [12] that there is in general no slope line
(i.e. integral curve of the gradient) that is characterized by special
properties on its entire length, and that therefore only segments of
slope lines can be attributed to be a ridge or a valley.

A very similar situation exists for the problem of vortex axis de-
tectors in 3D vector fields. On the one hand there is the topologi-
cally based definition of vortex axes as streamlines emanating from
critical points of saddle focus type. And on the other hand, there
are local methods based on derivatives [27, 18].

There exist techniques that can bridge the gap between local and
global methods. One such class are scale-space techniques, which
extend the notion of “local” to a neighborhood of a size that grows
with the observation scale. A second approach uses finite-time in-
stead of infinite-time integration that would be required for topo-
logical features such as watersheds [8]. We will in in this paper
restrict ourselves to the study of locally detectable features, with
the goal of analyzing variants of the height ridge definition for their
applicability in visualization.



2 HEIGHT RIDGES

2.1 Height Ridge Definition

The concept of a height ridge dates back to the 19th century work
of de Saint-Venant [1]. It has been formalized by Haralick [9] and
elegantly reformulated by Eberly [5] and Lindeberg [15] for the
general case of k-dimensional ridges in Rn.

A (maximum convexity) height ridge of dimension k in a scalar
field f : Rn→ R is defined as the set of points where

∂ f
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= · · ·= ∂ f
∂yn−k

= 0 (1)

∂ 2 f
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in a local coordinate frame y1, · · · ,yn defined by the eigenvectors of
the Hessian matrix H = ∂ 2 f

∂xi∂x j
. Such a set of n orthogonal eigen-

vectors can be computed even in the case of multiple eigenvalues.
The ordering of the eigenvalues λi = ∂ 2 f

∂y2
i

is defined as follows.

Eberly’s version:

λ1 ≤ ·· · ≤ λn (3)

Lindeberg’s version:

|λ1| ≥ · · · ≥ |λn| (4)

The counterpart of the height ridge, a “height valley” is simply
obtained as a height ridge of the negative field − f . It is therefore
not necessary to explicitly deal with the case of valleys, so we will
in the sequel mostly just speak of ridges.

2.2 Raw Features and Filters

To allow for a common treatment of the two different definitions,
we separate the process of solving equations (1) from the verifica-
tion of the inequalities (2–4). We call a point a raw feature point
if it solves (1) for an unspecified ordering of the eigenvectors. A
raw feature point has the property that f has a horizontal tangent
in at least n− k of the n directions given by the local eigenvector
frame. The set of raw feature points, which we denote by Rk, is a
superset of the height ridges (and valleys) in the sense of Eberly’s
definition. Rk can be reduced to that set by applying a point-wise
Boolean filter (or predicate) FE(x, f ) which tests for (1) and (2) af-
ter reordering the eigenvalues by (3). In words this means, that the
point must be a maximum in at least n− k of the eigenvector direc-
tions and in the remaining ones there is either a weaker downward
bend or an (unrestricted) upward bend. Analogously, the filter FL
based on Lindeberg’s definition uses the ordering (4). Any point ac-
cepted by FL is also accepted by FE , but not vice versa, because FL
requires that a possible upward bend is also weaker than the down-
ward bend in the first n− k eigenvector directions. The difference
between the two height ridge definitions is discussed in Majer’s dis-
sertation [17].

The effect of these Boolean filters is a removal of curve seg-
ments which are neither ridges nor valleys. Damon [4] called such
segments connector curves. In practice, additional filters can be
used for further refining the set of feature points. Typically, one
wants to remove features that are below a certain minimal “feature
strength”. In the case of height ridges, such a feature strength could
be defined e.g. by the absolute second derivative across the ridge.
Another reason for adding more filter stages is that both FE and FL
still accept points that must be considered as false positives.

2.3 Equivalent Characterization of Raw Height Ridges
For the set Rk of raw feature points the following equivalence
holds:

A point x belongs to Rk if and only if at x the k + 1 vectors
g,Hg, · · · ,Hkg are linearly dependent, that is,

rank
(

H0g |· · ·|Hkg
)
≤ k. (5)

For the proof, let us first assume that (1) holds. We can write the
gradient g in eigenvector basis as

g =
n

∑
i=1

aiyi. (6)

Multiplying g with jth powers of H yields

H jg =
n

∑
i=1

λ
j

i aiyi. (7)

Since, by (1), g lies in a subspace spanned by k eigenvectors, n− k
of the coefficients, say ak+1, · · · ,an, are zero. Consequently, the
matrix (

H0g |· · ·|Hkg
)

=

 λ 0
1 a1 · · · λ k

1 a1
· · · · · · · · ·

λ 0
n an · · · λ k

n an

 (8)

has at most k nonzero rows, and hence a rank of at most k.
Conversely, assume that (5) holds. The eigenvector basis can

now be chosen such that for each multiple eigenvalue, there is a
single yi for which g has a nonzero coefficient ai. Then the matrix
(8) can have at most k nonzero rows, because otherwise (assum-
ing again that the nonzero rows are at the top and the zero rows
at the bottom), it has an upper k + 1 by k + 1 submatrix which
is a Vandermonde matrix with rows scaled by nonzero constants.
This submatrix would then be regular and thus have a rank of k +1
contradicting our assumption. Hence, g = ∇ f lies in the subspace
spanned by the first k eigenvectors of H, which implies (1).

The equivalence of (1) and (5) can be used for a more efficient
computation of Rk. The straight-forward computation requires ex-
plicit calculation of eigenvalues which is a time-consuming oper-
ation, especially in higher dimensions. The alternative, evaluating
(5), only involves matrix-vector multiplications and determinants.
But, of course, points of Rk cannot practically be found just by
sampling. Therefore, either of the two approaches also requires a
method for finding such points. For a few special cases of k and n,
we will present such methods below.

3 ONE-DIMENSIONAL HEIGHT RIDGES

For one-dimensional height ridges, (5) is exactly the parallel vec-
tors condition [18]

Hg = λg for some λ ∈ R. (9)

This means that the set R1 of raw feature points of one-dimensional
ridges can be found by collecting the points where the two de-
rived vector fields g and Hg are parallel. Especially in higher-
dimensional spaces (n > 2), this test for parallelism is more efficient
than the explicit computation of eigenvalues and eigenvectors. The
latter are still required for evaluating (2) and (3) or (4) but only on
the lower-dimensional manifold R1.

The system (9) has n equations for n + 1 unknowns, namely n
spatial coordinates and λ . For a numerical solution, the intersection
points with hyperplanes (e.g. cell boundaries) can be computed, this
way getting rid of one coordinate. In R2 this is a simple contour
extraction (see Section 5). In R3 it is tempting to replace (9) by
Hg× g = 0, which is however a linearly dependent set of equa-
tions. Algorithms for solving (9) on linear and bilinear cell faces
are described in [18]. These can be extended to higher dimensions.



(a) Raw features (b) Eberly filter

(c) Contour distance filter

Figure 1: Height function f (x,y) = cos(ax)cos(by) with ridges (red) and valleys
(blue). (a) Raw features. (b) Subset accepted by FE , or equally, FL. (c) Subset
accepted by FC . In (b) and (c), thin lines mean: rejected by F45◦ .

3.1 The Angle Criterion

Both height ridge definitions tacitly assume that the ridge is roughly
aligned with the direction of the gradient g, i.e. with the slope line.
However, point-wise definitions cannot enforce such a condition,
therefore it is no surprise that there exist examples of curves which
are valid height ridges in the sense of the definition, but which have
a large angle between their tangent and g. It is therefore advisable
to define a filter for removing such points from R1. This criterion
for the feature alignment can be used as another filter Fα for post-
processing the set R1. It involves the choice of a threshold angle,
for which 45◦ is a good empirical value. In Figure 1(b,c) this filter
removes parts of the raw feature that run almost along a contour
line and that are accepted by all three other considered filters.

For a numerical computation of Fα the tangent of the feature
line can be estimated from a few samples. This technique was used
in [18]. In the simple case where n = 2, the feature tangent can be
calculated analytically, as will be shown in Section 5. It is also pos-
sible to generalize the angle criterion to k-dimensional height ridges
in n-space by using the angle between the tangent space of the ridge
and the linear space spanned by the eigenvectors yn−k, · · · ,yn−1.
The angle between linear subspaces is defined in [7].

3.2 The Contour Distance Criterion

The identity ∇g2 = 2Hg reveals a different interpretation of (9),
namely as a condition for an extremum of g2 along the height con-
tour. That means that the distance of two (infinitesimally close)
height contours assumes a maximum, a minimum, a flat spot, or
(for n > 2) a saddle. From an intuitive point of view, however, this
distance should be maximal, both for ridges and for valleys. This
suggests a filter FC which tests for a maximal distance of height
contours.

4 HEIGHT RIDGES OF CO-DIMENSION ONE

If k = n− 1, there is a single equation in (1) to be satisfied. A
straight-forward method to compute such ridges is to find zero
crossings of g · y1 on grid edges, where y1 is the explicitly com-
puted eigenvector belonging to the eigenvalue λ1, with the ordering
defined by either (3) or (4). A problem is, however, that the eigen-
vectors at the nodes of a cell can be inconsistently oriented. The
Marching Ridges algorithm by Furst et al. [6] uses principal com-
ponent analysis to achieve per-cell consistency of the eigenvectors,
while Kindlmann et al. [13] track rotation of the eigenvectors along
sub-sampled edges. But both of these schemes are problematic in
cells which contain a degenerate point of the tensor field H, i.e. a
point where the two eigenvalues coincide. At a degenerate point,
the ordering of eigenvalues changes, therefore the eigenvector as-
sociated with the i-th largest eigenvalue “jumps by 90 degrees”.

Alternatively, raw height ridges can be computed by using (5)
which for k = n−1 simplifies to

d = det
(

H0g |· · ·|Hkg
)

= 0. (10)

In other words, raw height ridges of co-dimension 1 are simply the
zero contours of a derived scalar field d and can therefore be com-
puted with a n-dimensional version of the Marching Cubes algo-
rithm [16].

5 HEIGHT RIDGES IN R2

In the special case n = 2, k = 1, the set R1 of raw feature points is
by (10) the zero contour of the derived field

d= det(g |Hg ) . (11)

Because of this, a property of R1 is that it contains all critical points
of g (where g = 0) and for n = 2 also all degenerate points of H
(where H is a pure scaling matrix).

Having the raw feature points, the next step is to classify them
as either ridge points or valley points. For this, the eigenvalues of
H associated with the directions of the gradient g and co-gradient
c = (−g2,g1) are needed. If the gradient g is nonzero, these are
simply λg = Hg

g and λc = Hc
c , where the division of parallel vec-

tors is defined component-wise, and is done by selecting the largest
absolute component of the denominator. Now the sign of λc deter-
mines whether the point is on a ridge (negative), valley (positive)
or neither (zero). Where g = 0, it is sufficient to know the type of
critical point, which is given by the determinant and trace of H. If
the point is a local maximum or minimum, it is classified as a ridge
or valley point, respectively. If it is a saddle, it is a crossing of a
ridge and a valley.

With the eigenvalues λg and λc, it is now possible to apply the
tests (3) or (4) in order to eliminate feature points violating the re-
spective height ridge definition. Critical points are always part of
the ridge or valley, for both Eberly’s and Lindeberg’s definition.
However, Lindeberg’s definition does not allow for a crossing of a
ridge and a valley, except in the case of equal absolute eigenvalues.
Therefore, by Lindeberg’s definition, a saddle point is either a ridge
or a valley point.

The feature normal can be derived from (11) as N = ∇d which
is in explicit notation:

N1 = fxxy
(

f 2
x − f 2

y
)
+
(

fxyy− fxxx
)

fx fy
+ fxy

(
fxx + fyy

)
fx−

(
2 f 2

xy + f 2
xx− fxx fyy

)
fy

N2 = fxyy
(

f 2
x − f 2

y
)
+
(

fyyy− fxxy
)

fx fy
− fxy

(
fxx + fyy

)
fy +

(
2 f 2

xy + f 2
yy− fxx fyy

)
fx.

(12)
The feature tangent is then T = (−N2,N1). From this, an analytic
expression for the filter Fα (with a threshold angle of α) can be



derived. By comparing the projections of T onto g and c, this is

|T · c|
|T ·g|

=
|N ·g|
|N · c|

≤ tanα. (13)

Finally, in the case n = 2,k = 1, the contour distance filter FC can
be expressed analytically. Because of d= det(g |Hg ) = c ·Hg =
1
2 c ·∇

(
g2), a negative (positive) value of d means that the con-

tour distance increases (decreases) along the oriented contour line,
where the orientation is given by the co-gradient c = (−g2,g1).
Hence, at a raw feature point, we can conclude that the contour
distance is maximal if and only if the gradient of d has a positive
projection onto c. That means, the contour distance filter can be
written as:

N · c > 0. (14)

6 IMPLEMENTATION DETAILS

Having introduced height ridges and filters for analytically given
fields, we describe now their numeric implementations for dis-
cretized fields.

6.1 Raw Feature Extraction

Raw feature extraction can be done with standard methods for
the practically most interesting cases of k-dimensional ridges in
n-space. If the ridge to be extracted has co-dimension one, this
amounts to solving an isocontour problem where many methods
are available for 2-space and 3-space. For one-dimensional ridges
in 3-space or higher, the parallel vectors method can be used as de-
scribed in [18]. It computes the set of intersection points with cell
faces and from these it constructs the feature lines. The case of
general k and n requires an extension of that method. This can be
done in principle by solving a system of algebraic equations. How-
ever, for large k and n, computing the full set of raw features is too
much of an overhead, which in practice limits the general approach
to small values of k and n.

Both algorithms, isocontour and parallel vectors, use implicitly
or explicitly the two vector fields g and Hg, precomputed on grid
nodes. It is, however, more accurate to estimate the derivatives g
and H directly at the given point instead of using interpolation.
Therefore, quality can be improved by post-processing the inter-
section points using bisection or Newton iteration.

Once the intersection points are determined, they need to be
connected to (discrete representations of) k-dimensional manifolds.
Connecting is done on a cell-by-cell basis, and depending on the
number of intersection points there may be several choices for con-
necting them within a given cell. In the Marching Cubes type algo-
rithms these ambiguities are resolved in a simple systematic way,
while the parallel vectors algorithm orders the intersection points
by the ratio of the lengths of the two vectors and then connects
pairs of points. In the setting of general k and n the connecting step
would have to be defined, too.

6.2 Implementation of the Filters

The filters FE and FL, and can be evaluated point-wise if first and
second derivatives of the height function can be estimated. In the
special case of one-dimensional ridges in 2-space, also the filters
Fα and FC can be computed point-wise from derivatives, but this
requires third derivatives. A way to avoid third derivatives in the
angle filter is to estimate the feature tangent from three successive
samples on the raw feature line. It is more difficult to avoid third
derivatives in the contour distance filter. We sampled the gradient
magnitude on nearby points on the isocontour (actually the isosur-
face in 3-space) and observed that for good results it is in fact im-
portant to place these samples not just on the normal plane of the
gradient vector, but effectively on the isocontour.

Depending on the application, more filters can be useful. In the
case of one-dimensional ridges, it often makes sense to discard fea-
ture lines that are below a certain minimal length. Obviously, the
length should be measured after the point-wise filters FE , FL, Fα

and FC have been applied. But for a more robust algorithm, it
is advisable to tolerate some small number of consecutive excep-
tions. The overall algorithm, if this type of length filter is used,
is then as shown in (1). Typical values producing good results are
m1 = m2 = 3 and m3 = 20.

Algorithm 1 Height ridge extraction and filtering
1: for all grid cells c do
2: compute intersection points of raw feature lines with c
3: connect these vertices to raw feature line segments
4: evaluate filter criteria on all vertices
5: label vertices as valid if they pass all filters
6: end for
7: connect line segments to polylines // possibly closed
8: for all polylines l do
9: search for a sequence of m1 valid vertices

10: extend the sequence forward and backward as long as ver-
tices are valid or the number of consecutive exceptions is
less than or equal to m2

11: after ending this extension step, remove any exception ver-
tices at the end

12: accept the obtained polyline if it contains at least m3 vertices
13: end for

6.3 Numerical Derivatives
The methods described in this paper require up to third order deriva-
tives of the given height function. In most cases, analytic deriva-
tives are not available, so numerical derivatives must be computed.
While the quality of derivatives is important, the method can be
freely chosen, depending on the discretization type of the data. In
the 2D example (Section 7.2) we computed derivatives by convolv-
ing the data with derivatives of the Gaussian. Since in this example,
we computed the angle and contour distance filters based on third
derivatives, such high-quality numerical derivatives were needed.
In the 3D example (Section 7.3) we did gradient estimation by
least-squares fitting of a linear function to the data. We used this
simple method, which is easily applicable to 3D unstructured grids,
because we computed only second derivatives (and computed the
feature tangent using three consecutive vertices).

7 EVALUATION OF HEIGHT RIDGE FILTERS

The current use of height ridges in scientific visualization focuses
on 3D data. But to allow for a better visual assessment of the dif-
ferent filters, we first use a synthetic and a numeric 2D height field
before ending with a numeric 3D scalar field.

7.1 Synthetic Data: “Monkey Saddle” Example
The “Monkey saddle” example f (x,y) = x2y taken from Eberly’s
book [5] has as raw features three ridges and three valleys joining in
a point, see Figure 2a. These are completely accepted by the filters
FE , FC and F45◦ , but completely rejected by the more restrictive
FL. In a perturbed version f (x,y) = x2y + 0.02y a single ridge-
valley transition remains and other four (raw) feature curves do not
intersect. FE accepts the full raw feature set, including clear false
positives (b), FC rejects them (c), while FL accepts only the vertical
ridge. In the differently perturbed field f (x,y) = x2y− 0.2y, the
monkey saddle breaks up in two ordinary saddles and a ridge-valley
transition. The angle filter F45◦ rejects parts around the near T-
junction. FE accepts all (d), FL just a subset (e), and FC accepts all
but the virtual solution in the center where contours have minimal
instead of maximal distance.



(a) Raw features (b) Raw features

(c) Contour distance filter (d) Raw features

(e) Lindeberg filter (f) Contour distance filter

Figure 2: “Monkey saddle” example f (x,y) = x2y from [5] with ridges (red) and
valleys (blue). Thin lines represent segments rejected by the angle filter F45◦ .
(a) Unperturbed field. (b,c) Perturbed field f (x,y) = x2y+0.02y. (d-f) Perturbed
field f (x,y) = x2y−0.2y.

7.2 Application: Ridges in Topographic Data

As numerical test data we use a topographic dataset which is
available as a free sample from http://www.swisstopo.
ch/en/download/testdata/height/dhm25 as the file
mmal25.xyz containing a 161x161 grid at 25 m resolution (Albis
region, south of Zurich, approx. here: http://maps.google.
com/maps?ll=47.27,8.507&z=14). By (11), raw features
are obtained as the zero contour of d. In order to minimize the
effect of numerics in our comparison, we used high-quality deriva-
tives, obtained by convolution with derivatives of a Gaussian with
σ = 25 m and a cutoff radius of 5σ , and we iteratively refined con-
tour samples using bisection of grid edges. In practical applications,
it is usually necessary to add a filter for removing “weak” features
caused by noise. We did not do this here with the exception of the
masking of flat regions (the lake). Figure 3 shows the ridges and
valleys with the contour distance and F45◦ filters applied. Perhaps
noteworthy are the many (top-down) valley-ridge transitions. As
already noticed by Jordan [12] these indicate alluvial fans (debris
deposits). In the close-ups in Figure 4, thin lines represent curve
segments removed by F45◦ . This filter produces acceptable results,

Figure 3: Ridges (red) and valleys (blue), with contour distance and 45◦ filters
applied.

(a) Raw features (b) Lindeberg filter

(c) Eberly filter (d) Contour distance filter

Figure 4: (a) Close-up of Figure 3. Comparison of filters, and combination with
F45◦ (thin lines).

even when applied as the only one to the raw features (a). False neg-
atives can practically be excluded, but there are clear false positives
near the main ridge. While FL is obviously too restrictive (b), FE
produces good results (c) if combined with F45◦ (thick lines only),
except for the many false positives, running mostly about parallel
to actual features. FC corrects this (d), and yields otherwise similar
results.



The remaining problem that can be identified in Figure 4d are
false negatives, i.e. gaps in feature curves. One reason for gaps
introduced by FC (and also FE ) are smaller-scale transversal ridges
as is illustrated in Figure 5. This type of gaps could be closed by
applying tolerant filters as was explained in Section 6.2. However,
this pattern can hardly be spotted in this application. Most gaps are
either introduced by the angle filter Fα or they are due to disjoint
raw features. In the case of disjoint raw features, gaps cannot be
closed easily. Many gaps of this type appear where ridges should
form a T-junction, which is not possible for height ridges since they
cannot branch as Damon [4] showed. Therefore, we decided not to
apply any length filtering at all, with the effect that even very small
ridges and valleys can be seen in the final visualization.

(a) (b)

Figure 5: (a) Height function f (x,y) = x− 1
6 y2 + 1

2 cos(x). Along the ridge on
the x-axis, eigenvectors are axis-aligned. Eigenvalues are − 1

2 cos(x) and − 1
3

for the x and y directions, respectively. (b) Raw features and effect of FC (thick
lines). The filter FC , as well as FE , would interrupt the main ridge around the
points ((2k+1)π,0) where − 1

2 cos(x) falls below − 1
3 . FL would create additional

gaps where it exceeds 1
3 , that is, around the points (2kπ,0).

7.3 Application: 1D Ridges of Negative Pressure in 3D
CFD Data

For a 3D application we chose the CFD simulation of a Pelton water
turbine. The region of interest is near the first one of six bifurcations
of the distributor ring, which we already visualized in [19]. We
selected the pressure data channel and computed one-dimensional
ridges and valleys, as is shown in Figure 6.

As can be expected in 3D, the set of raw features (a) is signifi-
cantly reduced by applying either the Lindeberg (b) or Eberly filter
(c). The latter is further reduced by applying the 45◦ filter (d) and
by requiring a minimum length of 15 vertices (e). The remaining
set, which is almost identically obtained also by using FL instead
of FE , consists of four feature lines, one of which coinciding with
a vortex core line. The second vortex core line is not captured by
any (raw or filtered) pressure valley line. Vice versa, three of the
pressure valley lines are missed by the Sujudi-Haimes vortex core
line method, meaning that they are at least no longitudinal vortices.

8 CONCLUSION

Being able to compute the raw height ridge points without using
eigenvalues makes the overall computation efficient, at least in low-
dimensional spaces. This approach also has the flexibility that one
or more filters can be chosen to select the final feature points. The
synthetic height fields and the terrain data used in this study suggest
that the newly introduced contour distance filter is the best choice.
The numerically less demanding filter based on Eberly’s definition
produces acceptable results, but only if combined with the angle
filter, as we also observed in our example of 1D ridges in 3-space.
Further investigation is, however, needed in the case of 2D ridges.
Finally, we believe that further research is also needed toward a
more satisfactory representation of branching.
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APPENDIX A. THE “CURVED GUTTER” EXAMPLE

The“curved gutter” example [14] consists of a parabolic profile that
is in a helical motion rotated and at the same time elevated. We
added two straight segments with matching profile at both ends.
The watercourse (in Figure 7 indicated by the converging slope
lines (blue) follows the deepest points in radial sections of the
curved part. The height ridge (red) misses them and delivers the
“correct” result only in the straight parts. Therefore, the water-
course can be argued to be better than the height ridge because it
respects the helical symmetry of the height field. However, the ex-
ample can be changed slightly to become an example that favors
the height ridge. For this purpose the curved section of the gut-
ter is replaced by a blend of the two height fields representing the
two straight gutter segments, with blending factors depending lin-
early on the angle. In this height field, the height ridge follows the
deepest points of the normal sections in the straight parts, while the
watercourse misses them in the lower straight part.

(a)

(b) (c)

Figure 7: (a) “Curved gutter” example with two straight segments added. (b)
Slope lines (blue) converging to the watercourse. Height ridge (red) has a ra-
dial offset. (c) “Blended gutter” obtained by replacing the curved part (shaded
region) by a linear blend of the two height fields of the straight parts. Water-
course (blue) converges to, but is not identical with, the obvious valley line in
the lower segment.

APPENDIX B. RIDGES WITHOUT CRITICAL POINTS

Height ridges and watersheds are fundamentally different concepts
both having their values for visualization. While height ridges can-
not describe the drainage pattern of a terrain, watersheds cannot
capture some types of visually evident ridges, because by defini-
tion, a watershed requires a saddle from which integration can start.
As an example, let us consider the height field

f (x,y) = y+
2

1+4(x+1)2 + y2
+

1

1+8(x+1)2 +2y2

which is a ramp with two ridges superimposed. Only the larger
ridge contains critical points (a saddle and a maximum). The
smaller ridge is therefore not a watershed, even though it has the
visual appearance of a ridge (see Figure 8). It can be made a water-
shed by adding a pair of a maximum and a saddle along the ridge,
for which an arbitrary small perturbation is sufficient. Both ridges
are valid height ridges in the sense of FE and also FC.

(a) (b)

Figure 8: Pair of a watershed and non-watershed ridge. (a) Graph of the height
field, (b) Contours, and extracted ridges and valleys, filtered with FC . Thin lines:
rejected by F45◦ .


