
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
E-mail addr
Computers & Graphics 32 (2008) 235–245

www.elsevier.com/locate/cag
Special Section: Point-Based Graphics

Tight and efficient surface bounds in meshless animation

Denis Steinemann�, Miguel A. Otaduy, Markus Gross

Computer Graphics Laboratory, ETH Zurich, Switzerland

Received 10 December 2007; received in revised form 25 January 2008; accepted 28 January 2008
Abstract

This paper presents a fast approach for computing tight surface bounds in meshless animation, and its application to collision

detection. Given a high-resolution surface animated by a comparatively small number of simulation nodes, we are able to compute tight

bounding volumes with a cost linear in the number of simulation nodes. Our approach extends concepts about bounds of convex sets to

the meshless deformation setting, and we introduce an efficient algorithm for finding extrema of these convex sets. The extrema can be

used for efficiently updating bounding volumes such as AABBs or k-DOPs, as we show in our results. The choice of particular bounding

volume may depend on the complexity of the contact configurations, but in all cases we can compute surface bound orders of magnitude

faster and/or tighter than with previous methods.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: Collision detection; Bounding volume hierarchies; Convex combinations; Meshless deformation
1. Introduction

Point-based or meshless discretization methods have
gained rapid popularity for performing physically based
simulations in computer graphics, due to the versatility of
the discretization and the capability of handling large
deformations [1], topological changes in cutting or fracture
[2–4], or state transitions [5]. Here we focus on the
application of meshless methods to the simulation of
elastic deformations derived from continuum mechanics,
using moving least squares (MLSs) interpolation of shape
functions [1], as reviewed in Section 3.

A meshless discretization defines a deformation field in
the continuum, but in computer graphics we are particu-
larly interested with the deformation of object boundaries,
which are animated along with the deformation field.
As opposed to other work that employs point-based
surface representations [2], we track object boundaries
explicitly using triangle meshes, as they offer higher
robustness for collision detection and topological changes
[4]. In visually interesting animations, object boundaries
e front matter r 2008 Elsevier Ltd. All rights reserved.

g.2008.01.013

ing author. Tel.: +4144 6320782.

ess: deniss@inf.ethz.ch (D. Steinemann).
have high complexity (e.g., tens of thousands of vertices),
while the deformation field may be well captured by many
fewer simulation nodes (e.g., several hundreds). Such
animations where deformation is separated from surface
geometry can be implemented efficiently using graphics
hardware. As noted by [6], the host CPU only has to
compute deformation coordinates, without the need for
access to the complete surface geometry. The unavoidable
task of deforming the entire high-resolution object surface
for rendering can be done on modern GPUs using matrix
palette skinning, for example.
Collision detection is an essential component of the

animation of deformable objects, and classical acceleration
data structures include spatial partitioning [7] or bounding
volume hierarchies (BVHs) [8]. Pruning of non-colliding
regions requires the evaluation of the deformation on the
boundary, with a cost that depends a priori on the
complexity of the boundary surface, and not the number
of simulation nodes. In the context of BVHs applied to
reduced linear deformations [6], skinning [9,10], or low-
resolution FEM deformations [11,12], several authors have
exploited the existence of a small set of deformation
degrees of freedom for efficiently computing surface
bounds. Similarly, and as done by others as well [13,14],

www.elsevier.com/locate/cag

ARTICLE IN PRESS
D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245236
we exploit the few degrees of freedom existing in meshless
animations for efficiently computing bounds for BVHs.
In Section 4 we outline the hybrid update of BVHs from a
reduced set of deformation degrees of freedom. However,
as we later elaborate in the paper, meshless deformations
pose additional obstacles, making the application of
previous methods highly inefficient.

The main contribution of this paper, described in Section
5, is a method for efficiently computing tight bounds for
surfaces animated from meshless deformations. Specifi-
cally, we address the efficient computation of bounds along
specific directions, which constitutes the building block for
bounding volumes such as k-DOPs [15] or AABBs [16].
Given an object with ‘ vertices animated from n simulation
nodes, we reduce the best-case Oð‘Þ cost for computing a
bound with classical BVH-based approaches, to a much
more efficient OðnÞ cost. In practice, we obtain more than
one-order-of-magnitude speed-up w.r.t. bottom-up update
of BVHs.

Our approach builds on the concept of limited convex

combinations designed by Kavan et al. [9,10]. They bound
surfaces defined by skinning of articulated bodies, and we
extend their method to surfaces defined by meshless
deformation fields. This approach produces bounds that
can be orders of magnitude tighter than the previous
approaches based on accumulation of deformations [13].
However, a direct extension of the method of Kavan et al.
yields a complexity quadratic in the number of simulation
nodes. We introduce a novel evaluation of surface bounds
from convex combinations, with complexity linear in the
number of simulation nodes.

In Section 6 we analyze the performance of our
algorithm, in terms of tightness, efficiency, and scalability,
and we compare it with respect to traditional bottom-up
BVH updates and spatial partitioning. We also evaluate
AABBs and more complex k-DOPs, and our results
indicate that AABBs are better suited in situations
with few collisions, while the use of more complex
k-DOPs may pay off as the number of collisions increases
(Fig. 1).
Fig. 1. Efficient bounds of the meshless deformation of a brain. Left: Undefor

brain being deformed by a pulling force. Right: Under this large deformation, w

the optimal one (inner box), with cost linear in the number of simulation nod
2. Related work

Several types of meshless deformation models are
currently used in computer graphics [17–19], but we build
our work on the one with MLS interpolation of shape
functions by Müller et al. [1], due to its foundation
on continuum mechanics. Refer to [20] for a survey on
meshless methods, and to [21] for a recent survey on
deformable models in computer graphics.
BVHs [8] constitute the most popular acceleration data

structure for collision detection, in particular with rigid
bodies. When applied to general deformation models,
updating a BVH suffers from a cost linear in the number of
vertices [16]. Using spheres [22], AABBs [16], or k-DOPs
[15] as bounding volumes (BVs), the BVH can easily be
updated in a bottom-up manner with constant cost per BV.
However, deformation models with far fewer degrees of
freedom than the number of vertices potentially allow for
sublinear update of BVs high in the hierarchy, and thereby
efficient interruptible collision detection [22], or even
sublinear cost for exact collision detection.
Klug and Alexa [23] presented efficient BV computation

for linearly interpolated shapes, whose degrees of freedom
are the blending weights. James and Pai [6] introduced the
BD-tree, an efficient sphere-tree for bounding surfaces
described by linear combination of a few degrees of
freedom. The BD-tree was originally applied to reduced
deformable models, and other extensions of sphere-trees
have been applied to FEM deformations on coarse meshes
[11], geometric deformations through shape matching [14],
or meshless animations [13], exploiting knowledge about
the deformation model. All these approaches compute
bounds by accumulating deformations from all degrees of
freedom, and therefore they suffer tightness degradation
with increasing number of simulation nodes. As we show in
Section 6, our approach preserves tightness independently
of the number of simulation nodes.
Kavan and Zara [9] computed efficient BVs for skinned

articulated bodies, with each surface vertex defined by a
convex combination of rigid transformations. A set of ‘
med brain model with an optimal AABB. Middle: Simulation nodes of the

e can compute a tight AABB (outer box) that is only about twice as big as

es, independent of the number of surface vertices.

ARTICLE IN PRESS
D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245 237
vertices animated from a common set of n joints (‘bn) can
be represented as a set of ‘ points in the Rn space of
possible convex combinations. Kavan and Zara found a
bounding set of limited convex combinations defined by a
simpler set of m ¼ Oðn2Þ corners in Rn. Then, finding the
contribution of a joint set to a BV reduces to bounding the
m corners instead of the original ‘ vertices. The use of
limited convex combinations has been extended to sphe-
rical blend skinning [10] and FEM deformations on coarse
meshes [12]. However, their direct application to meshless
animations would produce an explosion of the number of
joint sets and corners.

3. Review of meshless animation

In this section, we review the meshless deformation
model we use, describe the animation of the vertices of a
triangle mesh using the meshless deformation field, and
formulate this animation as a convex combination of affine
transformations.

3.1. Meshless deformation and surface animation

According to the model of Müller et al. [1], the
deformation field uðxÞ of an object is defined at a discrete
set of simulation nodes. The gradient ru of this vector field
(which is needed for calculating material stress and strain)
is computed using an MLSs approximation.

A common approach to deform the surface of the object
(a triangle mesh in our case) is to carry it along with the
simulation nodes, which requires an extrapolation of the
deformation field to the surface. The position vk of a
surface vertex is then defined by

vk ¼ v0k þ
Xn

j¼1

wkjðuj þ ru
T
j ðv

0
k � xjÞÞ, (1)

where uj , xj , and ruj are, respectively, the displacement,
reference position, and deformation gradient of a simula-
tion node, v0k is the reference position of the vertex, and wkj

is the constant weight with which a node influences the
vertex.

3.2. Convex combination of transformations

We use convex combinations extensively throughout
this paper, hence we define the set of convex weights
in Rn as

W n ¼ w 2 Rn: 0pwjp1;
Xn

j¼1

wj ¼ 1

()
. (2)

The vector of weights wk ¼ ðwk1; . . . ;wknÞ that defines the
animation of a surface vertex according to Eq. (1) is
convex, i.e., wk 2W n. Then, the transformed vertex
can be written in a more general form (using homo-
geneous coordinates) as a convex combination of affine
transformations Tj:

vk ¼
Xn

j¼1

wkjTjv
0
k; Tj ¼

Aj tj

0 1

 !
,

Aj ¼ ru
T
j þ I; tj ¼ uj �ru

T
j xj. (3)

4. Construction and update of the BVH

Here we discuss the initialization of the BVH, and
outline the update strategy of the complete BVH prior to
collision detection queries.

4.1. BVH construction and initialization

We enclose each surface triangle in one leaf BV, and
build the BVH as a binary tree. In practice, we construct
the tree-structure of the BVH by successive top-down
splitting of surface triangles at the median of the longest
axis defined by the covariance matrix [8].
For each node of the BVH, we distinguish two types of

BVs: a rest-state box B, and a deformed-state k-DOP

D. The choices of rest-state box (i.e., AABB or OBB) and
deformed-state k-DOP (e.g., AABB ¼ 6-DOP, 14-DOP,
18-DOP, 26-DOP, etc.) are independent of each other. In
Section 6 we discuss results with a few combinations. Note
that in principle, the rest state BV could be any convex BV,
but for simplicity we will only consider boxes in this paper.
We choose k-DOPs as deformed-state BVs because their

update corresponds to finding maximum values along
specific directions (i.e., the k directions). Such an operation
can be efficiently carried out in the context of convex sets
as we will show in Section 5.3.
A k-DOP D must bound a set of ‘ vertices fv1; . . . ; v‘g,

which are animated from n simulation nodes (i.e., those
nodes that influence at least one of the ‘ vertices). As
shown in Fig. 2, each of the vertices may effectively be
animated from a subset of the n nodes, but we handle all
nodes at once by considering weights w ¼ 0.
For every BV, we store the rest-state box, the set of

influencing nodes, and, for every node, the maximum and
minimum weights, h and l, with which it influences the
vertices to be bounded.

4.2. Run-time BVH update

Typically, BVHs for deformable bodies are updated in a
bottom-up manner, by first refitting leaf BVs (with cost
Oð1Þ for both AABBs and higher-order k-DOPs), and then
refitting higher BVs by bounding their children. With our
efficient bounds for meshless deformations, the preferred
update strategy depends on the type of collision query to be
carried out. For example, interruptible collision detection
[22] suggests an on-demand top-down update of BVs.
In our simulations, we have carried out exact collision

detection queries, and we have exploited temporal coher-
ence in the update of the BVH. Instead of updating the

ARTICLE IN PRESS

Fig. 2. Simulation nodes, vertices, and bounds. A set of nine vertices vk (blue squares), and their three influencing simulation nodes xj (red circles). Red

dotted lines denote the vertices influenced by one particular node x1. On the left, the vertices are bounded by a 2D AABB, while on the right they are

bounded by a 2D 8-DOP.

D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245238
BVH top-down, we cache the front of the subtree of BVs
visited in the previous query. We refit the BVs of this front
with our novel algorithm, but we refit higher BVs by simply
bounding their children. Below the front, we again update
BVs with our algorithm on-demand.

For leaf BVs, we evaluate the positions of the vertices to
be bounded, and we compute the optimal BV instead of
following our novel method. At leaf BVs, evaluating
vertices incurs little penalty, as they are likely to be
evaluated for primitive-level queries anyway, and the
bounds turn out tighter, thereby saving primitive-level
queries as well.

5. Efficient refitting of bounding volumes

In this section we present our main contribution:
bounding ‘ vertices animated from n simulation nodes
with cost OðnÞ. We first show that the deformed vertices
can be bounded by combining transformed versions of the
rest-state boxes. Then, we show how to compute tight
k-DOPs using limited convex combinations, and we pre-
sent our algorithm for efficiently evaluating the extrema of
the k-DOPs. We conclude with a summary of the algorithm
for refitting one k-DOP.

5.1. Bounding volumes in deformed state

Given a box B that bounds a set of vertices fv0kg in rest
configuration, here we show that, if the vertices are
deformed by convex combinations of affine transforma-
tions, we can bound the deformed vertices by a convex
combination of k-DOPs. Each k-DOP is computed as the
bound of a transformed version of B. We first introduce the
concepts of transformed box and convex combination of k-
DOPs, as well as two associated lemmas.

Definition 1. Given a box B0, we define the transformed
box Bj ¼ TjB0 as the parallelepiped defined by the
transformed corners of B0. This parallelepiped can then
be bounded by a k-DOP Dj .

Lemma 1. Based on Definition 1, given a vertex v0k bounded

by a box B0, the transformed vertex Tjv
0
k is also bounded by

the transformed box Bj ¼ TjB0.
Proof. A vertex v0k 2 B0 can be defined as a convex
combination of the corners c0 of B0. Then, the transformed
vertex can be expressed as

vk ¼ Tj

X
i

uic
0
i ¼

X
i

uiðTjc
0
i Þ. (4)

We observe that, due to linearity of the affine transformation,
the transformed vertex can be represented as the same convex
combination of the transformed corners, therefore it is
bounded by the transformed box. Again note that in principle
this holds for any convex BV defined by its corners. &

Definition 2. Given a set of n k-DOPs fDjg, we define their
convex combination as the set of points obtained from
convex combinations of their interior points.

Xn

j¼1

wjDj �
Xn

j¼1

wjpj: pj 2 Dj

()
. (5)

This is a natural application of the standard definition of
convex combination of sets of points.

Lemma 2. A convex combination of k-DOPs fDjg is another

k-DOP whose extrema are defined by the same convex

combination of the extrema of fDjg.

Proof. Given k-DOPs fDjg, with extrema fbg
j g along the

direction g, the convex combination of the extrema yields a
bound bg

¼
P

jwjb
g
j . We aim to proof that the same convex

combination applied to interior points fpjg of the k-DOPs
yields a point bounded by bg along g. This point can be
expressed as p ¼

P
jwjpj, and its projection onto the direction

g is pg ¼
P

jwjgTpj. By definition of the k-DOPs, gTpjpb
g
j .

Then, pgp
P

jwjb
g
j . And, by definition of bg, pgpbg. &

5.1.1. k-DOP for a deformed vertex

Given a vertex vk defined by convex combination of affine
transformations as in Eq. (3), it is easy to see that the vertex
can be bounded by a convex combination of k-DOPs:

Given v0k 2 B0,

Applying Lemma 1: Tjv
0
k 2 TjB0 ¼ Bj � Dj ,

Applying Lemma 2: vk ¼
Xn

j¼1

wkjTjv
0
k 2

Xn

j¼1

wkjDj. (6)

ARTICLE IN PRESS
D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245 239
Fig. 3 depicts a 2D box B0 influenced by two nodes, the
transformed boxes fB1;B2g after deformation of the two
nodes, the bounding 8-DOPs fD1;D2g, and the region
defined by their convex combination.
Fig. 4. Corners in the limited convex weight space. Left: The limited

convex weight space W 0
n 2 R

n (i.e., with three simulation nodes), shaded in

blue, is defined by hyperplanes of maximum (in red) and minimum weights

(in green), and the hyperplane of convex weights. Blue circles represent the

weight vectors for the vertices to be bounded, and blue squares represent

the corners of W 0
n. Right: close-up on one corner of the simplex defined by

minimum-weight hyperplanes, being truncated by a maximum-weight

hyperplane.
5.1.2. k-DOP for a set of vertices

We will bound a set of ‘ vertices by bounding their
convex hull CHðv1; . . . ; v‘Þ ¼

P‘
k¼1ukvk, where the vector

of weights u 2W ‘. Given the n simulation nodes that
define the deformation of all ‘ vertices, the box B0 in rest
configuration, the transformed boxes Bj ¼ TjB0, and their
bounding k-DOPs Dj, we bound the convex hull by
applying individual bounds (6) as

CHðv1; . . . ; v‘Þ ¼
X‘
k¼1

ukvk �
X‘
k¼1

uk

Xn

j¼1

wkjDj

 !
. (7)

Swapping sums, we obtain

CHðv1; . . . ; v‘Þ �
Xn

j¼1

X‘
k¼1

ukwkj

 !
Dj ¼

Xn

j¼1

~wjDj. (8)

The weights f ~wjg represent a convex combination of convex
weights, which yield another convex combination,
i.e., ~w ¼ ð ~w1; . . . ; ~wnÞ 2W n. In other words, every point
in the convex hull of the deformed vertices can be bounded
by a convex combination of k-DOPs. From Lemma 2, this
is another k-DOP whose extrema are computed by convex
combination of the extrema of the k-DOPs fDjg. However,
each point in the convex hull of the deformed vertices is
defined by one convex combination, and is therefore
bounded by one different convex combination of k-DOPs.

A possible way to bound all vertices with cost OðnÞ (i.e.,
linear in the number of simulation nodes) would be to
compute all k-DOPs fDjg and bound them all. This
amounts to replacing the set of possible convex combina-
tions ~w with a more conservative set W n, which would yield
a loose k-DOP. Next, we will exploit the concept of limited
convex combinations for designing tighter bounds.
Fig. 3. Transformed boxes and bounding k-DOPs. Left: A 2D box B0 in rest

defines an affine transformation on B0, leading to the parallelepipeds B1 and B2

and the space of their convex combinations is indicated with dotted blue lines
5.2. Bounds from limited convex combinations

The term ~wj ¼
P‘

k¼1ukwkj in Eq. (8) represents all
convex combinations of the weights with which the jth
simulation node influences the vertices. This term is
bounded by an interval of weights, i.e., ~wj 2 ½lj ; hj�, where
lj and hj are the minimum and maximum weight of the jth
node.
In the space Rn of weight vectors, the interval ½lj ; hj�

yields a region defined by two parallel halfspaces wjXlj and
wjphj. Following Kavan and Zara [9], we define the limited

convex weight space (see Fig. 4) as the region W 0
n �W n �

Rn bounded by pairs of parallel hyperplanes and intersect-
ing the hyperplane of convex weights. Formally,

W 0
n ¼ w 2 Rn: 0pljpwjphjp1;

Xn

j¼1

wj ¼ 1

()
. (9)

It is important to highlight that W 0
n is a conservative bound

of all possible weight vectors ~w.
position, and the two nodes influencing it. Middle: Each deformed node

. Right: The parallelepipeds are bounded to obtain the k-DOPs D1 and D2,

.

ARTICLE IN PRESS
D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245240
The limited convex weight space W 0
n may also be

represented as the space spanned by convex combinations
of its corners [10]. We first describe how the corners of W 0

n

can be used for refitting k-DOPs, and we then discuss the
computation of the corners themselves.
5.2.1. Bounds from corners

Let us assume for now that W 0
n has m corners fw0ig. Then,

a weight vector ~w can be represented as ~w ¼
Pm

i¼1uiw
0
i,

u 2W m, or for each component, ~wj ¼
Pm

i¼1uiw
0
ij. Applying

this definition to the convex combination of k-DOPs in
Eq. (8),

D ¼
Xn

j¼1

~wjDj ¼
Xn

j¼1

Xm

i¼1

uiw
0
ijDj ¼

Xm

i¼1

uiD
0
i. (10)

From this expression, we can conclude that the deformed
vertices can be bounded by first computing a combined
k-DOP D0i ¼

Pn
j¼1w

0
ijDj for each corner of W 0

n, and then
bounding all the combined k-DOPs. This is, in essence, the
algorithm proposed by Kavan and Zara [9] for sphere-trees
in linear blend skinning, but in Section 5.3 we demonstrate
its inefficiency for meshless animation.
5.2.2. Computation of corners

As noted by Kavan and Zara [9], the corners of W 0
n are

defined by intersections of hyperplanes wj ¼ lj, wj ¼ hj ,
and

Pn
j¼1wj ¼ 1. Finding the exact corners in Rn is a hard

geometric problem, but here we define easy-to-compute
alternative corners that conservatively bound W 0

n.
We first identify the region of the hyperplane of convex

weights,
Pn

j¼1wj ¼ 1, bounded by the hyperplanes of
minimum weights wj ¼ lj . This region constitutes an
n� 1 dimensional simplex in Rn, and has, therefore, n

corners. Each of the corners can be truncated by one of the
hyperplanes of maximum weight, wj ¼ hj, thus cutting the
n� 1 lines meeting at the corner, as shown in Fig. 4 (right)
for a case with three simulation nodes. In total, the
truncated simplex yields m ¼ nðn� 1Þ ¼ Oðn2Þ corners.
For example, the corner obtained by truncating with
wj ¼ hj the line resulting from hyperplanes fwk ¼

lk: kefi; jgg is trivially defined as w0 ¼ ðl1; . . . ; 1� hj�P
kefi;jglk; . . . ; hj ; . . . ; lnÞ.

5.3. Efficient evaluation of extreme corners

As noted in Section 5.2.1, the deformed vertices can be
bounded by computing a combination of k-DOPs for each
corner of W 0

n, and then bounding all the combined k-DOPs
fD0ig. Since there are m ¼ Oðn2Þ corners, and evaluating
each combined k-DOP has an OðnÞ cost, the total cost of
this procedure would be Oðn3Þ, although a coherence-aware
Oðn2Þ implementation is also possible. However, note that
the resulting k-DOP is defined simply by k extreme values
along the k directions, and it would suffice to evaluate the
corners that realize the k extreme values. In fact, with our
definition of corners introduced in Section 5.2.2, selecting
the corner that realizes each extreme value has a cost OðnÞ.
Let us pick a direction g from the set of k directions

(these directions are fxþ;x�; yþ; y�; zþ; z�g for an AABB).
Given the k-DOPs fDjg associated with the n simulation
nodes, we define as b

g
j the extreme value of each k-DOP Dj

along g. Then, we identify the simulation node j1 ¼

argmaxj b
g
j that realizes the largest extreme, as well as the

second largest, j2 ¼ argmaxjaj1
b
g
j . As proved in Appendix

A, the corner that realizes the extreme along g is defined as

wg ¼ l1; . . . ; hj1 ; . . . ; 1� hj1 �
X

jefj1;j2g

lj ; . . . ; ln

 !
. (11)

And the value of the extreme itself can be computed as

bg
¼ hj1b

g
j1
þ ð1� hj1 �

X
jefj1;j2g

ljÞb
g
j2
þ
X

jefj1;j2g

ljb
g
j . (12)

It can easily be deduced that computing each of the k

extrema requires an OðnÞ search for the two largest values,
plus an OðnÞ evaluation of the extreme corner.

5.4. Summary of k-DOP refitting

After explaining the principles of our k-DOP refitting
algorithm, we can now list the steps for its implementation.
Given a rest-state box B0:
(1)
 For every influencing simulation node j, transform B0

by the affine transformation Tj to obtain a parallele-
piped Bj, according to Definition 1 in Section 5.1.
(2)
 Compute the transformed k-DOPs fDjg that bound
fBjg.
(3)
 For each orientation g of the k-DOPs, identify the
simulation nodes whose transformed k-DOPs realize
the two largest extrema, and evaluate the bound bg

based on Eq. (12).
6. Results

We have tested the tightness of BVs computed using our
algorithm, the scalability of the approach, and its
performance on several benchmark examples. We have
also compared AABBs against higher-order k-DOPs
(14-DOPs). All tests were carried out on a 3.4GHz
Pentium-4 PC with 1GB of memory.
Fig. 1 shows a brain model deformed under pulling

forces. In this scenario, we have evaluated the tightness of
AABBs computed using our method, for a surface mesh
consisting of 29 966 vertices, with two different simulation
node sets: 65 and 509. For such a dense surface, AABB
tightness is practically independent of the number of
vertices, as the weights of simulation nodes vary very little
between adjacent vertices. Fig. 5 shows the ratio between
the radius of AABBs computed using our method and
optimal AABBs, across all levels of the BVH (1 stands for
the root, 15 stands for the leaves). The left plot shows the

ARTICLE IN PRESS

Table 1

Scalability analysis

verts # nodes Optimal

65 225 509 AABB

3.5K 15 35 90 2.0e3

30K 18 48 100 17.2e3

145K 18 46 100 82.5e3

Time (in ms) for fitting an AABB to the brain model from Fig. 1, with

varying numbers of vertices and simulation nodes. The trend matches the

expected linear cost in the number of nodes. For comparison, the last

column shows the time to compute the optimal AABB, which is linear in

the number of vertices.

D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245 241
average ratio in the course of the simulation, while the right
plot shows the maximum ratio. We measure the radius of
an AABB as half of its diagonal. We have also compared
the tightness with the approach of Adams et al. [13], and
with our approach we obtain a root BV up to 68 times
tighter with 509 simulation nodes. Our root AABB is at
most 2:5 times larger than the optimum, and only 1:5 times
larger on average, as highlighted in Fig. 1. For complete-
ness, in this test we have used our refitting method even on
leaf AABBs, although it would be more efficient to
evaluate vertex positions and compute optimal bounds,
as discussed in Section 4.2.

Using the same brain model, we have tested the
scalability of our method as a function of the number of
vertices and simulation nodes. Table 1 shows the time
(in ms) for fitting an AABB to the brain model. As
expected, with ‘ vertices and n simulation nodes, the cost is
OðnÞ, i.e., linear in the number of simulation nodes and
invariant in the number of vertices. The last column shows
the time for computing the optimal AABB, which is Oð‘Þ,
i.e., linear in the number of vertices, and up to almost three
orders of magnitude larger than with our method.

We have evaluated the performance of our approach on
the scene of Fig. 6. Six Santa Claus models are attached to
a ring. The ring is then rotated, producing deformations
and collisions of the models. As listed in Table 2, we have
tested models with �3K and 45K vertices (18K and 270K
in total in the scene), and with 115 and 550 simulation
nodes (690 and 3300 in total in the scene). We have also
considered two different ring motions, which produce
different contact scenarios.

In Table 3 we report timings for collision queries with
two state-of-the-art approaches for the benchmarks listed
in Table 2: (i) AABB trees with full bottom-up update [16],
and (ii) spatial hashing [7]. The collision query consists of
finding all intersecting triangles, Note that, in both cases,
timings are independent of the number of simulation
nodes, and all bounding volumes are optimal, as they are
directly evaluated from vertex positions. It is clear from the
5 10 15
1

2

5

10

20

50

100

200

BVH Levels

Avg. BV Radius Ratio

ours 65 nodes
ours 509 nodes
[AKP*05] 65 nodes
[AKP*05] 509 nodes

1

2

Fig. 5. BV tightness analysis. Ratios between the radii of AABBs computed usi

the brain model of Fig. 1. The left plot shows the average ratio over the course o

Our method largely improves the tightness of the sphere-tree of Adams et al.
data that spatial hashing is not competitive in these
benchmarks, but it would be better suited for detecting
self-collisions.
In Table 4, we report timings (in ms) for the same

benchmarks using our novel method (including front-
tracking as discussed in Section 4.2). We also report the
performance gain compared with full bottom-up update of
AABB-trees, for which timings are given in Table 3. In the
left part of Table 4, we have used AABBs both in rest state
and in deformed state. With 45K vertices, the speed-up for
refitting AABBs is between 69 and 126 times, and the total
speed-up is between 15 and 27. The collision query is up to
four times slower with our method, as it includes on-
demand AABB updates and does not use optimal
bounding boxes. However, the bottleneck of the entire
collision detection process is refitting the BVH, and one
may extrapolate from the data that our method would
provide even higher speed-up with more complex surfaces.
In the right part of Table 4, we have used OBBs in rest

state and 14-DOPs in deformed state and on which the
actual collision query is performed. Even though in both
the rest state and the deformed state these BVs bound the
vertices more tightly than AABBs, the speed-up of this
approach compared to the AABB/AABB approach is not
5 10 15
1

2

5

10

20

50

00

00

BVH Levels

Max. BV Radius Ratio

ours 65 nodes
ours 509 nodes
[AKP*05] 65 nodes
[AKP*05] 509 nodes

ng our method and the optimal AABBs, for all levels of the AABB-tree, on

f a simulation, while the right plot shows the maximum ratio for each level.

[13].

ARTICLE IN PRESS

Fig. 6. Santa Claus models with meshless deformations. When the top ring moves, the models deform and collide with each other. The top-left image

shows the sampling of nodes, while the bottom images highlight intersecting triangles.

Table 2

Scene types

Scene 1 2 3 4 5 6 7 8

verts 2857 2857 45682 45682 2857 2857 45682 45682

nodes 115 550 115 550 115 550 115 550

contacts Few Few Few Few Many Many Many Many

Different settings (# vertices and # nodes per model, and contact scenario)

for the ‘Santa Claus’ benchmark shown in Fig. 6.

Table 3

Performance analysis of state-of-the-art methods

Scene no. AABBs full bottom-up Spatial hashing

Refit Query Total Load Query Total

1, 2 37.1 2.12 39.3 28.29 41.63 70.0

3, 4 575.7 5.89 581.6 479.6 1264.5 1744.1

5, 6 37.9 2.48 40.4 28.91 44.32 73.2

7, 8 569.7 8.84 578.6 484.2 1430.5 1914.7

Timings (in ms) for collision queries for the benchmarks of Table 2, using

(i) AABB trees with full bottom-up update and (ii) spatial hashing.

Table 4

Performance analysis

Scene no. AABB/AABB OBB/14-DOP

Refit Query Total Gain Refit Query Total Gain

1 1.83 5.72 7.55 5.2x 2.82 7.82 10.64 3.7x

2 2.36 5.60 7.97 4.9x 4.05 8.48 12.53 3.1x

3 4.54 16.6 21.1 27.5x 6.85 21.89 28.74 20.3x

4 5.77 18.7 24.5 23.7x 8.48 25.37 33.85 17.2x

5 3.38 10.0 13.4 3.0x 3.89 10.27 14.17 2.9x

6 3.26 9.28 12.5 3.2x 5.41 13.00 18.42 2.2x

7 6.87 24.5 31.4 18.4x 7.91 26.98 34.89 16.6x

8 8.23 29.3 37.5 15.4x 11.39 38.6 49.99 11.6x

Timings (in ms) for BVH update and collision queries for the benchmark

of Fig. 6, with various vertex and simulation node resolutions, and under

different contact scenarios. On the left, we use AABBs in both rest state

and deformed state, while on the right, we use OBBs in rest state and

14-DOPs in deformed state.

D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245242
quite as good, as can be seen in Table 4. The reason for this
is that the transformation of an AABB can be implemented
more efficiently than for an OBB. For both types of
bounding boxes, one can exploit symmetry and instead
of transforming all corners separately (as explained in
Section 5.1), one may transform just the center and the
three axes defining a box. For an AABB, an axis vector
contains only one non-zero element, and therefore an
axis-transformation amounts to a single scalar–vector
multiplication. For an OBB one must compute a matrix–
vector product for each axis and the center. Furthermore,
overlap tests for 14-DOPs are more expensive than for
AABBs, as more extrema must be computed. We have
also tested the combination of AABBs in rest state and
14-DOPs in deformed state, and we found that it is about
5–10% slower than the OBB/14-DOPs combination. The
reason for this is that the AABBs and k-DOPs are much
less tight, resulting in more BV updates, while the

ARTICLE IN PRESS

Fig. 7. Collisions between deforming fishes. Our method provides a speed-up of 12 times in this scenario. Intersecting triangles are highlighted on the

right.

D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245 243
more efficient AABB transformation cannot quite make up
for this.

We have only reported timings for 14-DOPs, but further
experiments with 18-DOPs and 26-DOPs have shown
that the better tightness of these BVs does not pay off due
to the larger number of extrema that must be computed.
The reason for using these three types of k-DOPs is that
their direction vectors can be represented by integer
values �1, 0, and 1, making it possible to project a point
onto a direction without any multiplications [15].
Finally, one could also use tight k-DOPs in undeformed
state. In this case, however, the BV transformation
becomes too expensive, since BV symmetry cannot be
exploited anymore.

Therefore, we conclude that using both AABBs in rest
state and deformed state yield the highest performance gain
compared to the two state-of-the-art methods shown in
Table 3. In scenarios with few degrees of freedom and even
more collisions, using tighter but more complex BVs may
pay off, but more experiments would need to be done to
confirm this.

We have also tested the performance on the scene of
Fig. 7, with 24 fishes with 8K vertices and 96 simulation
nodes each. With our method, the refitting of AABB-trees
takes 5.3ms on average, and collision queries take 26.3ms.
With full bottom-up update, the refitting takes 401.7ms on
average, and collision queries take 16.6ms. In total, our
method provides a speed-up of about 12 times.

7. Conclusion

In this paper, we have presented a fast method for
computing tight AABBs in the context of meshless
deformations, with a cost linear in the number of
simulation nodes, and independent of surface complexity.
As demonstrated in the experiments, our method achieves
both tighter bounds and faster culling than previous
methods. It is best suited in situations with intermittent
contact, and it will not pay off if objects undergo
continuously very large-area contacts.

As noted by an anonymous reviewer, our extrapolation
of the deformation field to the surface might be replaced by
a shape function formulation [20]. Our contributions for
tight and efficient bound computation would still hold, but
applied to combinations of displacements instead of linear
transformations.
We are investigating extensions for topology changes

(i.e., cutting and fracture) by restructuring the hierarchies
[24], and local resampling of the discretization, which incur
modifications of the simulation nodes and surface vertices
associated with each AABB. Similarly, our method cannot
handle self-colliding situations, but the inherent difficulties
for pruning adjacent primitives in a hierarchical manner do
not suggest the existence of trivial extensions.
Acknowledgments

We would like to thank the anonymous reviewers, the
editors, Ming C. Lin and Nico Galoppo for the fish model,
and members of the Computer Graphics Lab in Zurich and
Ladislav Kavan for their helpful comments. This research
was supported in part by the NCCR Co-Me of the Swiss
National Science Foundation.
Appendix A. Extreme corner evaluation

As shown in Section 5.2.2, a corner is defined by one
maximum weight, one based on the convex constraint
1� h�

P
l, and n� 2 minimum weights. In the closed-

form definition (12) of the extreme bg, the simulation node
with largest associated value, j1, the one with second largest
value, j2, and the n� 2 remaining nodes are weighted with
this set of weights. Let us assume, w.l.o.g., that j1 ¼ 1 and
j2 ¼ 2. In total, there are seven choices for the weighting
schemes of the simulation nodes, as shown in Table A1.
Let us recall here Definition (12) of the extreme, renamed

as b1, and dropping the superindex g for clarity

b1
¼ h1b1 þ 1� h1 �

X
jef1;2g

lj

 !
b2 þ

X
jef1;2g

ljbj. (A.1)

In order to prove that this extreme is a conservative bound,
it suffices to prove that the difference b1

� bi
X0 for all

ARTICLE IN PRESS

Table A1

Weighting schemes

Weights w1 w2 w3 w4 Others

w1 h 1� h�
P

l l l l

w2 h l 1� h�
P

l l l

w3 1� h�
P

l h l l l

w4 1� h�
P

l l h l l

w5 l h 1� h�
P

l l l

w6 l 1� h�
P

l h l l

w7 l l h 1� h�
P

l l

All possible convex weighting possibilities of corners in W 0
n. Assuming

that the first and second node realize the two largest bounds, b1 and b2, the

weighting scheme w1 realizes the extreme corner.

D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245244
other six possible weighting schemes, subject to weights
w 2W 0

n:
Weighting scheme w2:

b1
� b2
¼ 1� h1 �

X
ja1

lj

 !
ðb2 � b3Þ. (A.2)

For the first factor, note that w3 ¼ 1� h1 �
P

jef1;3glj, as

given in Table A1. Then, ð1� h1 �
P

ja1ljÞ ¼ w3 � l3, and

since w2 2W 0
n, then w3Xl3. For the second factor, by

definition of j ¼ 2 as the node realizing the second largest

value, b2 � b3X0. Hence, it follows that b1
Xb2.

Weighting scheme w3:

b1
� b3
¼ h1 � 1� h2 �

X
jef1;2g

lj

 ! !
ðb1 � b2Þ. (A.3)

For the first factor, h1 � ð1� h2 �
P

jef1;2gljÞ ¼ h1 � w1,
and since w3 2W 0

n, then h1Xw1. For the second factor, by
definition of j ¼ f1; 2g as the nodes realizing the two largest
values, b1 � b2X0. Hence, it follows that b1

Xb3.
Weighting scheme w4:

b1
� b4
¼ h1 � 1� h3 �

X
jef1;3g

lj

 ! !
ðb1 � b2Þ

þ ðh3 � l3Þðb2 � b3Þ. (A.4)

For the first factor, h1 � ð1� h3 �
P

jef1;3gljÞ ¼ h1 � w1,
and since w4 2W 0

n, then h1Xw1. For the third factor,
h3Xl3 by definition. For the second and fourth factors, by
definition of j ¼ f1; 2g as the nodes realizing the two largest
values, b1 � b2X0 and b2 � b3X0. Hence, it follows that
b1
Xb4.
Weighting scheme w5:

b1
� b5
¼ 1� h2 �

X
jef2;3g

lj

 !
� l3

 !
ðb2 � b3Þ

þ ðh1 � l1Þðb1 � b2Þ. (A.5)

For the first factor, ð1� h2 �
P

jef2;3gljÞ � l3Þ ¼ w3 � l3,
and since w5 2W 0

n, then w3Xl3. For the third factor, h1Xl1
by definition. For the second and fourth factors, by
definition of j ¼ f1; 2g as the nodes realizing the two largest
values, b2 � b3X0 and b1 � b2X0. Hence, it follows that
b1
Xb5.
Weighting scheme w6:

b1
� b6
¼ ðh1 � l1Þðb1 � b2Þ þ ðh3 � l3Þðb2 � b3Þ. (A.6)

For the first factor and third factors, h1Xl1 and h3Xl3 by
definition. For the second and fourth factors, by definition
of j ¼ f1; 2g as the nodes realizing the two largest values,
b1 � b2X0 and b2 � b3X0. Hence, it follows that b1

Xb6.
Weighting scheme w7:

b1
� b7
¼ ðh1 � l1Þðb1 � b2Þ þ ðh3 � l3Þðb2 � b3Þ

þ 1� h3 �
X

jef3;4g

lj

 !
� l4

 !
ðb2 � b4Þ. (A.7)

The first four factors correspond to b1
� b6. For the fifth

factor, ð1� h3 �
P

jef3;4gljÞ � l4 ¼ w4 � l4, and since
w7 2W 0

n, then w4Xl4. For the sixth factor, by definition
of j ¼ 2 as the node realizing the second largest value,
b2 � b4X0. Hence, it follows that b1

Xb7.

References

[1] Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point

based animation of elastic, plastic and melting objects. In: Proceed-

ings of eurographics/ACM SIGGRAPH symposium on computer

animation; 2004.

[2] Pauly M, Keiser R, Adams B, Dutré P, Gross M, Guibas LJ.

Meshless animation of fracturing solids. In: Proceedings of ACM

SIGGRAPH; 2005.

[3] Wicke M, Steinemann D, Gross M. Efficient animation of point-

sampled thin shells. In: Proceedings of eurographics; 2005.

[4] Steinemann D, Otaduy MA, Gross M. Fast arbitrary splitting of

deforming objects. In: Proceedings of ACM SIGGRAPH/Euro-

graphics symposium on computer animation; 2006.

[5] Keiser R, Adams B, Gasser D, Bazzi P, Dutre P, Gross M. A unified

lagrangian approach to solid–fluid animation. In: Proceedings of

eurographics symposium on point-based graphics; 2005.

[6] James DL, Pai DK. BD-tree: output-sensitive collision detection for

reduced deformable models. In: Proceedings of ACM SIGGRAPH;

2004.

[7] Teschner M, Heidelberger B, Müller M, Pomeranets D, Gross M.

Optimized spatial hashing for collision detection of deformable

objects. In: Proceedings of VMV; 2003.

[8] Gottschalk S, Lin M, Manocha D. OBB-tree: a hierarchical structure

for rapid interference detection. In: Proceedings of ACM SIG-

GRAPH; 1996. p. 171–80.

[9] Kavan L, Zara J. Fast collision detection for skeletally deformable

models. In: Proceedings of eurographics; 2005.

[10] Kavan L, O’Sullivan C, Zara J. Efficient collision detection for

spherical blend skinning. In: Proceedings of graphite; 2006.

[11] Mendoza C, O’Sullivan C. Interruptible collision detection for

deformable objects. Computers & Graphics 2006;30(2).

[12] Otaduy MA, Germann D, Redon S, Gross M. Adaptive deforma-

tions with fast tight bounds. In: Proceedings of ACM SIGGRAPH/

Eurographics symposium on computer animation; 2007.

[13] Adams B, Keiser R, Pauly M, Guibas LJ, Gross M, Dutre P. Efficient

raytracing of deforming point-sampled surfaces. In: Proceedings of

eurographics; 2005.

[14] Spillmann J, Becker M, Teschner M. Efficient updates of bounding

sphere hierarchies for geometrically deformable models. In: Proceed-

ings of VRIPHYS; 2006.

ARTICLE IN PRESS
D. Steinemann et al. / Computers & Graphics 32 (2008) 235–245 245
[15] Klosowski J, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient

collision detection using bounding volume hierarchies of k-DOPs. IEEE

Transactions on Visualization and Computer Graphics 1998;4(1).

[16] Van den Bergen G. Efficient collision detection of complex deform-

able models using AABB trees. Journal of Graphics Tools 1997;2(4).

[17] Müller M, Heidelberger B, Teschner M, Gross M. Meshless

deformations based on shape matching. In: Proceedings of ACM

SIGGRAPH; 2005.

[18] Müller M, Heidelberger B, Hennix M, Ratcliff J. Position based

dynamics. In: Proceedings of VRIPHYS; 2006.

[19] Rivers A, James DL. FastLSM: fast lattice shape matching for

robust real-time deformation. In: Proceedings of ACM SIGGRAPH;

2007.
[20] Fries TP, Matthies HG. Classification and overview of meshfree

methods. Technical Report, TU Brunswick, Germany; 2004.

[21] Nealen A, Müller M, Keiser R, Boxermann E, Carlson M. Physically

based deformable models in computer graphics (state of the art

report). Eurographics STAR; 2005.

[22] Hubbard PM. Approximating polyhedra with spheres for time-

critical collision detection. ACM Transactions on Graphics 1995;

15(3).

[23] Klug T, Alexa M. Bounding volumes for linearly interpolated shapes.

In: Proceedings of computer graphics international; 2004.

[24] Otaduy MA, Chassot O, Steinemann D, Gross M. Balanced

hierarchies for collision detection between fracturing objects. In:

Proceedings of IEEE virtual reality conference; 2007.

	Tight and efficient surface bounds in meshless animation
	Introduction
	Related work
	Review of meshless animation
	Meshless deformation and surface animation
	Convex combination of transformations

	Construction and update of the BVH
	BVH construction and initialization
	Run-time BVH update

	Efficient refitting of bounding volumes
	Bounding volumes in deformed state
	k-DOP for a deformed vertex
	k-DOP for a set of vertices

	Bounds from limited convex combinations
	Bounds from corners
	Computation of corners

	Efficient evaluation of extreme corners
	Summary of k-DOP refitting

	Results
	Conclusion
	Acknowledgments
	Extreme corner evaluation
	References

