
The ETH Game Programming Laboratory:
A Capstone for Computer Science and Visual Computing

Robert W. Sumner
ETH Zurich

Nils Thuerey
ETH Zurich

Markus Gross
ETH Zurich

ABSTRACT

The Visual Computing bachelors/masters program at ETH
Zurich provides an internationally renowned degree in com-
puter science with a specialization track in computer graph-
ics. A new project-based game development course serves as
a capstone to the program by reinforcing core computer sci-
ence concepts and specialized topics in Visual Computing.
Additionally, students learn design principles and obtain a
better understanding of the interplay between the desires
of game design and the realities of technical implementa-
tion. Finally, students practice crucial “soft skills” such as
team work, effective communication, time management, and
leadership. This article details the course goals and struc-
ture, presents three case studies of student-made games and
the effect of the class on the students, and evaluates the
overall class design. We hope that this document presents a
compelling argument in favor of game development as a cap-
stone to computer science and also provides useful insights
for other academics wishing to incorporate game develop-
ment into the computer science curriculum.

1. INTRODUCTION
The Visual Computing bachelors/masters program at ETH

Zurich, Switzerland’s Federal Institute of Technology, pro-
vides an internationally renowned degree in computer sci-
ence with a specialization in computer graphics. We have
recently designed the ETH Game Programming Laboratory
(ETHGPL) to serve as a capstone for this program. Stu-
dents work in small teams for the entire semester to design
and implement their own video game. The ETHGPL pro-
vides a forum in which the cumulative knowledge from the
entire program can be applied in a project-oriented setting.
In doing so, the class focuses on transfer, the ultimate goal
of learning where learned concepts are transferred to novel
problems. Additionally, the ETHGPL provides a venue for
students to learn design concepts, a rare opportunity at a
technical institute. Finally, we use the ETHGPL to instill
“soft skills,” such as team work, effective communication,
time management, and leadership, that are difficult to in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 978-1-60558-057-9/08/02 ...$5.00.

corporate elsewhere in the technical curriculum, yet crucial
as the students embark on the next phase of their careers.

The ETHGPL has far-reaching benefits. From the stu-
dents’ perspective, it offers a unique opportunity to apply
the technical knowledge they have acquired over the course
of their studies to the exciting problem of game creation.
This experience is of great benefit for nearly every career
path, since large-scale collaborative projects are universally
valued. The course also provides an important service to
ETH. A world-wide trend has seen undergraduate enroll-
ment in computer science drop dramatically in the past few
years [7]. The ETHGPL culminates in a public presentation
of the student-created games that is widely advertised and
highly visible. Due to the huge appeal of video games to
today’s youth, this presentation provides an ideal opportu-
nity to attract new students to computer science. Finally,
the ETHGPL, together with other game courses taught at
universities across the world, has the potential to make a
profound impact on society by fostering a new “science of
games” in which the popularity of gaming is redirected to-
ward serious topics such as education, training, health, pub-
lic policy, and strategic communications [8]. The first step
in this new science is providing education programs that
not only teach the technical aspects of computer science but
also foster the creativity that engenders novel game designs,
game genres, and next-generation technologies.

This article discusses our experience creating the ETHGPL
and teaching it for the first time. We summarize the Visual
Computing bachelors/masters program and detail the goals
and design of the new capstone course. To ground the dis-
cussion in concrete examples, we present three case studies
of student-made games and describe the effect of the game
class on the students. Finally, we evaluate the overall class
design and many of our general preconceptions about an aca-
demic game course. We hope that this document presents a
compelling argument in favor of game development as a cap-
stone to computer science and also provides useful insights
for other academics wishing to incorporate game develop-
ment into the CS curriculum.

2. VISUAL COMPUTING
The computer science program at ETH is a highly technical-

and engineering-oriented educational track comprised of a 3
year bachelors followed by a 1.5 year masters. The first two
years of the bachelors education cover the foundations of
computer science including discrete and continuous mathe-
matics, theory, logic, programming, algorithms, and other
topics. Students begin to specialize during the third year,
and formally choose a specialization track when they enter
the masters program. The possible options are visual com-

puting, theory, computational science, computer systems,
distributed systems, information systems, and security.

The specialization track in Visual Computing teaches stu-
dents in-depth knowledge of computer graphics, computer
vision, visual information processing, and machine learn-
ing. Each student, mentored by a faculty member, composes
her or his own individualized curriculum from a broad com-
pendium of specialized courses. Many of our students pick
the overall field of computer graphics and image generation
and select specific courses such as computer graphics, geo-
metric modeling, physically-based simulation, scientific vi-
sualization, computer vision, and machine learning. Toward
the end of the masters program, such students have a strong
technical profile in visual computing combined with a solid
foundation of object-oriented programming, software engi-
neering, theory, computational algorithms, and computer
systems. However, collaborative work on a major project
allowing students to apply a broad spectrum of knowledge
and expertise has not been offered as part of the curriculum.
The master thesis is a highly specialized, individual project
and does not serve this purpose either.

This conspicuous lack of a central educational component
created the need to design a novel and attractive class format
for collaborative project work. To this end, and motivated
by many of our students, we developed the ETHGPL as a
capstone to the Visual Computing program.

3. ETH GAME PROGRAMMING LAB
In this section, we describe the goals of the ETH Game

Programming Laboratory and the course design that we de-
veloped to meet these goals.

3.1 Course Goals
The highest form of learning is transfer: the flexible adap-

tation of learned concepts to new situations [2]. The pri-
mary goal of the ETHGPL is to provide a capstone to the
computer science curriculum and Visual Computing special-
ization in which the cumulative knowledge obtained during
the entire program can be transferred to the task of creat-
ing a video game. The course should serve as a venue for
the reinforcement of both core computer science concepts
such as software engineering, object-oriented programming,
data structures, and algorithms as well specialized topics in
Visual Computing, including imaging, surface representa-
tions, geometric modeling, physically-based simulation, tex-
ture mapping, and many others.

We chose game creation as the capstone course because
the topic ties in closely with the overall theme of Visual
Computing while allowing us to employ several learning para-
digms that have been identified as especially effective by
studies in learning science [5]. In particular, game creation
provides an ideal setting for:

• Experiential learning. The first-hand experience of
building a game ensures that the topics involved are in-
ternalized.

• Inquiry-based learning. Programming a game involves
a great deal of experimentation in the design of shaders,
levels, character behavior, physical simulations, lighting
effects, sound, among many others. This inquiry-based
exploration in which the student constantly wonders what
happens when a change is made leads to deeper under-
standing.

• Team learning. Students work together in teams to
develop their games. Studies on cooperative learning [4]
indicate that teamwork leads to enhanced learning.

• Goal setting. The planning phase of game creation re-
quires a detailed time line with many intermediate goals.
Setting these goals in the first place as well as replanning
in case goals are not met requires careful reasoning and
leads to increased understanding.

Additionally, the ETHGPL allows us to impart several
important skills that are neither addressed in other courses
nor easily incorporated into a traditional lecture. ETH is
a technical institute and, consequentially, the student ex-
perience is somewhat one-sided. The game class provides
an opportunity to make this experience more well-rounded
since game design is equally as important as technical ex-
ecution. Students participate fully in both aspects. Thus,
they learn important design principles and obtain a better
understanding of the interplay between the desires of game
design and the realities of technical implementation. Fur-
thermore, students practice team work, time management,
effective communication, leadership, giving and accepting
criticism, and many other “soft skills” that are essential for
success in the next phase of their lives [9].

3.2 Course Design
We designed the ETHGPL to meet the goals outlined in

the previous section. The class is primarily project based.
Students work together in teams of two or three to design
and implement a new game during the 14 week semester.
Lectures focus on aspects of game development that students
have never learned, such as style and design principles, game
prototyping, and understanding fun, and follow two promi-
nent textbooks on game design and development [3, 6].

3.2.1 XNA & Xbox 360

One significant design decision we made was to use Mi-
crosoft XNA [10] with games deployed on the Xbox 360
console. Although this choice restricts development to C#
with the XNA libraries and Microsoft’s development tools,
it greatly advances our goals. The first justification for this
choice is very practical. XNA removes many of the low-level
hurdles that would otherwise overburden the game develop-
ment process. As a consequence, students concentrate their
time on higher-level implementation tasks that better rein-
force the core topics of the Visual Computing major.

The second reason for selecting XNA and the Xbox 360
deals with the students’ perception of the class. The time
commitment for this course is significant and it is crucial
that students are motivated to work very hard toward the
realization of their game. We believe that developing for a
console increases motivation by lending a more professional
feel to the class and providing a tangible connection to com-
mercial game development, which is largely dominated by
console games. The course gives game players a chance to
switch roles and become a game producer by creating their
own console game; the experience is not as authentic if devel-
opment is restricted to the PC. The extra excitement engen-
dered by the real-world hardware increases the time on task,
makes the game development more successful, and enhances
learning. Although we have no preference for one console
over another, the Xbox 360 is currently the only practical
choice since no high-level development tools are available to
educational institutions for any other model.

Figure 1: Screen shots of the three game projects discussed as case studies. To the left, the game “Battle

Balls” is shown, in the middle “Titor’s Equilibrium,” and to the right “SPHERES.”

3.2.2 Project structure

In order to leverage the past experience of others, we used
the project structure from the game course offered by Tiffany
Barnes at UNC Charlotte [1] as a starting point for our own
project structure, since Prof. Barnes’s course has already
benefited from several years of successful instruction. Our
project structure consists of a design and planning phase
and a development phase.

Design and planning phase.
When the class began, students immediately started work-

ing on the design and planning phase of the course project.
Students were given roughly four weeks to develop a for-
mal game proposal detailing their game design and develop-
ment schedule, along with mock-ups or prototypes to con-
vey their game idea. During this phase, we gave lectures
targeting game design concepts and encouraged novel game
ideas and non-traditional genres. In this phase, we imme-
diately addressed several of our goals. Each team created a
detailed development schedule that reinforced software en-
gineering skills, one of the most important aspects of com-
puter science. Students were required to incorporate some
advanced graphics topic such as physical simulation or non-
photorealistic rendering into their game, which ensured that
ideas from the Visual Computing specialization track would
be reinforced. Finally, students took a brief hiatus from
their technical education to focus on creativity and design.
Although many game development courses center around in-
terdisciplinary groups of pure engineers and pure designers,
we feel there is also great benefit in allowing the engineers to
test their design skills in order to gain an understanding and
appreciation of the more artistic side of game development.

Development phase.
The development phase consumed the remaining 10 weeks

of the semester. Progress was tracked with an interim re-
port due at week 9, an “alpha release” due at week 12, a
playtesting report due at week 13, and a public presentation
and written report due at week 14. In this phase, students
utilized concepts learned throughout their computer science
education in order to develop their game. Additionally, their
software engineering skills were challenged as they tried to
follow the development schedule created in the design and
planning phase. Team organization, cooperation, commu-
nication, presentation, and other aspects of the cooperative
development effort enforced soft skills necessary for success
in most real-world situations.

4. CASE STUDIES
We discuss three exemplary ETHGPL projects as case

studies to illustrate the lecture’s capstone nature (Figure 1).
Each game was awarded a prize at the public showcase at
the end of the course by the audience and a jury of experts.
Videos from all games can be found in the teaching sec-
tion of the ETH Computer Graphics Laboratory’s web site
(http://graphics.ethz.ch).

One of the highlights of the lecture is the multi-player
party game “Battle Balls.” The game’s setting is a fight of
alien vehicles in the blocks of a giant city. The matches take
place on small hovering city platforms. The last player to
stay on the platform wins. The game has a polished and
complete look and feel, well balanced power-ups, an intu-
itive game-play, and a variety of different levels. On the
technology side, it features collision detection, physical sim-
ulation for crumbling buildings, and advanced shaders and
particle systems for smoke, fire, and glowing effects. This
team was the only one to include a team member, Matthias
Bühlmann, who is both an artist and a computer scientist.
The advantage is obvious from the game’s attractive visual
design.

The gameplay in “Titor’s Equilibrium” is based on two
player battles with physical interactions of rigid bodies us-
ing, among others, forces to push around smaller objects
in the level, activate defensive shields, or even slow down
and reverse time. The fights are based on the classic “Rock,
Paper, Scissors” game, with each player choosing a “host ob-
ject”that bestows powers having both advantages and weak-
nesses depending on the other player’s choice. Although
this game is harder to learn than the others, it exhibits the
most novel design and gameplay. In terms of technical con-
tributions, it features a full rigid-body simulation engine.
The students were able to transfer the knowledge gained
in the physically-based animation lecture and model their
gameplay around the capabilities of the rigid body solver.
Furthermore, this group remarked in their final report on
the success of the “soft skills” of communication and knowl-
edge transfer within their team, with other teams, and with
the course organizers. Indeed, Gioacchino Noris from the
“Titor’s Equilibrium” team helped create a ETHGPL Wiki
page with collaborative tips and tricks from all teams. Previ-
ous lectures, he says, did not require a comparable amount of
team work. He also confirms that the lecture provides practi-
cal use of the algorithms learned in other classes. According
to him, it is hard to really understand complex algorithms
unless they are implemented and used.

1) I learned skills for game development in other lectures

2) I learned skills for game development in my spare time

3) I’m more likely to learn CS skills in this class than in others

4) My group will reach all goals planned for our game project

5) The XNA framework enhances the experience of creating a game

6) C# is an appropriate language for creating a video game

7) Making a console game is more rewarding than making one for a PC

8) I’m more interested in playing games than in creating them

9) I plan to pursue a career creating video games

10) I’m more interested in design aspects than in the technical aspects

11) Creating a game is more fun than work

Agreement Before Agreement After

Figure 2: Our survey to evaluate the design of the ETHGPL. Light blue indicates the averaged students’

view at the beginning of the course, while dark blue shows the students’ agreement at the end of the course.

“SPHERES” is a two-player capture-the-flag game in a
roller coaster-like 3D arena. Gameplay is fast-paced and
competitive as players take advantage of short-cuts and power-
ups that increase the game’s strategical variety. The team
members implemented a game engine for rendering the com-
plex level complete with soft shadows, an impulse-driven
physics model, and collision detection via a BSP tree. Each
of these components was taught elsewhere within the Vi-
sual Computing program. In terms of software engineering,
Thomas Oskam states that their group was forced to orga-
nize development by assigning tasks according to each team
member’s knowledge. This work distribution resulted in the
design of clear interfaces and areas of responsibility within
the collaborative development. The “SPHERES” group also
praised the console option, stating in their final report, “Ab-
solutely the most exciting thing about this course was the
possibility to create a game for the Xbox.”

Additionally, several students told us that it was excellent
to be able to rely on the console’s controller. With its ana-
log sticks and buttons it offered interesting possibilities for
player interactions that are not readily available on a stan-
dard PC. Students also commented that frequent meetings
and intermediate presentations helped to motivate them by
seeing how the projects of the other groups advanced over
time and which new effects another group was able to in-
clude since the last version.

5. EVALUATION
In this section, we discuss the results of our lecture survey,

and the students’ feedback from a debriefing session.

5.1 Course Design Survey
In order to evaluate and validate our course design, we

performed an anonymous survey in which the 19 students
were were asked to anonymously indicate their agreement
with 16 separate statements on a scale from one to five.
This was done at the beginning of the lecture, and once
more after the students had officially completed their game
projects. Although space limitations prevent us from dis-
cussing all statements, 11 of them are included in Figure 2,
together with the averaged responses. The 11 statements
can be separated into three groups: the first targets learn-
ing aspects, the second one deals with the console approach
using XNA, and the third group evaluates the role of fun and

personal involvement. The remaining five statements which
are omitted here deal with gender issues and the interplay
between games and social interaction.

The first two statements, which deal with learned skills
for game development, indicate that the students feel well
prepared for their game projects by the lectures they have
taken and their spare time activities. There is, however, a
slight tendency of the students to learn the necessary skills
for game development outside of the normal lectures. Both
statements are consistent before and after the lecture. On
the other hand, the question of whether computer science
skills are better learned in a gaming project than in a nor-
mal lecture has a significant gap between the pre- and post-
lecture evaluation. On average, the students are less con-
fident in learning these skills in the game laboratory. This
result fits with our overall design of the game lab as a forum
for reinforcing computer science concepts learned through-
out the bachelors/masters program.

The second group of statements, dealing with the XNA
framework, C#, and the console deployment, interestingly
shows a consistent trend toward a more negative evaluation
at the end of the lecture. According to discussions with
the students, several sources of difficulties contribute to this
disparity. First of all, many students realized that console
development has a high “coolness” factor, but also imposes
stricter limitations than PC development. The students,
thus, might have originally had an idealized view of the con-
sole development process. Another factor was the status of
the XNA framework. During the course of the semester,
several issues with file formats, performance, lack of docu-
mentation, and the absence of introductory books appeared.
Many of these issues are likely growing pains that will be
resolved with future XNA releases. Moreover, the C# com-
piler caused unexpected slowdowns for some numerically in-
tensive procedures. This speed problem probably results
from limited optimization capabilities compared to current
C and C++ compilers. Considering the active development
of both C# and XNA, we hope most of these issues will have
been alleviated when the ETHGPL is taught again in 2008.
Overall, the students agreed that the quality of the game
projects would not have been possible without the underly-
ing features of the XNA framework.

The third block of statements targets the fun aspect and
personal involvement of the students with game develop-

ment. While they, in general, show interest both in playing
and developing games, some students seem to be less eager
to enter the game industry after the lecture. There is, how-
ever, still a notably positive interest in game development
as indicated by the post lecture survey. Additionally, more
students are interested in the technical aspects of computer
games after the course. And, luckily, there is even a more
positive trend after the lecture according to the statement
that computer game development is more fun than work.
This result is especially good to hear, considering the large
amount of work most of the teams invested during the course
of their project.

In a second part of our course evaluation we asked the
students which skills they considered to be most important
for game creation. They could choose, among others, from
topics such as linear algebra, programming, hardware knowl-
edge, and sound creation. The three most important skills
according to the students are 1) programming, 2) computer
graphics and 3) three-dimensional modeling. Although this
order did not change from the pre- to the post-evaluation,
the “programming” skill votes increased by more than 50%
after the lecture. This change indicates that the students
underestimated the programming skills necessary to develop
a complete game using a sophisticated new programming
framework such as XNA.

5.2 Debriefing
During the final course lecture, we conducted a “debrief-

ing” session in which we asked the students about their ex-
perience taking the game class, the biggest challenges and
technical difficulties they encountered, and any suggestions
for improvement. Although space limitations prevent a de-
tailed discussion of all feedback, we highlight two promi-
nent comments here as an aide to others developing similar
courses.

Undoubtedly, software engineering presented the most sig-
nificant challenge. For all students, this project was the
largest they had ever attempted and, for many, it was their
first significant team effort. With the project structure (Sec-
tion 3.2.2), we enforced basic software engineering practices.
Students admitted that this requisite planning was annoy-
ing at first, but payed off in the end. Many even suggested
placing more emphasis on good software engineering as some
teams“wasted” time implementing features that never made
it into the game. All teams noted that they drastically
underestimated the time and effort required for individual
game components, with some taking as much as four times
longer than anticipated. In response to this feedback, in fu-
ture instances of this course we will help students be more
realistic about what can be accomplished and monitor their
progress more closely.

From a technical standpoint, all groups highlighted the
XNA framework as the most significant source of difficulty.
While students noted that its overall structure is intuitive,
the technical details present many problems. There are
dozens of plausible ways to approach every individual aspect
of game creation, but only a few are viable solutions given
other software and hardware dependencies. Finding the ap-
propriate solution for each task was quite time consuming
for the students, with hours spent searching the web and
reading forum posts. Students requested more examples of
large-scale, working games as well as in-depth technical tu-
torials about XNA. An obvious conclusion drawn from this
feedback is the necessity of an assistant with a deep and
solid understanding of the technical details of XNA. When

the course is taught again, we plan to hire students from
the previous instantiation as expert helpers to provide the
needed technical assistance.

6. CONCLUSION
Our primary goal with the ETH Game Programming Lab-

oratory was pedagogical: reinforce core computer science
concepts as well as specialized topics in Visual Computing,
incorporate design principles into an otherwise all-technical
major, and teach “soft skills” that are crucial yet often over-
looked. In this article, we have presented an argument for
game design as the ideal venue for such an effort. We de-
tailed our course design, described our experience teaching
it for the first time, and evaluated the results. We feel the
course was rewarding both for the students who took it as
well as for the course organizers. The public presentation
of the student-created games filled one of our largest audi-
toriums and received very positive feedback. We hope the
ETHGPL public presentation will become an ETH institu-
tion and help to improve the image of computer science,
increasing enrollment and leading to more highly qualified
computer science graduates. Perhaps the most convincing
evidence of the game class’s success comes from a comment
written by one group in their final report: “This course really
gave us one of the best experiences in our academic careers.
What could be more fun than learning through games?”

7. ACKNOWLEDGEMENTS
We wish to thank Simon Heinzle for his help as the course

assistant, and we are grateful to Marc-Alain Steinemann
from Microsoft Switzerland, Lars Lipper, Thomas Stowasser,
and Dirk Primbs from Microsoft Germany, and Dave Mitchell
from Microsoft in Seattle for sponsoring some Xboxes and
providing XNA Creators Club accounts for the class.

8. REFERENCES
[1] T. Barnes. Computer game design and development.

UNC Charlotte Course ITCS 4230/5230, Fall 2006.
http://www.cs.uncc.edu/∼tbarnes2/GameDesign/.

[2] J. D. Barnsford, A. L. Brown, and R. R. Cocking,
editors. How people learn: Brain, mind, experience,
and school. National Academy Press, 2000.

[3] T. Fullerton, C. Swain, and S. Hoffman. Game Design
Workshop: Designing, Prototyping, and Playtesting
Games. CMP Books, 2004.

[4] D. W. Johnson, G. Maruyama, R. Johnson, D. Nelson,
and L. Skon. Effects of cooperative, competitive, and
individualistic goal structures on achievement: A
meta-analysis. Psych. Bulletin, 89(1):47–62, 1981.

[5] M. J. Mayo. Games for science and engineering
education. Commun. ACM, 50(7):30–35, 2007.

[6] S. Rabin. Introduction To Game Development. Charles
River Media, Inc., Rockland, MA, USA, 2005.

[7] J. Vegso. Continued drop in CS bachelor’s degree
production and enrollments as the number of new
majors stabilizes. Comp. Research News, 19(2), 2007.

[8] M. Zyda. Creating a science of games. Commun.
ACM, 50(7):26–29, 2007.

[9] Many graduates ‘lack soft skills’. BBC News Article,
January 2007. http://news.bbc.co.uk/go/pr/fr/-
/1/hi/education/6311161.stm.

[10] XNA developer center. Website accessed 9 October
2007. http://msdn.microsoft.com/xna.

