Interactive Volume Rendering of Functional Representations in
Quantum Chemistry

Yun Jang, Member, IEEE, and Ugo Varetto

Abstract— Simulation and computation in chemistry studies have been improved as computational power has increased over
decades. Many types of chemistry simulation results are available, from atomic level bonding to volumetric representations of electron
density. However, tools for the visualization of the results from quantum chemistry computations are still limited to showing atomic
bonds and isosurfaces or isocontours corresponding to certain isovalues. In this work, we study the volumetric representations of the
results from quantum chemistry computations, and evaluate and visualize the representations directly on the GPU without resampling
the result in grid structures. Our visualization tool handles the direct evaluation of the approximated wavefunctions described as a
combination of Gaussian-like primitive basis functions. For visualizations, we use a slice based volume rendering technique with a 2D
transfer function, volume clipping, and illustrative rendering in order to reveal and enhance the quantum chemistry structure. Since
there is no need of resampling the volume from the functional representations, two issues, data transfer and resampling resolution,
can be ignored, therefore, it is possible to interactively explore large amount of different information in the computation results.

Index Terms—Quantum Chemistry, GTO, Volume Rendering, GPU

1 INTRODUCTION

Quantum chemistry applies quantum mechanics and field theory con-
cepts to give a complete and detailed description of the electronic
structure of a chemical system. Detailed electronic structure infor-
mation is key in understanding chemical reactions and, in general, the
physical properties of materials. Applications of quantum chemistry
include predicting or confirming radiation spectra, studying chemical
reaction to understand how two molecules (e.g., possible drug with
enzymes) can interact, molecular design, and computational materials
science. Quantum chemistry is based on the Schrodinger equation in
which electrons are considered as wave-like particles whose behavior
is mathematically represented by a set of wavefunctions obtained by
solving the Schrodinger equation that defines the state of a physical
system at atomic scale. The time-independent Schrédinger equation
for a one particle system is defined as

K2
(Snzmvz +V) ¥(F) = Ey(F) ¢

where £ is Planck’s constant, m is the mass of the particle, V is the
potential energy, E is the total energy and ¥ represents a position in
3-D space. The quantity |¥(F)|2, where W(E) is a solution to Equation
1, gives the probability of finding the particle at position ¥. Analyti-
cal solutions to Equation 1 are only available for very simple systems.
Quantum chemistry computations focus on finding approximated so-
lutions to the Schrodinger equation for multi-atom systems. Solutions
to Equation 1 are used to define properties, represented as scalar fields,
such as electron density, electrostatic potential and molecular orbitals.

To properly analyze the output of quantum chemistry computations,
3D visualizations of atomic orbitals (AOs), molecular orbitals (MOs),
electron and spin density, and electrostatic potential are required. Vi-
sualization tools currently available in programs like Molden [26]
or Molekel [20] display scalar fields by first sampling the solutions,
which are functional representations, on 3D regular grids and then
building isosurfaces using triangulations for specific isovalues. The
resampling process prior to the volume rendering of molecular data
raises the following challenges: data storage, data transfer, and eval-

e Yun Jang is with ETH Ziirich, Switzerland, E-mail: jangy@inf.ethz.ch.
o Ugo Varetto is with Swiss National Supercomputing Center (CSCS),
E-mail: uvaretto@cscs.ch.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tveg @computer.org .

uation speed of the functional representations. Since there are multi-
ple atomic and molecular orbitals, it is almost impossible to interac-
tively render all combinations of these atomic and molecular orbitals
for atomic and molecular structures. For example, the C, Hs molecule
is one of our simplest Gaussian type orbital (GTO) data and it has 40
different atomic orbitals and 38 different molecular orbitals. Exi)loring
all different combinations is a daunting task because of the 240 x 38
resampling processes required.

In this work, we present a novel method to perform interactive eval-
uation and volumetric rendering of atomic and molecular orbitals di-
rectly on graphics hardwares without resampling. Since the approx-
imate solutions to the Schrodinger equation are sums of basis func-
tions, we evaluate the functional representations on the fly in a frag-
ment program by storing all parameters and coefficients in textures.
We apply general volume rendering, volumetric isosurface rendering,
illustrative rendering, and volume clipping techniques in order to visu-
alize the atomic and molecular structures. Figure 1 shows our system
overview. We extend conventional slice-based volume rendering [32].
Our contributions from this work are presented as follows.

e Direct evaluation of the functional representation for molecular
data on graphics hardware — computing accurate gradients and
avoiding data transfers from CPU to GPU

e Interactive volume rendering of molecular data without resam-
pling on grid structures — discarding an expensive intermediate
process for volume rendering

o [llustrative and volume clipping rendering to show nested volu-
metric atomic and molecular structures — multiple isosurfaces

In this work, we use two types of basis functions. One is pure Gaussian
and the other is Gaussian type orbital (GTO). Gaussian type orbital
has been used widely because of its easy shape change according to
the orbital, whereas, pure Gaussian is newly proposed because of its
simplicity in quantum chemistry computation. However, the proposed
technique can further be extended to perform interactive evaluation
and rendering of any dataset functionally represented.

We first review previous work in Section 2 and describe data from
quantum chemistry computation in Section 3. We then introduce de-
tails of our interactive evaluation and visualization of the molecular
data and present results produced by our system in Section 4 and 5.
Finally conclusion and future directions are described in Section 6.

2 PREVIOUS WORK

In the molecular research area, there are many visualization studies
from drawing simple atoms to rendering volumetric representations.

Input Data

(Basis Function) Volume Renderer

N

I:> ‘ Textures |I:>

Outputs |

%%

Volume Rendering

Texture_.z it C £/ ;

Texture'1
(atom center,
of atomic orbitals

Texture‘z ﬂ

(b, a, orbital,type)

Texture 1
(center, b)

Slice based
Volume Rendering

Isosurface Rendering

o Illustrative Rendering

GTOs

Texture 3
(molecularorbital
coefficient)

—
Clip Plane Rendering

Fig. 1. Overview of our interactive visualization system. Two types of
data are stored in textures and evaluated and visualized on our volume
rendering. Different rendering results, such as volume rendering, iso-
surface rendering, illustrative rendering, and volume clipping rendering,
are produced using our system.

One approach to show molecular surfaces is to use triangular meshes.
Cheng and Shi [4] propose the Restricted Delaunay Triangulation to
extract high quality smooth molecular skin surfaces. Another molecu-
lar surface representation is studied by Cipriano and Gleicher [5] and
they show the abstracted molecular surfaces to provide the boundary
of a molecule and the physical and chemical properties at the boundary
by extracting the surface abstract from input triangular meshes. Lampe
et al. [14] present protein dynamics by a two-level rendering approach.
They generate geometry residues on the fly to show interactive protein
dynamics with balls and sticks for atoms and bonds. When there are
many atoms in the visualization, it is difficult to see the overall molec-
ular structure with direct illumination. To enhance visual perception,
Tarini et al. [30] present ambient occlusion and edge cueing.

Volume visualization is also applied to molecular data for volumet-
ric structures. Hu et al. [10] present direct volume rendering of protein
data and they study an improved transfer function to show various data
ranges in the data. In their work, they resample scalar data to 3D reg-
ular grids. Lattice-based volume visualization is presented by Qiao et
al. [22]. They store all lattice information from quantum dot simula-
tions and visualize electron orbitals in a volume. Their work is based
on the sampled lattices which is already provided from the compu-
tation, which is a discrete form of data, whereas our approach is to
handle the continuous data form. Network based visualization of nan-
otechnology applications is studied in [23] and electron particles are
visualized with volume rendering of electron density volume.

Several researchers present physical and chemical properties of
molecular data using visualizations. Lee and Varshney [15] represent
thermal vibrations and uncertainty on the molecular surfaces and visu-
alize the fuzzy molecular surfaces to provide more informative display
for a better understanding of protein structure and function. Mehta et
al. [19] detect anomalous structures in lattice-based molecular sim-
ulation data on regular grid and show and verify the detection with
visualization. Similar research is presented by Mehta and Jankun-
Kelly [18] on unstructured models of nematic liquid crystals. Another
study on cluster detection of molecular dynamics is presented by Grot-
tel et al. [8] with visual verification and analysis. Schmidt-Ehrenberg
et al. [27] present molecular conformations by visualizing regular grid
molecular data.

In order to emphasize the molecular structures, chemists use dif-
ferent primitives, such as balls and sticks, helices and ribbons. Liu et
al. [16] present interactive molecule construction on GPU. They recon-
struct atoms with spheres interactively with GPU acceleration for the
educational purpose. Bajaj et al. [2] study the primitives reconstructed
on programmable graphics units by 3D image based rendering. Re-
cently, Stone et al. [28] propose a fast way to resample results of quan-
tum chemistry computation using GPUs and multi-core CPUs. This
work is motivated by heavy computation for visualizations of results

Table 1. Polynomial functions (f;) used in Equation 3.

Basis Function | Orbital Type | f;

Gaussian | all | 1
K 1
Px X
Py y
Pz 4
GTO o 2/V3
dyy Y /V3
d 2/V3
dyy xy
dy; Xz
dyz ¥z

from quantum chemistry computations. They use graphics hardware
to resample the results on regular grids and visualize the resampled
volumetric data. The large speedup is achieved compared to differ-
ent number of CPUs cores and different GPUs. Ufimtsev and Mar-
tines [31] use a similar approach using GPUs to evaluate the results
without rendering capability, whereas our approach combines both the
evaluation and the rendering.

Volume rendering is widely used and the techniques vary accord-
ing to input grid structures. Jang et al. [11, 12], however, present re-
construction of volumetric functional representations using graphics
hardware without resampling on grid structures. Ebert et al. [7] show
procedural textures which are continuous and can be evaluated eas-
ily in a volume. Since the quantum chemistry computations generate
functional representations of atomic and molecular orbitals, their work
motivates our volumetric visualizations of molecular data. Volume il-
lustration is another technique to enhance the visual understanding of
volumetric data and it shows enhanced understanding of medical and
flow data [6, 29].

3 DATA IN QUANTUM CHEMISTRY

Most quantum chemistry programs find an approximated solution to
the Schrodinger equation then generate data containing a description
of the electron structure of the system under analysis in terms of coef-
ficients to be applied to a set of basis functions as the following.

o(xy2)=afe " (@)
where a and b are real values and f;(x,y,z) is a polynomial func-
tion. r is the distance between the center of basis function and (x,y,z).
fi(x,y,z) varies depending on orbital types and computation methods.
Based on the basis function ¢(x,y,z), atomic and molecular orbitals
are reconstructed as described in the following sections.

3.1 Atomic orbitals

An atomic orbital is a mathematical function that describes the behav-
ior of an electron in an atom. This function can be used to calculate
the probability of finding any electron of an atom in a region of space
surrounding the atom’s nucleus. The term may also refer to the region
of 3D space where the electron is most likely to be.

Each atomic orbital is approximated with a sum of basis functions
of the form described in Equation 2 as the following.

M M ,
Z(X7Y7Z) = Z (Pi(x,y,Z) = Zaif,(x,%Z) e biri 3)
i=1 i=1

where M is the number of basis functions used to define an orbital
and f;(x,y,z) is a polynomial function defined according to the orbital
types (s, sp, p, d, f). The polynomial functions (f;) for most common
orbitals, s, p, and d are summarized in Table 1.

3.2 Molecular orbitals

Molecular orbitals are defined as mathematical functions which do not
represent any physical quantity; they are very useful in the qualitative

description of bonding and in studying chemical reactions. The molec-
ular orbital is represented with a linear combination of atomic orbitals
as the following.

N
v(xy,2) =Y, gixj(xy2) @
=1

where g; is a real value (molecular orbital coefficient) and y;(x,y,2)
is an atomic orbital introduced in Equation 3. N is the number of the
atomic orbitals.

3.3 Data Structure

As mentioned in Section 1, we use two different basis functions in this
work. In the case of Gaussian basis functions, data are stored as sets of
center (x,y,z), exponent (b), and coefficient (a). Since the Gaussian
basis function has one polynomial function shown in Table 1 it is not
possible to represent different types of atomic orbitals with one com-
mon center of a basis function for different atomic orbitals. Therefore,
each Gaussian has its own center. Note that there is no molecular or-
bital coefficient in the Gaussian data format. On the other hand, data
represented with Gaussian type orbitals (GTOs) has common centers
only at the atom centers since the orbital types can be represented by
the polynomial functions shown in Table 1. The other parameters (b’s
and a’s) and orbital types are stored afterward followed by molecular
orbital coefficients (g’s). The number of molecular orbital coefficients
corresponds to the number of atomic orbitals. For example, let us as-
sume that there are 2 s-orbitals, 3 p-orbitals, and 2 d-orbitals. The
total number of atomic orbitals (the number of molecular orbital coef-
ficients) is 2 X 1(5) +3 x 3(,) +2 X 6(4) = 23 since there are 3 orbitals
in the p-orbital and 6 orbitals in the d-orbital.

3.4 Data Preprocessing

The coefficients @; and b; of atomic orbitals, together with orbital
types and the coefficients g; of the molecular orbitals are read from
the output of popular quantum chemistry packages such as Gaussian
and GAMESS, and used to reconstruct the molecular orbitals functions
as described in Equation 4. Coefficients are properly normalized to
ensure that the probability of finding each electron in the system in the
entire 3D space is always equal to 1.

We also find the bond structures among atoms when the data is read
and they are sent to the GPU to evaluate ball and sticks for atoms and
bonds. Since it is still difficult to find the solution of the Schrodinger
equation for molecules with many atoms, we are generally dealing
with small number of atoms. Therefore, we can afford to compute dis-
tances for all pairs of atoms in a 2D square array on the CPU and com-
pare the distance with the covalent radius [1]. If the distance between
two atoms is less than the covalent radius, there is a bond between
them.

4 INTERACTIVE VISUALIZATION OF MOLECULAR DATA

As described in Section 3, the molecular data in quantum chemistry is
modeled as a sum of basis functions, such as Gaussians and Gaussian
type orbitals (GTOs). The molecular data file contains sequences of
basis function parameters including centers, coefficients, exponents,
etc.. Some basis functions, such as GTOs, imply different recon-
struction equations depending on the orbital types. The reconstruction
(resampling) of data values in a certain volume would require time-
consuming computations proportional to the selected grid resolutions
and the visualization of the reconstructed volume would incur high
computational preprocessing with conventional direct volume render-
ing techniques. Seeing the details of molecular structures requires
many combinations of orbitals, which makes it impossible to precom-
pute and store the resampled volumes.

Avoiding completely this resampling approach used for most of
molecular visualization research, we reconstruct the volume directly
on GPUs by storing the basis function parameters in textures. With
our approach, it is possible to show the volumetric molecular struc-
tures without transferring massive volumetric data.

| Gaussians (Atomic Orbitals)

S2 -“ P2
X3 | X4 Xg | Xg [X10{X11
Y3|Ya Ys|Ys [Y10|Y11
23|24 Zg | Z9 |Z10|Z11
b;| b, bg | by [byg|by

Bl [o. [oefeloe] . [ool Baledfealecd

| GTOs (Atomic & Molecular Orbitals) |

[vTefal~] [o]e]a]~]

Atom1, |Atom2,
Atom1,|Atom2
Atom1,|Atom2,

[eTs]aT~]

Atom1,|Atom2,

s: |[pd

by

[cl=T-]

|v|ofa]~]lo]e]al-]

Fig. 2. The parameters of basis functions are packed into 2 or 3 textures.
The top image shows an example of texture layouts for 16 Gaussian
basis function with 5 atomic orbitals in 2 textures. The bottom image
presents our texture packing of GTOs into 3 textures. In the example,
there are 2 atoms, 9 atomic orbital types, 36 atomic orbitals, and 2 sets
of the molecular orbital coefficients.

4.1 Volume Rendering on GPU

Volume rendering in visualization is a common technique and there
are many approaches depending on underlying grid structures. In this
molecular visualization, the data does not lie on a specific grid struc-
ture. We, therefore, chose the slice-based volume rendering technique,
and we evaluate fragments on each slice in a fragment program. The
slices are rendered from back to front, so that the color and opacity
are properly displayed. The slices are generated by computing in-
tersections between a bounding box and planes in a vertex program
proposed in [24]. The number of slices can be adjusted by our user
interface. Using this volume rendering base, a 2D transfer function is
used to explore the interesting data values in the volume.

4.2 Texture Layouts For Molecular Data

Currently we use two different types of molecular data from quantum
chemistry computations. One is formed with all Gaussians and the
other is formed with Gaussian type orbitals (GTOs). The Gaussian
basis functions have centers, exponents, and coefficients of Gaussians
as parameters. On the other hand, GTOs have centers of atoms, expo-
nents and coefficients of atomic orbitals, and coefficients of molecular
orbitals. In this work, we focus on two different types of orbitals,
namely atomic and molecular orbitals. For the atomic orbitals, only
basis function parameters are needed for the reconstruction, whereas
the molecular orbitals require one additional parameter, which is the
molecular orbital coefficient.

We store all these basis function parameters and corresponding co-
efficients in 2D textures and fetch the texture values in a fragment
program to evaluate data values and gradients of the functional repre-
sentations. In order to evaluate the functional representation efficiently
in a fragment program, we encode all parameters and coefficients as

for(i = 0; i < NumOfOrbitalTypes; i++){
if (ithOrbitalDraw){

for(j = ithOrbitalStart;
// for x,y,z, and exponent

j < ithOrbitalEnd; j++){

texValuel = texRECT (Texturel, texpos(3j));
// for coefficient
texValue2 = texRECT (Texture2, texpos(3j));

r = inpos.xyz - texValuel.xyz;
// Data value
f = texValue2.w »*

exp((-1.0) % texValuel.w x dot(r, r));
// Gradient
df = (-2.0) * texValuel.w * f % r;
val += float4(df, f);
133

Fig. 3. Main loop of pseudo Cg fragment program for the evaluation of
the atomic orbital with Gaussian basis functions.

shown in Figure 2. Since we use two types of basis functions, we in-
troduce two different texture layouts, one for Gaussians and the other
for GTOs.

The top layout in Figure 2 shows how we encode the texture for
Gaussian basis functions. Since Gaussian basis function does not im-
ply different polynomial functions according to atomic orbital types,
we simply store the centers (x;,;,z;) and exponents b; in one texture,
and coefficients ¢; in another texture. Therefore, simple fetching the
texture values in a fragment program is possible in order to obtain the
sum of all basis functions. Note that there is no molecular orbital co-
efficient in our molecular data.

In the evaluation of GTOs shown in Equation 3, there is a polyno-
mial term f;(x,y,z), which is defined according to the atomic orbital
type. There is only one common center with different atomic orbital
parameters for the different atomic orbital types in one atom. The
shape of an orbital is defined by the polynomial term and the polyno-
mial terms can be multiple functions for p, sp, d, and f. For example,
the p-orbital has 3 polynomial terms (py, py, p;) and the d-orbital has
6 polynomial terms (dxyx, dyy, dzz, dxy, dy, dy;). Each polynomial term
has its own molecular orbital coefficient. The bottom in Figure 2 is an
example of the texture layouts for the atomic orbitals and molecular or-
bitals with 2 GTO basis functions. In the example, there are 2 atoms, 9
atomic orbital types with 16 sets of parameters, and 2 sets of molecu-
lar orbital coefficients for 36 atomic orbitals. There are multiple basis
functions for one orbital type. In this example, the first s-orbital (s1)
for Atom 1 has 2 sets of parameters and the first d-orbital for Atom
2 (d1) has also 3 sets of parameters. The number 36 is calculated as
Lty +3(p1) +3(p2) T 6(a1) T 10(1) + 151) +3(p1) +3(2) +6an)- AS
shown in the figure, we put the atom centers and the number of orbital
types in the texture 1. Texture 2 is composed of exponents, coeffi-
cients, orbital types for atomic orbitals. Then we store the molecular
orbital coefficients in the texture 3. Texture 1 and 2 are organized in
the order of parameters, whereas, texture 3 is designed according to
the orbital type. For example, since the s-orbital has only one poly-
nomial term, there is one molecular orbital coefficient, which is stored
in R out of RGBA. the p-orbital has 3 polynomial terms, therefore,
we place three molecular orbital coefficients in one RGB in order to
reduce the texture fetch. In the same way, for the d-orbital, we use two
RGB’s for the 6 molecular orbital coefficients.

4.3 Per-Fragment Reconstruction

In order to evaluate fragments, we use a high level language, NVIDIA
Cg [21], and the Cg code is compiled on the fly after the molecular
data is read. With the support of Cg language, we use if statement
to choose the appropriate fragment program for the functional evalu-
ations depending on the basis functions. Since we have two different
basis functions, we show two different fragment programs according
to the basis functions. The functional values as well as gradients are
evaluated at the same time.

For Gaussian basis functions two textures, as shown in the top of

n = 0;

for(i = 0; i < NumAtoms; i++){
// for x,y,z and number of orbital types
texValuel = texRECT (Texturel,

inpos.xyz - texValuel.xyz;

for(j = start(i); j < start(i)+texValuel.w; Jj++){
for(k = jthOrbitalStart; k < jthOrbitalEnd; k++)
// for exponent, coefficient, orbital type
texValue2 = texRECT (Texture2,

texpos (i));
r =

{

texpos (k));

// for s orbital

// for p orbital

else if (texValue2.z == 3){
if (k == jthOrbitalstart){

// for 3 molecular orbital coefficients
texValue3 = texRECT (Texture3,
// increase offset for Texture 3

texpos (n));

n += 1;

}

tmpl = dot (r, texValue3.xyz);
tmp2 = texValue2.y x*

exp ((-1.0)
// Data value
f = tmpl x tmp2;
// Gradient
df = texValue3.xyz * tmp2 -

2.0 x texValue2.x » r = f;
val += floatd (df, f);

* texValue2.x * dot(r, r));

// for d orbital

111}

Fig. 4. Main loop of pseudo Cg fragment program for the evaluation of
the molecular orbital with GTO basis functions. In this code, only p-type
molecular orbital computation is shown because it shows the efficiency
of our texture layout for the molecular orbital coefficients.

Figure 2, are fetched for all parameters including the centers of ba-
sis functions and the atomic orbitals are evaluated using Equation 3.
Figure 3 presents a pseudo Cg code for the reconstruction of Gaussian
basis functions. In the Cg code, ithOrbitalDraw is connected to
our user interface, therefore, we can select/deselect any orbitals on the
fly.

For the GTO basis functions, each fragment is evaluated by com-
puting either Equation 3 for the atomic orbitals or Equation 4 for the
molecular orbitals. The atomic orbitals are computed by two texture
lookups (Texture 1 and Texture 2 from GTOs texture layout in Figure
2). We fetch Texture 1 for the atom centers and the number of atomic
orbital types. Then we fetch Texture 2 for the exponents, coefficients
and atomic orbital types of each atomic orbital. Once we have all pa-
rameters, Equation 3 is evaluated with the polynomial functions shown
in Table 1 in the for loop.

On the other hand, the molecular orbital evaluation needs one more
computation based on the atomic orbital evaluation as described in the
previous paragraph. We fetch one more texture (Texture 3) for the
molecular orbital coefficients and multiply the coefficients right after
the atomic orbital evaluation. Figure 4 shows a pseudo Cg fragment
program for this molecular orbital evaluation. Specifically we show
the functional value and gradient calculation with p-orbital in order to
show the efficiency of our texture layout (Texture 3 from GTOs texture
layout in Figure 2). As shown in the Cg code, we can evaluate 3 dif-
ferent p-orbitals (py, py, p;) at the same time by fetching 3 molecular
coefficients by one texture lookup. Similar computation is applied to
d and f orbitals.

Once the value and gradient of a fragment are computed, we fetch
the transfer function texture for color and opacity. Then we apply illu-
mination, illustrative rendering techniques, and volume clipping tech-
nique in the fragment program.

—

@ (b) ©

Fig. 5. Transfer function (TF) comparison. (a) presents our five different
transfer functions (uniform, Gaussian, the right half of Gaussian, the left
half of Gaussian and sinusoidal from the left). (c) shows our 2D TF
setting to generate an image in (b). The right half of Gaussian TF (sky
blue) is compared with simple Gaussian TF (orange). It is possible to
see the nested orbital structures at the core of atom with the right half
of Gaussian TF.

4.4 Ball and Stick Rendering

Most of molecular visualizations provide drawing of the atoms and
bonds between atoms and common primitives to draw atoms and
bonds are balls and sticks. Many molecular visualization tools repre-
sent balls and sticks with triangular meshes and render the meshes with
other features, such as isosurfaces. In order to render the meshed balls
and sticks together with the volumetric representation, however, visi-
bility test with sorting is necessary for proper rendering results with a
single rendering pass. In this work, we avoid the visibility test by eval-
uating the balls and sticks as functional forms. Balls are represented as
spheres and sticks are represented as cylinders. The sphere and cylin-
der equations are evaluated as solid volume prior to the evaluation of
the functional representations. If a fragment is inside either a sphere
or a cylinder, then we avoid the expensive evaluation of the functional
representation.

The ball radius is read from an atom element table [3], which is
the van der Waals radius, and the radius varies depending on atomic
numbers. The stick radius is set as a half of hydrogen’s van der Waals
radius, which is the smallest in the table. We also provide a control
of both radii in our user interface, so that users can change the relative
size. The atom color is also read from the atom element table, so that
chemists understand the molecular structures easily as they have been
seeing.

4.5 Transfer Function and lllustrative Rendering

In this volume rendering of quantum chemistry data, multiple isoval-
ues are preferable since more isovalues show detail of the molecular
structures. However, the higher absolute isovalues are nested in the
lower absolute isovalues in the molecular data. In order to show the in-
ternal structures of a molecule clearly, we design 5 different 2D trans-
fer functions (TFs), including uniform, Gaussian, left half of Gaussian,
and right half of Gaussian, sinusoidal as shown in Figure 5 (a). The
uniform TF is appropriate to render isosurfaces and the Gaussian TF
is used for the volume rendering of the molecules. Specifically the
right and left half of Gaussian TF are preferable to see the nested or-
bital structures since the highest or lowest values, which are found
mostly at the cores of atoms, are inside outer shells. The right half of
Gaussian TF is used for the negative values and the left half of Gaus-
sian TF is used for the positive values. Figure 5 (b) and (c) present
the transfer function comparison of the right half of Gaussian TF and
whole Gaussian TF with one of GTO basis function data (CyHg). The
right half of Gaussian TF shows the core of orbital, whereas, whole
Gaussian TF hides the internal structures. We also apply illustrative
rendering techniques to the molecular data visualization, such as en-
hancing boundaries with the sinusoidal TF proposed in [6, 29]. Note
that we refer to the works in [6, 29] for the detail. The sinusoidal
TF is used to show multiple isovalues (e.g., contour volume) in order
to see the atomic and molecular orbital structures. Since visualizing
more isovalues at the same time is preferable, the sinusoidal TF with
boundary enhancements is used to show the contour volume in an il-
lustrative way, so that we can provide more isovalues and structures
in the volume. Figure 6 shows rendering results of the 27" molec-

© @

Fig. 6. Volume rendering of the molecular orbital for C4H,CH,CH,CHy.
Warm color represents positive values and cool color represents nega-
tive values. (a) is a conventional volume rendering with local illumination
and (b) is a volume rendering with the edge coloring using the sinusoidal
TF without illumination. (c) shows a boundary enhanced contour vol-
ume rendering with the sinusoidal TFs and (d) presents an isosurface
rendering with local illumination.

(b)

Fig. 7. (a) is a contour volume rendering of the atomic orbitals for BeO
(Be is the green atom) with the volume clipping technique. (b) is a
boundary enhanced illustrative rendering (positive values, orange) with
an isosurface rendering (negative value, green) for HF (H is the white
atom). The highest positive value is rendered with the red isosurface.

ular orbital with GTO basis function data (C4H,CH,CH,CH,). Note
that warm color (orange) indicates positive values and cool color (sky
blue) represents the negative values of the molecular orbital (Equation
4). In the figure, (a) shows a volume rendering of the molecular orbital
and (b) presents a volume rendering with contours using the sinusoidal
TF. (c) is a rendering result of sinusoidal TFs with the boundary en-
hancement technique. (d) shows an isosurface rendering. Especially
the boundary enhancement with the sinusoidal TF produces very clear
multiple isovalue structures of the nested molecular data.

4.6 Volume Clipping

Volume clipping is a technique to hide unimportant parts in the vol-
ume rendering. In Section 4.5, we mention that visualizing multiple
isovalues is preferable to show the molecular structures. The left im-
age in Figure 7 shows our volume clipping rendering with Gaussian
basis function data (BeO) and the atomic orbital structure in the mid-
dle of the volume is clearly shown by clipping a half of the volume out.
Users can adjust our clipping plane in arbitrary normal direction and
place the clipping plane where they are interested. We decide whether
a subvolume is visible or not by evaluating the clipping plane equation
and the subvolume location in our fragment program. Then we use
clip function from Cg library to remove unwanted subvolumes.

. . | 1:alpha : -11.206600 : 2,000000 v
i | MO Index : AlphafBeta : Erergy @ Occupation &
1: &lpha : -11.208600 : 2000000
21 Alpha : -11,206000 ; 2,000000
2 3 Alpha : -0,674500 ¢ 2,000000
4 Alpha : -0,644500 ¢ 2,000000
20 = 5 ¢ Alpha : -0,644900 ¢ 2,000000
& ¢ Alpha 1 -0,644500 ¢ 2,000000
2py 7 Alpha : -0,644900 ; 2,000000
& ¢ Alpha : -0,644900 ¢ 2,000000
2pz = g a:-0,6 0ooo
| 10: Alpha : 0,243100 ¢ 0000000 v
(a) (b)

Fig. 8. User interfaces of the atomic and molecular orbitals. (a) is our
user interface to choose the atomic orbitals. (b) is the interface for the
molecular orbitals and it shows spin, energy, and occupation of each
molecular orbital in order to help users select interesting molecular or-
bitals.

(@ (b)

Fig. 9. Renderings of the atomic orbitals for a molecule (LiH, H is the
white atom) with boundary enhanced volume contours. (a) shows the
atomic orbitals rendered with only 1s, 2s, and 2p, of Li. (b) shows the
atomic orbitals rendered with 2p, of Li, and 1s of A on top of (a).

4.7 User Interface

In our system, there are mainly four parts of user interfaces including
data loader, colormap loader, transfer function control and rendering
control. Data loader and colormap loader parts are simple file loading
interfaces. In the transfer function control, we design the user interface
to control multiple transfer functions with 5 different transfer function
modes, which is described in Section 4.5. Also data values, such as
minimum and maximum, can be adjusted for various data ranges over
many atomic and molecular orbitals in the same data. In the render-
ing control, we can select lighting modes, illustrative rendering mode,
specific atomic orbitals, and molecular orbitals, and control the clip-
ping plane for the volume clipping. Especially the atomic orbital and
molecular orbital selection interfaces can be used to explore the vari-
ous atomic and molecular orbitals interactively. Figure 8 presents our
atomic and molecular orbital interfaces. Users can select any of atomic
orbitals (a) and also choose any of molecular orbitals based on the in-
formation shown in (b).

5 RESULTS AND DISCUSSION

We have implemented our system on Core 2 Quad CPU 2.4GHz pro-
cessor with NVIDIA GeForce GTX 260 graphics hardware. We have
extended our slice-based volume rendering system by evaluating the
functional values directly on GPU. Ray casting [9, 13, 25] could be
also used for this application and easily integrated into our system
since the ray casting has advantages such as adaptive sampling. One
issue in our slice-based volume rendering is the number of slices to
reveal all properties of quantum chemistry study. However, the re-
sampling with very high resolution takes up to several hours and it is
difficult to visualize the high resolution data on a desktop PC. In this
sense, changing the number of slices in our system is much easier and
faster than resampling and transferring the resampled data.

We have tested various datasets summarized in Table 2 and 3. We
specify the number of basis functions with the number of correspond-
ing parameters.

BeO, HF, and LiH are datasets using Gaussian basis functions.
BeO is presented in Figure 7 (a) with multiple isosurfaces and vol-

Fig. 10. Molecular orbitals (C,Hs, H is the white atom). (a) is the 3"
molecular orbital and (b) is the 215 molecular orbital.

(a) (b) (©)

Fig. 11. Two isosurface, 0.5 (orange) and -0.5 (green), comparison of
Molekel [20] and our system. (a) and (b) show low (31x24x24) and high
(170x128x137) resolutions of the isosurface using Molekel. (c) presents
the isosurface rendering using our system.

ume clipping. Clipping along the bond between two atoms shows the
internal orbital structures of BeO. Figure 7 (b) is a rendering result of
HF . Positive values of the atomic orbitals are rendered as contour vol-
ume (orange) and a negative value is shown as an isosurface (green).
In the image, some of the positive orbitals are nested in the negative
orbitals. (a) and (b) in Figure 9 are progressive atomic orbitals of LiH
with boundary enhanced volume contours. (a) shows a combination
of s, 2s, and 2py of Li, whereas (b) is a rendering result of 2p, of Li,
and ls of H on top of (a). Comparing two images, we can see that the
Ls of H orbital (left core) and 2py, of Li orbital (rotation of negative
values) change the atomic orbital structure.

CHs, CyHg, C4H,CHyCH,CHy, and NyC4O2H4N,C4O,Hy have
Gaussian type orbital (GTO) as the basis function. C, Hs has 38 molec-
ular orbitals and Figure 10 shows the 3" and 21 molecular orbitals
with contour volumes. The energy level of the 3"¢ molecular orbital
is -0.7074 with two occupation and Alpha spin, whereas the energy
level of the 21*" molecular orbital is 0.9449 with zero occupation and
Alpha spin. CoHg data is used in Figure 11 compared to the results of
Molekel. (a) and (b) of the figure are isosurface rendering of isovalues
(£0.05) with different grid resolutions. The grid resolution of (a) is
31x24x24 and that of (b) is 170x128x137. The computation timings
for (a) and (b) in Molekel are 0.22 seconds and 32.49 seconds. As seen
in (a), the low resolution isosurface shows artifacts on the surface due
to the low resolution of resampling. Figure 11 (c) is the isosurface
rendering using our system. Our system does not produce any artifact
since we perform per-fragment evaluation of the functional representa-
tions. Figure 12 (a) and (b) show different molecular orbitals of C,Hg.
(a) is rendered with the volume clipping technique and multiple iso-
surfaces and (b) is generated by the volume contours with the bound-
ary enhancement. Both images present the orbital structures among
the atoms and bonds. Figure 6 presents different rendering techniques
on C4H,CH,CHyCH, and Figure 12 (c) shows the volume clipping
and Figure 12 (d) shows the isosurface with the volume contours of
N>C4OoH4N,C1O,Hy. The molecule is very complicated but both im-
ages show the molecular orbital structures in the volume.

‘We also measure performances on a viewport of 600 x 517 with 256
slices. The performances and storages of datasets are summarized in
Table 4. Datasets with GTO basis functions are compared with the
performances using Molekel. The performance for our system indi-
cates the evaluation and rendering speed, whereas, the performance

Fig. 12. More rendering results of C;Hg (a, b) and N;C40,H4N,C40,Hy
(¢, d). (a) and (b) are the 17"* and 20" molecular orbitals with the bound-
ary enhanced contour volume. (c) shows the isosurface rendering of the
27" molecular orbital with multiple isosurfaces and the volume clipping.
(d) presents both isosurfaces (orange) and volume contours with the
sinusoidal TF (green) of the 30" molecular orbital.

for the Molekel includes only the resampling and triangulation for one
isosurface. Note that Molekel does not support the data format for
Gaussian basis functions and N,C4 O, H4N,C40,Hy is not readable in
Molekel. The grid resolution in Molekel for the comparison is set as
122 x 97 x 97 and Molekel performs resampling in the grid and march-
ing cube for the isosurfaces. As seen in the table, our system provides
greater performance improvement compared to Molekel although we
do not include the rendering speeds in Molekel. The performance in
our system highly depends on the number of basis functions and the
atomic orbital types. Especially d-orbitals require more computation
compared to s-orbital or p-orbitals. The storage columns in Table 4
indicate the data sizes, which need to be transferred to GPU. Since
we evaluate data values on the fly, only parameters and coefficients of
the basis functions are required. The storage in Molekel, however, is
the size of the resampled data, which could be used in generic volume
renderers to generate similar images to our system.

Our system has enabled scientists to interactively analyze atomic
and molecular orbitals that give a clear idea of intra-molecular bond-
ing properties such as the sites where bonds are more likely to form
(bonding sites) and the sites where bonds are not likely to form (anti-
bonding sites). This is achieved by applying a sinusoidal transfer
function which results in the rendering of multilevel (i.e. multiple iso-
values) colored surface where the intensity of the color can be set to
match the probability of finding electrons at a specific point in space.
Especially, Figure 10 (a) presents the probability of finding electrons
clearly. There is a strong bond between two carbon atoms and there
is a weak bond between two hydrogen atoms on the right side, which
is not found on the left side of the molecule. The peanut shape of the
strong bond was difficult to visualize due to the lack of interactivity in
generating many isosurfaces. Also the weak bond is not clearly shown
without multiple isovalues. Figure 12 (a) and (b) show how differ-
ent two molecular orbitals are according to the energy. Our approach
also proves usefulness for divulgation purposes by giving an intuitive
idea of how atoms might bond or not bond to each other by simply
looking at the intensity of the colors. Note that this visualization can
only be achieved with proper support for transparency when one has
triangulated meshes since the sites where bonds are created are found
in the innermost part of the orbital volumes. It is therefore impor-

Table 2. Three datasets with Gaussian basis functions

Dataset number of number of number of
basis functions | atomic orbitals | atomic orbitals
(x,,2,b,a) types
LiH 20 4 6
HF 66 9 19
BeO 112 12 28

tant to show lighter outer areas and inner darker volumes of space at
the same time. When applying mesh-based techniques multiple passes
are required for correct rendering of overlapping transparent surfaces.
Another issue that scientists meet is the performance in the analysis
tool. In order to perform the required analysis, scientists must be able
to quickly generate a number of molecular orbitals while varying pa-
rameters such as isovalues, bounding box, color and transparency, to
help in understanding inter- and and intra-molecular bonding proper-
ties; this is simply impossible with the currently available tools which
may take hours as compared to tenths of seconds with our approach to
generate the entire set of orbitals.

6 CONCLUSION AND FUTURE DIRECTION

We have presented our interactive volume rendering of molecular data
by evaluating the functional representations on the GPU. Our system
does not require the resampling on grid structures for the volume ren-
dering therefore, there is no data transfer issue for the high grid reso-
lution. Direct per-fragment evaluation of the functional representation
in our fragment program allows us to interactively explore the func-
tional representations of molecular data and generate images without
artifacts, which are often seen in grid structures. We also use illus-
trative rendering techniques to show the nested atomic and molecular
structures and our user interface enable us to select any of interesting
atomic and molecular orbitals.

As seen in Table 4, the performance is degraded as the number of
basis functions and parameters increases. A possible solution is to use
hierarchical spatial structures proposed in [12]. We will investigate the
spatial data structures of the molecular data and we also would like to
compare the evaluation quality and the performance with the ray cast-
ing as an extension of the spatial structure study in the future. Another
future work is related to computing electron density and electrostatic
potential. In this work, the atomic and molecular orbitals are com-
puted on the fly. The computation of electron density and electrostatic
potential, however, requires many redundant processes. In order to im-
prove the performance for electron density and electrostatic potential,
it could be better to use multi-level rendering, so that we can reduce
the large amount of redundant computations. Moreover, we would like
to study our ball and stick rendering with this multi-level rendering be-
cause the computation of our visibility test is expensive when we have
more atoms and bonds and investigate the surface rendering proposed
by Loop and Blinn [17]. Since we can evaluate the scalars and gra-
dients in our fragment program, we are also interested in interactively
exploring vector fields in the molecular data, such as topological struc-
tures of orbitals and directions of orbital gradient fields.

ACKNOWLEDGEMENTS

The authors would like to thank Jean Favre, Mario Valle, John Bid-
discombe, Maria Grazia Giuffreda and the anonymous reviewers
for many helpful discussion and comments. This work was sup-
ported in part by the Swiss National Science Foundation under grant
200021_124642.

REFERENCES

[1] F H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and
R. Taylor. Table of bond lengths determined by x-ray and neutron diffrac-
tion. Journal of the Chemical Society, Perkin Transactions 2, pages S1—
S19, 1987.

Table 3. Four datasets with GTO basis functions

Dataset number of number of number of number of number of
atoms atomic orbital | basis functions | molecular orbital | molecular orbitals
(x,¥,2) types (b,a) coefficients (g)
C»Hs 7 27 50 40 38
CyHg 8 30 54 42 40
C4H,CHyCH>CH, 17 62 124 125 118
N>Cy4OrH4N,C4OrHy 24 120 856 264 162
[14] O.D. Lampe, 1. Viola, N. Reuter, and H. Hauser. Two-level approach to

Table 4. Comparison of performance and data storage required be-

tween our system and Molekel.

Evaluation and rendering perfor-

mance for our system is measured on a viewport of 600 x 517 with 256
slices whereas performance for Molekel is measured on a regular grid,

122

x 97 x 97 only for resampling and triangulation of one isosurface.

The storage indicates the data size to be transfered to GPU.

Dataset Our system Molekel
speed | storage | speed | storage
(sec) | (Kbytes) | (sec) | (Kbytes)
LiH 0.047 0.4 N/A N/A
HF 0.094 1.3 N/A N/A
BeO 0.204 2.2 N/A N/A
C,Hjs 0.108 6.6 11.1 1147.9
CHg 0.140 7.2 12.7 1147.9
C4Hy,CHyCHyCH}, 0.270 60.2 27.2 1147.9
NyC40,H4N,C4O>Hy | 1.000 178.2 N/A N/A

(2]

[3]

[4]

(51

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

C. L. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol: Interac-
tive visual exploration of large flexible multi-component molecular com-
plexes. In Proceedings of the conference on IEEE Visualization 2004,
pages 243-250, 2004.

BlueObelisk. Properties of the elements. Atom element properties from
elements.xml distributed at http://sourceforge.net/projects/bodr.

H.-L. Cheng and X. Shi. Guaranteed quality triangulation of molecular
skin surfaces. In Proceedings of the conference on IEEE Visualization
2004, pages 481488, 2004.

G. Cipriano and M. Gleicher. Molecular surface abstraction. IEEE Trans-
actions on Visualization and Computer Graphics, 13(6):1608-1615,
2007.

D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic ren-
dering of volume models. In Proceedings of the conference on IEEE
Visualization 2000, pages 195-202, 2000.

D. S. Ebert, K. F. Musgrave, D. Peachey, K. Perlin, and S. Worley. Tex-
turing & Modeling: A Procedural Approach, Third Edition (The Morgan
Kaufmann Series in Computer Graphics). Morgan Kaufmann, December
2002.

S. Grottel, G. Reina, J. Vrabec, and T. Ertl. Visual verification and anal-
ysis of cluster detection for molecular dynamics. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1624—-1631, 2007.

M. Hadwiger, C. Sigg, H. Scharsach, K. Biihler, and M. H. Gross. Real-
time ray-casting and advanced shading of discrete isosurfaces. Computer
Graphics Forum, 24(3):303-312, 2005.

M. Hu, W. Chen, T. Zhang, and Q. Peng. Direct volume rendering of
volumetric protein data. In Computer Graphics International, pages 397—
403, 2006.

Y. Jang, R. P. Botchen, A. Lauser, D. S. Ebert, K. P. Gaither, and T. Ertl.
Enhancing the interactive visualization of procedurally encoded multi-
field data with ellipsoidal basis functions. Computer Graphics Forum,
25(3):587-596, 2006.

Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, K. P. Gaither, and
T. Ertl. Interactively visualizing procedurally encoded scalar fields. In
EG/IEEE TCVG Symposium on Visualization VisSym ’04, pages 35-44,
339, 2004.

J. Kriiger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In Proceedings IEEE Visualization 2003, pages 287—
292, 2003.

(15]

[16]

(17]

(18]

[19]

[20]
(21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

(29]

(30]

[31]

(32]

efficient visualization of protein dynamics. IEEE Transactions on Visu-
alization and Computer Graphics, 13(6):1616-1623, 2007.

C. H. Lee and A. Varshney. Representing thermal vibrations and uncer-
tainty in molecular surfaces. In In SPIE Conference on Visualization and
Data Analysis, pages 80-90, 2002.

F. Liu, Y. Liu, and D. Fordham. Interactive molecule construction with
gpu acceleration. In In Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications 2008, pages 5298—
5301, 2008.

C. Loop and J. Blinn. Real-time gpu rendering of piecewise algebraic
surfaces. ACM Transactions on Graphics, 25(3):664—670, 2006.

K. Mehta and T. Jankun-Kelly. Detection and visualization of defects in
3D unstructured models of nematic liquid crystals. IEEE Transactions
on Visualization and Computer Graphics, 12(5):1045-1051, Septem-
ber/October 2006.

S. Mehta, K. Hazzard, R. Machiraju, S. Parthasarathy, and J. Wilkins. De-
tection and visualization of anomalous structures in molecular dynamics
simulation data. In Proceedings of the conference on IEEE Visualization
2004, pages 465472, 2004.

Molekel. Multiplatform molecular visualization. Software distributed at
http://cscs.ch/molekel.

NVIDIA. Cg language specification. Cg Language Specification, avail-
able at http://developer.nvidia.com/page/cg_main.html.

W. Qiao, D. S. Ebert, A. Entezari, M. Korkusinski, and G. Klimeck.
Volqd: Direct volume rendering of multi-million atom quantum dot sim-
ulations. In Proceedings of the conference on IEEE Visualization 2005,
pages 319-326, 2005.

W. Qiao, M. McLennan, R. Kennell, D. S. Ebert, and G. Klimeck. Hub-
based simulation and graphics hardware accelerated visualization for nan-
otechnology applications. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):1061-1068, 2006.

C. Rezk-Salama and A. Kolb. A Vertex Program for Efficient Box-
Plane Intersection. In Proceedings of Vision, Modeling and Visualization
(VMV), pages 115-122, 2005.

S. Rottger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strafer. Smart
hardware-accelerated volume rendering. In VISSYM ’03: Proceedings
of the symposium on Data visualisation 2003, pages 231-238, 2003.

G. Schaftenaar and J. Noordik. Molden: a pre- and post-processing pro-
gram for molecular and electronic structures. Journal of Computer-Aided
Molecular Design, 14(2):123-134, 2000.

J. Schmidt-Ehrenberg, D. Baum, and H. C. Hege. Visualizing dynamic
molecular conformations. In Proceedings of the conference on IEEE Vi-
sualization 2002, pages 235-242, 2002.

J. E. Stone, J. Saam, D. J. Hardy, K. L. Vandivort, W.-m. W. Hwu, and
K. Schulten. High performance computation and interactive display of
molecular orbitals on gpus and multi-core cpus. In JACAT, GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on Graph-
ics Processing Units, pages 9-18. ACM, 2009.

N. Svakhine, Y. Jang, D. S. Ebert, and K. P. Gaither. Illustration and
photography inspired visualization of flows and volumes. In Proceedings
of the conference on IEEE Visualization 2005, pages 687-694, 2005.

M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge cue-
ing to enhance real time molecular visualization. IEEE Transaction on
Visualization and Computer Graphics, 12(5):1237-1244, 2006.

I. S. Ufimtsev and T. J. Martinez. Quantum chemistry on graphical pro-
cessing units. 1. strategies for two-electron integral evaluation. Journal
of Chemical Theory and Computation, 4(2):222-231, February 2008.

O. Wilson, A. V. Gelder, and J. Wilhelms. Direct volume rendering via
3D textures. Technical Report UCSC-CRL-94-19, Santa Cruz, CA, USA,
1994.

