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Abstract

We propose a simulation technique for elastically deformable objects based on the discontinuous Galerkin finite element
method (DG FEM). In contrast to traditional FEM, it overcomes the restrictions of conforming basis functions by
allowing for discontinuous elements with weakly enforced continuity constraints. This added flexibility enables the
simulation of arbitrarily shaped, convex and non-convex polyhedral elements, while still using simple polynomial
basis functions. For the accurate strain integration over these elements we propose an analytic technique based on
the divergence theorem. Being able to handle arbitrary elements eventually allows us to derive simple and efficient
techniques for volumetric mesh generation, adaptive mesh refinement, and robust cutting. Furthermore, we show DG
FEM not to suffer from locking artifacts even for nearly incompressible materials, a problem that in standard FEM
requires special handling.
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1. Introduction

Finite element methods (FEMs) have become
an indispensable tool in computer graphics, where
they are mostly used for physically-based simu-
lation of deformable objects or fluids. Their solid
mathematical foundation helps to achieve realistic
simulation results, for instance in computer anima-
tion or surgery simulation.
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In particular in computer graphics, FEM simu-
lations are mostly based on tetrahedral or hexahe-
dral meshes. While this allows for simple and ef-
ficient implementations, topological changes of the
simulation domain require complex and error-prone
remeshing to maintain a consistent simulation mesh.
Dynamically adjusting the mesh is, however, of cru-
cial importance in several simulation scenarios, such
as fracture, interactive cutting in medical applica-
tions, or adaptive refinement of complex domains.

The use of more general polyhedral elements in
FEM was recently shown to considerably simplify
cutting and fracture simulations [Wicke et al., 2007;
Martin et al., 2008]. However, the strict conformity
constraints of standard FEM require comparatively
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complex shape functions for those elements. In a
slightly different context, the discontinuous element
meshes of the PriMo framework enable adaptive
mesh refinement for interactive shape deforma-
tion [Botsch et al., 2006, 2007]. Due to the missing
physical accuracy this method is not directly useful
for physically-based simulations though.

In this paper we propose a flexible and efficient
simulation technique for corotated linear elasticity
based on the discontinuous Galerkin finite ele-
ment method (DG FEM) [Cockburn, 2003]. Our
approach conceptually generalizes the aforemen-
tioned techniques, and overcomes their limitations
by combining their respective strengths: Like stan-
dard continuous Galerkin FEM (CG FEM), the
DG formulation is physically accurate, in the sense
that under element refinement the approximation
converges toward the exact solution of the involved
PDE. Similar to PriMo, our DG approach supports
arbitrary polyhedral elements and discontinuous
meshes with weakly enforced continuity, thereby
allowing for easy and flexible mesh restructuring.

In comparison to CG FEM, the increased flexibil-
ity of DG FEM enables adaptive refinement of mesh
elements (h-refinement) and of the shape functions’
polynomial degree (p-refinement) in a simple and
efficient manner. Furthermore, in order to support
flexible simulations of deformable models for Com-
puter Graphics applications, we extend DG FEM by
the following components:

• We simulate arbitrary polyhedral elements using
simple and efficient polynomial basis functions
and a fast and accurate volumetric integration
technique (Section 5).

• We generalize stiffness warping to discontinu-
ous polyhedral elements, thereby allowing linear
strain measures to be used even in the presence
of large deformations (Section 6).

• For embedded simulations we reconstruct from
the discontinuous mesh a smooth displacement
field based on moving least squares (MLS) inter-
polation (Section 7) and present a suitable colli-
sion handling technique (Section 8).

This paper is an extended version of the confer-
ence paper [Kaufmann et al., 2008], which enables us
to introduce the fundamentals of DG FEM in more
detail (Section 3) as well as to demonstrate the ver-
satility of our approach on more examples, includ-

ing slicing-based mesh generation, adaptive stress-
based element refinement, flexible and efficient cut-
ting, and locking analysis (Section 9).

2. Related Work

Starting with Terzopoulos et al. [1987], physically-
based methods have been successfully employed
for the simulation of deformable solids, thin shells,
cloth, and fluids. The focus of this paper, and of the
discussions in this section, is on deformable solids,
and on the finite element method (FEM) as the
underlying simulation scheme. For a more detailed
survey of this topic we refer the reader to [Nealen
et al., 2006].

2.1. Cutting & Fracture

Fracturing can efficiently be performed by re-
stricting cuts to existing element boundaries [Müller
and Gross, 2004], but this approach typically is not
accurate enough for more sophisticated simulations.
Splitting individual elements allows for precise frac-
turing and cutting, but in turn requires element de-
compositions [Bielser and Gross, 2000; Bielser et al.,
2003] and/or general remeshing [O’Brien and Hod-
gins, 1999; O’Brien et al., 2002; Steinemann et al.,
2006a]. When accommodating the crack surface,
special care has to be taken to avoid numerically
unstable sliver elements. Similarly, Bargteil et al.
[2007] performed remeshing to remove degenerate
elements during large plastic deformations.

Meshless approaches intrinsically avoid remesh-
ing by using particles instead of a simulation
mesh [Müller et al., 2004a]. While this consider-
ably simplifies the actual topological changes, the
material distance, which controls the mutual influ-
ence of simulation nodes, has to be adjusted. This
can be accomplished either by recomputing special
shape functions [Pauly et al., 2005] or by updating
a distance graph [Steinemann et al., 2006b]. Note,
however, that these approaches still require re-
sampling in order to guarantee a sufficiently dense
discretization in the vicinity of cracks and cuts.

A mesh-based alternative to remeshing is the vir-
tual node algorithm [Molino et al., 2004], which,
instead of splitting elements, duplicates them and
embeds the surface in both copies. While the origi-
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nal approach was limited to cutting each element at
most three times, its recent generalization [Sifakis
et al., 2007a,b] overcomes this restriction. Wicke
et al. [2007] and Martin et al. [2008] avoid remesh-
ing of cut elements into consistent tetrahedra by di-
rectly supporting general polyhedra in FEM simu-
lations. The drawback of their methods, however,
is the comparatively complex computation and in-
tegration of the employed generalized barycentric
shape functions.

In the context of cutting and fracturing our ap-
proach is most similar to [Wicke et al., 2007; Martin
et al., 2008], but it is more flexible and more efficient
due to the use of simple polynomial shape functions.

2.2. Adaptive Simulation

The steadily growing complexity of geometric
objects as well as of physical models results in an in-
creasing demand for adaptive simulations, allowing
to concentrate computing resources to interesting
regions of the simulation domain [Debunne et al.,
2001; Grinspun et al., 2002; Capell et al., 2002;
Otaduy et al., 2007]. When adaptively refining the
mesh, special care has to be taken to avoid or to
properly handle hanging nodes.

This problem can be circumvented by subdivid-
ing basis functions instead of elements [Grinspun
et al., 2002; Capell et al., 2002]. However, in or-
der to ensure linear independence of basis functions,
Grinspun et al. [2002] restrict the refinement to one
level difference between neighboring elements. In
contrast, the hybrid simulation [Sifakis et al., 2007b]
allows for multi-level hanging nodes by constraining
them to edges using either hard or soft constraints.

Another approach for reducing computational
complexity is to embed a high resolution surface
mesh into a coarser simulation mesh [Faloutsos
et al., 1997; Capell et al., 2002; Molino et al., 2004;
Müller and Gross, 2004; Müller et al., 2004b; James
et al., 2004; Sifakis et al., 2007b]. The nodal dis-
placements of the coarse mesh are then interpolated
onto the surface mesh. A similar space deformation
approach was employed for interactive shape defor-
mation in [Botsch et al., 2007], where furthermore a
discontinuous mesh with “glue-like” continuity en-
ergies allowed for easy and flexible mesh refinement.

Our method is based on DG FEM, and hence also
employs discontinuous element meshes, with conti-

nuity being weakly enforced through penalty forces.
This, in combination with the support for arbitrary
elements, makes adaptive refinement both easy and
efficient. Moreover, our smooth, MLS-based embed-
ding technique works on arbitrary elements and pro-
vides higher smoothness compared to the typically
employed barycentric interpolation.

2.3. Discontinuous Galerkin FEM

The basic idea of DG FEM, i.e., employing
discontinuous shape functions and weakly enforc-
ing boundary constraints and inter-element con-
tinuity through penalty forces, is rather old (see,
e.g., [Babuška and Zlámal, 1973; Douglas and
Dupont, 1976]). In the last decade, however, DG
FEM regained increasing attention in applied math-
ematics [Arnold et al., 2001; Cockburn, 2003].

The main strength of DG FEM is its support
for irregular, non-conforming meshes, and for shape
functions of different polynomial degree, which in
combination allows for flexible hp-refinement. In ap-
plied mathematics and mechanics, DG FEM has
successfully been employed for linear and nonlinear
elasticity (see, e.g., [Lew et al., 2004; Ten Eyck and
Lew, 2006; Wihler, 2006]), where it was shown to
provide an accuracy similar to CG FEM at compa-
rable computational cost. Another advantage of DG
FEM is the absence of locking even for nearly incom-
pressible deformable objects [Wihler, 2006], which
in CG FEM typically requires special handling [Irv-
ing et al., 2007]. Since physical accuracy is not the
primary goal in most graphics applications, we re-
sort to the physically plausible, robust, and efficient
co-rotated linear elasticity [Müller and Gross, 2004;
Hauth and Strasser, 2004].

To our best knowledge DG FEM has not been
used in graphics before, besides the shorter confer-
ence version of this paper [Kaufmann et al., 2008].
We therefore first introduce the main concepts of DG
FEM based on a simple 2D Poisson problem (Sec-
tion 3), before deriving equations and techniques for
3D linear elasticity (Section 4). We further extend
DG FEM by directly simulating arbitrary polyhe-
dra (Section 5), by generalizing stiffness warping
to DG FEM (Section 6), and by using embedded
simulation (Section 7) with suitable collision han-
dling (Section 8). Equipped with those techniques,
we demonstrate the versatility of our framework on
a set of different applications in Section 9.
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3. Introduction to DG FEM

In this section we introduce the concepts of DG
FEM and point out the main differences to standard
CG FEM. For a better understanding we discuss
both CG and DG FEM based on a simple 2D Pois-
son problem with homogeneous Dirichlet boundary
constraints:

−∆u = f in Ω ⊂ IR2, u = 0 on ∂Ω. (1)

For more details on either CG FEM or DG FEM we
refer the interested reader to the textbooks [Bathe,
1995; Hughes, 2000] or the survey articles [Arnold
et al., 2001; Cockburn, 2003], respectively.

3.1. CG FEM

The standard FEM approach is to multiply the
above so-called strong form (1) by a suitable scalar
test function v and to formally integrate by parts
over the domain Ω. This yields the weak form

aCG(u, v) :=
∫

Ω

∇u · ∇v =
∫

Ω

fv, (2)

which is defined in terms of the bilinear form a(·, ·).
The goal is to find a function u, such that the weak
form (2) holds for all suitable test functions v van-
ishing on the boundary ∂Ω.

In order to discretize (2) the domain Ω is parti-
tioned into finite elements K ∈ T . On top of this
tessellation a set of basis functions {N1, . . . , Nn} is
defined and used to approximate u as

u(x) ≈
n∑

i=1

uiNi(x) . (3)

For a weak form containing m’th partial deriva-
tives, standard FEM requires basis functions Ni

from the Sobolev space Hm(Ω). This in particular
restricts the basis functions to be conforming, i.e.,
Cm continuous within and Cm−1 continuous across
elements [Hughes, 2000]. For our Poisson example
with weak form (2) the Ni therefore have to be C0

continuous across elements.

Approximating both u and v by the shape func-
tions Ni and exploiting the bilinearity of a(·, ·) fi-
nally leads to the linear system

K ·


u1

...

un

 =


f1

...

fn

 , (4)

with Kij = aCG(Ni, Nj) and fi =
∫

Ω
f Ni, which is

solved for the unknown coefficients ui.

3.2. DG Primal Formulation

In contrast to the above approach, DG FEM
allows for non-conforming or discontinuous shape
functions Ni, thereby resulting in discontinuous
approximations of u. The weak form will therefore
first be formulated for each element K ∈ T indi-
vidually, and those are to be combined by taking
the discontinuities across neighboring elements into
account. Before doing so, the second order PDE of
the strong form (1) is split into two first order PDEs
by introducing the helper function σ : Ω→ IR2:

σ = ∇u , −∇ · σ = f. (5)

To derive the weak form of a single element K,
these two equations are multiplied by scalar- and
vector-valued test functions v and τ , respectively.
Integrating the result by parts over K yields addi-
tional boundary integrals over ∂K, leading to the
local weak form of element K∫

K

σ · τ = −
∫

K

u∇ · τ +

∫
∂K

u τ · nK , (6)∫
K

σ · ∇v =

∫
K

fv +

∫
∂K

vσ · nK , (7)

where nK denotes the unit outward normal of K.

The global weak form, which integrates over the
whole domain Ω, is built by summing up the indi-
vidual elements’ weak forms (6), (7). Note that in
CG FEM the boundary integrals over interior edges
would cancel out, eventually leading to (2). In the
DG setting, however, u and σ are discontinuous
across elements, hence requiring special attention to
be paid to the integrals over ∂K.

To account for that, the DG formulation replaces
the functions u and σ in those boundary integrals
by their so-called numerical fluxes û and σ̂, re-
spectively. The fluxes are responsible for “gluing
together” the functions u and σ across element
boundaries, which is achieved by some penalty
term that weakly enforces continuity. We will later
present concrete examples for the fluxes û and σ̂.
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For now they can be imagined as the average of the
function values from both sides of the edge. This
yields the global weak form∫

Ω

σ · τ = −
∫

Ω

u∇ · τ +
∑

K∈T

∫
∂K

û τ · nK , (8)

∫
Ω

σ · ∇v =

∫
Ω

fv +
∑

K∈T

∫
∂K

v σ̂ · nK . (9)

After introducing the fluxes û and σ̂, we can re-
move the helper function σ by choosing τ = ∇v in
(8) and inserting the result into (9). Applying inte-
gration by parts once more then leads to∫

Ω

∇u · ∇v +
∑
K∈T

∫
∂K

((û− u)∇v − v σ̂) · nK

=
∫

Ω

fv. (10)

In the above equations each interior edge e, shared
by two elements K− and K+, is integrated over
twice, since e ⊂ ∂K− and e ⊂ ∂K+. In order to
exploit this, let us for a function q on e denote by

q± := q|∂K±

its function value taken from either ∂K+ or ∂K−,
respectively. With this we define the average oper-
ator {·} and the jump operator J·K for scalar-valued
functions u and vector-valued functions σ as

{u} :=
1

2

(
u− + u+) , JuK := u−n− + u+n+,

{σ} :=
1

2

(
σ− + σ+) , JσK := σ− · n− + σ+ · n+,

with “ · ” denoting the vector dot product. Note
that the average operator maps scalars to scalars
and vectors to vectors, whereas the jump operator
swaps these representations. With those operators,
and with

Γ := ∪K∂K and Γ◦ := Γ \ ∂Ω

denoting the set of all edges and all interior edges,
respectively, we can simplify (10) to

aDG(u, v) :=

∫
Ω

∇u · ∇v (11)

+

∫
Γ

(Jû− uK · {∇v} − JvK · {σ̂})

+

∫
Γ◦

({û− u} · J∇vK− {v} · Jσ̂K)

=

∫
Ω

fv.

This equation is called the primal formulation, and
is the DG equivalent to the CG weak form (2). It dif-
fers in the framed edge integrals only, which — with
suitable fluxes û and σ̂ — penalize the discontinu-
ities across elements, as discussed in the following.

3.3. DG Weak Form

The actual choice of numerical fluxes is where the
various DG FEM methods differ, and it is an impor-
tant design decision, since the fluxes determine im-
portant properties like consistency, symmetry, and
stability of the FE method. In the following we will
only present our choice of fluxes and shortly discuss
its consequences. For an in-depth discussion of dif-
ferent fluxes and their respective properties we refer
the reader to [Arnold et al., 2001].

Since fluxes are responsible for weakly enforcing
inter-element continuity, i.e., for “gluing” neighbor-
ing elements, a straightforward approach is to penal-
ize the squared jump (u− − u+)2. This corresponds
to the method of Babuška and Zlámal [1973], de-
noted by BZ, which employs the fluxes

û := u|K , σ̂ := −η JuK .

Inserting the fluxes into (11) and simplifying the
resulting equations by exploiting the identities

{{·}} = {·} , {J·K} = J·K , J{·}K = JJ·KK = 0,

leads to the weak form of the BZ method

aBZ(u, v) :=
∫

Ω

∇u · ∇v +
∫

Γ

ηe JuK · JvK (12)

=
∫

Ω

fv,

which differs from the CG weak form (2) in the
framed penalty term, being weighted by a scalar
function ηe = η ‖e‖−1 inversely proportional to the
edge length ‖e‖. Analyzing the internal energy

aBZ(u, u) =
∫

Ω

∇u · ∇v +
∫

Γ

ηe JuK · JuK

reveals that the BZ method in fact penalizes the
squared jump JuK · JuK = (u− − u+)2.

Just as in CG FEM, approximating u and v by
shape functions Ni as in (3) leads to a linear system
equivalent to (4), with matrix entries determined by
Kij = aBZ(Ni, Nj). The important difference is the
contribution of edges, i.e., the framed integral over
Γ in (12). Note that for continuous functions u and
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v, as in the case of CG FEM, this integral would
vanish, since then JuK = JvK = 0 and v = 0 on ∂Ω,
thereby reproducing the CG weak form (2).

The BZ method is geometrically intuitive and
easy to implement. Moreover, it is stable in the
sense that the stiffness matrix K is positive definite
for any η > 0. However, as detailed in [Arnold et al.,
2001], the method is not consistent : A continuous
solution u of the problem might not satisfy the BZ
weak form (12). Consequently, the approximate so-
lution u does in general not converge toward the
exact solution under element refinement.

A more accurate alternative is the so-called in-
terior penalty (IP) method [Douglas and Dupont,
1976], whose fluxes are defined as

û := {u} , σ̂ := {∇u} − ηe JuK . (13)

Inserting them into (11) and simplifying terms yields
the IP weak form

aIP(u, v) :=

∫
Ω

∇u · ∇v (14)

−
∫

Γ

(JvK·{∇u} + JuK·{∇v} − ηe JuK·JvK)

=

∫
Ω

fv.

The IP method uses three individual penalty
terms in the framed Γ-integral:

• The first term ensures consistency : Any continu-
ous solution u of the problem (1) also satisfies the
DG weak form (14).

• The second term achieves symmetry of the bilin-
ear form aIP(u, v), and thereby also of the stiffness
matrix K.

• The last term ensures stability : For a sufficiently
large penalty η it guarantees aIP(u, u) > 0, i.e.,
K to be positive definite.

The IP fluxes are one of few choices to yield a
stable as well as consistent DG method. Consistency
guarantees that if a continuous solution of either (2)
or (14) exists in the space of shape functionsNi, then
the IP method will find this solution as a function
u with JuK = 0 (cf. Fig. 1). Furthermore, due to
consistency and stability the IP method converges
under refinement towards the exact solution of the
PDE, with a convergence rate determined by the
degree of Ni [Arnold et al., 2001].

IP, η=1 BZ, η=1 BZ, η=100

Fig. 1. Solution of ∆u = 2, with Dirichlet boundary condi-

tions corresponding to u(x, y) = x2, using quadratic shape
functions Ni on a 4×4 quad mesh. The consistent IP method

finds the exact solution x2 independently of the penalty η,

since x2 lies in the space of shape functions. This is not the
case for the inconsistent BZ method, although increasing η

improves the approximation by decreasing the jumps JuK.

This leads to the main advantage of DG FEM: The
missing conformity constraints allow simple polyno-
mials {1, x, y, x2, xy, . . . , yk} of degree k to be used
as basis functions for each element K. The conver-
gence behavior of linear and quadratic DG basis
functions is demonstrated in Fig. 2, which also shows
bilinear CG FEM for comparison (see Section 9 for
a discussion of these results).

While the use of polynomial basis functions al-
ready simplifies simulations on regular 2D grids, the
true value of this added flexibility will be demon-
strated in the following sections, where we discuss
elasticity simulation on irregular 3D meshes of dy-
namically changing topology.

4. Linear Elasticity using DG FEM

After introducing the concepts of DG FEM on
the 2D Poisson problem, we now generalize this ap-
proach to 3D linearly elastic deformations, starting
with elastostatics.

In the following we consider a 3D object with ma-
terial coordinates x = (x, y, z)T ∈ Ω, which is to be
deformed by a displacement vector field u : Ω →
IR3. A detailed derivation of CG FEM for linear elas-
ticity can be found in many textbooks (e.g., [Hughes,
2000]) and also in the recent survey [Nealen et al.,
2006]. Hence, we refer the reader to the literature
for details, and only give the equations required for
the DG FEM derivation below.

We measure local deformations of the material
using the linear Cauchy strain

ε(u) =
1
2
(
∇u+∇uT

)
,
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Fig. 2. Solution of the Poisson equation −∆u = f on a regular quadrilateral grid of resolutions 22, 42, 82, and 162, using CG

FEM and DG FEM. The plots compare the L2 errors ‖∆u+ f‖ and the condition numbers of the stiffness matrix K for the
BZ and IP method using linear and quadratic basis functions, and also include bilinear CG FEM as a reference.

which under the assumption of a Hookean material
is linearly related to the stress

σ(u) = C : ε(u) (15)

through a symmetric 4-tensor C containing mate-
rial parameters. The colon operator “ : ” denotes the
tensor product between two matrices A and B or
between a matrix A and a 4-tensor C as

A :B :=
∑
i,j

AijBij ,

A :C :=
∑
i,j

AijCijkl,

C :A :=
∑
k,l

CijklAkl.

The dot operator “ · ” denotes vector dot products
u · v or matrix-vector products A · v and v ·A.

In static equilibrium the internal forces have to
be in balance with the external forces f , which is
expressed by

−∇ · σ(u) = f . (16)

Equations (15) and (16), in combination with suit-
able boundary constraints on ∂Ω, constitute the
strong form of elastostatics. Multiplying them by
test functions, integrating by parts over Ω, and
combining the resulting equations yields the weak
form of CG FEM:

aCG(u,v) :=
∫

Ω

ε(v) : C : ε(u) =
∫

Ω

f · v, (17)

Analogous to (3) and (4), discretizing u as

u(x) ≈
n∑

i=1

uiNi(x) with ui ∈ IR3 (18)

leads to a (3n× 3n) linear system KU = F with

Kij = aCG(Ni, Nj) · I3 ∈ IR3×3,

U i = ui ∈ IR3,

F i =
∫

Ω

f Ni ∈ IR3,

where I3 denotes the (3× 3) identity matrix.

4.1. DG Weak Form

The derivation of the DG weak form closely fol-
lows the procedure presented in Sections 3.2 and 3.3.
Equations (15) and (16) are multiplied by test func-
tions and integrated over each element K, yield-
ing the individual elements’ weak forms. Those are
summed up, fluxes û and σ̂ are introduced, and the
two resulting equations are combined into one. The
resulting equation corresponds to (10), and is to be
simplified using the average and jump operators.
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Fig. 3. Comparison of CG FEM (left), DG FEM (center), and the elastically coupled rigid cells of PriMo [Botsch et al., 2006,

2007] (right). The DG method conceptually spans the whole space from CG to PriMo, since for sufficiently large penalties η
it approximates the CG results, and for an extremely stiff material and lower penalty η it reproduces the rigid cells of PriMo.

Those, however, have to be slightly redefined for
vector-valued functions u and matrix-valued func-
tions σ on a face f shared by two elements K− and
K+, such that the jump operator maps vectors to
matrices and vice versa. Using the outer product
u⊗ n := unT we define

{u} :=
1

2

(
u− + u+) , JuK := u− ⊗ n− + u+ ⊗ n+,

{σ} :=
1

2

(
σ− + σ+) , JσK := σ− · n− + σ+ · n+.

Minimizing the jump JuK : JuK = ‖u− − u+‖2 by
choosing the fluxes of [Babuška and Zlámal, 1973]
leads to the weak form of the BZ method, which uses
aBZ instead of aCG in (17):

aBZ(u,v) :=
∫

Ω

ε(v) :C :ε(u) +
∫

Γ

ηf JuK :JvK .

(19)
The penalty parameter ηf is defined per face f ac-
cording to [Hansbo and Larson, 2002]:

ηf = η · area(f) ·
(

1
vol(K−)

+
1

vol(K+)

)
(20)

using a global penalty parameter η > 0, which typ-
ically is in the order of 101–102 in our experiments.

The internal elastic energy of the deformed object
can then be written as

aBZ(u,u) =
∫

Ω

σ(u) :ε(u) +
∫

Γ

ηf

∥∥u− − u+
∥∥2
,

which reveals an interesting connection to both
CG FEM and the elastically coupled rigid cells of
PriMo [Botsch et al., 2006]: CG computes elastic
energies within elements only, using the Ω-integral,
whereas PriMo employs only the “glue” energy
between elements, represented by the Γ-integral.

Since BZ is based on both energy terms, with prop-
erly chosen penalty weight and material stiffness it

can reproduce both methods, and can hence be con-
sidered as a generalization of them (cf. Fig. 3). As
such, it combines the strengths of both approaches,
since it inherits the physical accuracy of CG FEM,
as well as the flexibility in element shapes and mesh-
ing of PriMo [Botsch et al., 2007], as we will demon-
strate in Section 5.

The BZ penalty term is equivalent to both the glue
energy of PriMo [Botsch et al., 2006] and the soft
bindings employed by Sifakis et al. [2007b]. However,
as discussed in Section 3.3 and shown in Figure 1,
the BZ method is not consistent and therefore does
not provide any convergence guarantees. Our exper-
iments have nevertheless shown the BZ method to
be very well suited for applications aiming at phys-
ically plausible deformations only.

However, if physical accuracy is important,
other DG fluxes, such as those of the IP method,
should be chosen instead. The weak form of the IP
method [Douglas and Dupont, 1976] is defined by

aIP(u,v) :=
∫

Ω

ε(v) : C : ε(u) (21)

−
∫

Γ

(
JvK :{σ(u)}

+ JuK :{σ(v)} − ηf JuK :JvK
)
.

Analogous to the Poisson problem (14), the three
penalty terms ensure consistency, symmetry, and
stability, and the method is guaranteed to converge
under element refinement. Moreover, the IP method
is still relatively easy to implement (see Section 4.2).
While other (more complex) numerical fluxes exist
(e.g., [Ten Eyck and Lew, 2006; Wihler, 2006]), for
our applications the BZ and IP methods performed
very well and have been fully sufficient.
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4.2. Discretization & Matrix Assembly

To implement DG FEM for linear elasticity, we
discretize u and v and set up the stiffness matrix
K. Since this is very similar to CG FEM, we refer
the reader to [Hughes, 2000; Nealen et al., 2006] for
more details on the following derivations.

The discretization (18) of u can be written in ma-
trix notation as u(x) = H(x)U using a (3 × 3n)
interpolation matrix H(x) built from the basis func-
tions Ni(x), and a 3n vector U containing the un-
known coefficients ui ∈ IR3. Equivalently, the test
function v can be represented as v(x) = H(x)V .

Moreover, we represent stress and strain by 6D
vectors σ̄ and ε̄ composed of the independent entries
of the symmetric 3×3 matricesσ and ε, respectively.
This leads to the matrix notation of the linear stress-
strain relationship

σ̄(u(x)) = C̄ ε̄(u(x)) = C̄ B(x)U , (22)

with a symmetric (6 × 6) matrix C̄ built from C’s
coefficients, and a (6× 3n) matrix B(x) containing
first derivatives of the Ni.

For the assembly of the stiffness matrix we use the
above matrix notations to write the IP weak form
(21) in terms of element contributions (Ω-integrals)
and face contributions (Γ-integrals). Note that for
the BZ method (19) only the last of the three face
contributions in (21) is needed.

The element contributions are written in terms of
element stiffness matrices KK as in CG FEM:∫

Ω

ε(v) :C :ε(u) =
∑
K∈T

V T KKU (23)

with KK =
∫

K

BT (x) C̄ B(x) .

After expanding the operators {·} and J·K, and ex-
ploiting n−= −n+, the first two face contributions
of f = K− ∩K+ have the form

JvK :{σ(u)} =((
v+ − v−

)
⊗ n+

)
:

1
2
(
σ−(u) + σ+(u)

)
.

To write this in matrix notation, we need a matrix

Nf :=


n+

x 0 0 0 n+
z n+

y

0 n+
y 0 n+

z 0 n+
x

0 0 n+
z n+

y n+
x 0


T

,

and differences and averages of matrices B and H

HJK
f :=

(
H+

f −H−f
)
, B{}f :=

1
2

(
B+

f + B−f
)
,

which themselves are defined through restrictions

B±f := B|K± , H±f := H|K± ,

containing only the entries of B or H corresponding
to basis functions of K±.

With these matrices we can define three stiffness
matrices Kf1, Kf2, and Kf3 for each face f :

Kf1 =
∫

f

−HJK
f

T
NT

f C̄ B{}f ,

Kf2 =
∫

f

−B{}f
T
C̄ Nf HJK

f ,

Kf3 =
∫

f

ηf HJK
f

T
HJK

f .

The three face contributions in (21) can now be writ-
ten in terms of these face stiffness matrices as

−
∫

Γ

JvK : {σ(u)} =
∑
f∈T

V T Kf1U , (24)

−
∫

Γ

JuK :{σ(v)} =
∑
f∈T

V T Kf2U , (25)∫
Γ

ηf JuK :JvK =
∑
f∈T

V T Kf3U . (26)

The global (3n×3n) stiffness matrix K can there-
fore be assembled by doing one pass over all ele-
ments K ∈ T and accumulating their contributions
KK , and a second pass over all faces f ∈ T that ac-
cumulates their contributions Kfi. Equivalently to
CG, the external force vector F is assembled from
the elements’ contributions

∫
K

H(x)T
f . Note that

even for linear basis functions the integrands H(x)
are not constant, requiring integration techniques as
discussed in Section 5. The discretized weak form

V T KU = V TF

has to hold for all test functions v, i.e., all vectors V ,
leading to the linear system KU = F to be solved
for the static solution U .

The assembly of element and face stiffness matri-
ces into the global stiffness matrix K can be formu-
lated most easily in terms of individual 3× 3 matri-
ces. Let KK[i,j] denote the 3 × 3 submatrix of KK

corresponding to the global stiffness matrix entry
Kij . The matrices KK[i,j] can be precomputed for
all elements K using (23), and only those matrices
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that are non-zero need to be stored. Due to sym-
metry it holds that KK[i,j] = KK[j,i]

T , which fur-
ther reduces the number of matrices to be precom-
puted. Similarly, Kf1[ij] and Kf3[ij] can be precom-
puted for all faces f . Note that Kf3[ij] = Kf3[ji]

T

and Kf2[ij] = Kf1[ji]
T , so Kf2 does not need to be

precomputed explicitly.

Kij can now be defined in terms of element and
face contributions as follows:

Kij =
∑
K

KK[ij] +
∑

f

(
Kf1[ij] + Kf1[ji]

T + Kf3[ij]

)
.

Using a notation where the operator ← denotes
assembly into the global stiffness matrix for allK, f ,
this can equivalently be written as:

Kij ← KK[ij]

Kij ← Kf1[ij]

Kji ← Kf1[ij]
T

Kij ← Kf3[ij]

Dirichlet boundary constraints can be pre-
scribed in DG FEM as weak or strong constraints.
The latter simply removes some DOFs from the
system, i.e., fixes the coefficients ui for the corre-
sponding Ni. Weak boundary conditions are im-
posed by appropriately defining averages and jumps
at boundary elements. For a prescribed displace-
ment g this means to define the function values on
the “free” side of boundary faces f ∈ ∂Ω as

u− := g, σ−(u) := σ+(u) ,
v− := 0, σ−(v) := σ+(v) .

Dynamic simulations of deformable objects with
time-varying U(t) and F (t) require additional iner-
tial and damping forces, resulting in the governing
equations

M Ü + D U̇ + KU = F , (27)

with mass matrix M and damping matrix D, equiv-
alent to CG FEM [Nealen et al., 2006]. In order to
guarantee stability we employ semi-implicit Euler
time-integration, resulting in a sparse, symmetric,
positive definite linear system to be solved for each
time-step.

We compared two kinds of linear system solvers:
preconditioned conjugate gradients [Saad and
van der Vorst, 2000] and sparse Cholesky factor-
ization [Toledo et al., 2003]. While both worked

well in all our experiments, the Cholesky solver
turned out to scale better to larger problems thanks
to its quasi-linear asymptotic complexity, as also
observed in [Botsch et al., 2005].

5. Arbitrary Polyhedral Elements

The main advantage of DG FEM is the possibility
to use non-conforming, discontinuous shape func-
tions Ni. This added flexibility allows us to employ
simple degree-k polynomials {1, x, y, z, xy, . . . , zk}
as (non-nodal) basis functions within each element
K. We used either 4 linear or 10 quadratic basis
functions per element. Notice that k should be ≥ 1,
since then the DG method can exactly reproduce
rigid motions, yielding a linear, continuous displace-
ment function u without jumps [Cockburn, 2003].

In contrast to nodal basis functions, these non-
nodal basis functions no longer depend on the ele-
ment shape, thereby enabling us to work with arbi-
trarily shaped elements. For practical reasons, how-
ever, we restrict ourselves to convex or non-convex
polyhedra (i.e., planar faces and linear edges), which
still is considerably more flexible than the convex
polyhedra with triangulated faces of [Wicke et al.,
2007]. Compared to the harmonic shape functions
of [Martin et al., 2008], which also allow for non-
convex elements, our polynomial basis functions are
simpler and therefore more efficient to compute.

For a practical implementation we have to accu-
rately and efficiently compute integrals of the form∫

K

NaNb,

∫
K

∂Na

∂xi

∂Nb

∂xj
,

∫
f

NaNb,

∫
f

∂Na

∂xi
Nb,

over elements K and faces f , since they are the
building blocks for the matrix assembly described in
Section 4.2. While tetrahedra or hexahedra can be
integrated analytically, general polyhedral elements
typically require numerical integration, which trades
accuracy for performance [Wicke et al., 2007].

In contrast, our polynomial basis functions can be
integrated analytically over a polyhedron, which is
exact up to numerical round-off errors. We use the
divergence theorem for reducing the volume integral
of a degree-k polynomial pk over an element K to
an area integral of a degree-(k+ 1) polynomial pk+1

over its boundary ∂K, i.e., to a sum of integrals over
its faces. Each face integral can in turn be reduced
to line integrals over its edges e ∈ ∂f , which in the
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Fig. 4. Comparison of different numerical integration meth-
ods to our analytic method based on the divergence theorem.

In this example the function f(x, y, z) = x2 was integrated

over the corner-cut cube model shown on the right.

end results in degree-(k+3) polynomials in the edge
endpoints.

The resulting expressions for polynomial basis
functions can be (pre-)computed analytically. For
linear and quadratic polynomials they are derived in
detail by [Mirtich, 1996], who initially proposed this
approach for accurately computing mass properties
of polyhedra. Expressions for higher order polyno-
mials can be derived accordingly. See Appendix A
for a summary of how to find the polynomials in the
edge endpoints for integrating an arbitrary polyno-
mial over an element. These steps would typically
be performed by a code generation tool.

Figure 4 compares our analytic integration to
different numerical schemes in terms of accuracy
and performance. While our method is exact up
to round-off errors, it is also reasonably efficient:
A straightforward numerical integration still shows
an error of about 10−2 for the same computation
time. Compared to CG FEM using the mean value
polyhedral elements of [Wicke et al., 2007], our inte-
gration method is faster by an order of magnitude.

6. Stiffness Warping

Under large rotational deformations, linear FEM
shows artifacts such as an unrealistic increase in vol-
ume. To avoid the cost of a full nonlinear simula-
tion but still get physically plausible deformations
in these cases, we employ a corotated formulation,
which computes elastic forces in a rotated coordi-
nate frame defined for each element [Müller and
Gross, 2004; Hauth and Strasser, 2004].

In linear CG FEM, the forces acting on the nodes
of an element K are computed from nodal displace-

ments U and the element stiffness matrix KK de-
fined in (23) as follows:

FK = KKU = KK

(
X −X0

)
, (28)

with X and X0 denoting the deformed and un-
deformed nodal positions, respectively. In order to
avoid the aforementioned rotational artifacts, the
corotational, or warped stiffness approach [Müller
and Gross, 2004; Hauth and Strasser, 2004] first
reverts the element’s rotation, computes displace-
ments and forces in the un-rotated state, and re-
rotates the resulting forces:

FK = RK KK

(
RT

KX −X
0
)
, (29)

where RK is a block-diagonal matrix containing the
3× 3 rotation matrix of element K on its diagonal.

This approach cannot be directly applied to DG
for two reasons. First, the contributions resulting
from integrals over interior faces are associated with
two elements and require special treatment. Second,
in case non-nodal basis functions are used, we will no
longer be solving for nodal displacements, and X0

in (28) needs to be generalized to a set of degrees of
freedom defining the undeformed state of the object
in terms of the basis functions Ni.

6.1. Element and Face Contributions

Element contributions (23) can be treated just as
in CG FEM using (29). We determine the rotations
of general polyhedra by first fitting an affine trans-
formation to the nodal displacements in the least
squares sense, and then extracting its rotational
component RK using polar decomposition [Hauth
and Strasser, 2004].

Note that for face contributions (24), (25), (26) we
cannot simply apply (29) using the face’s rotation,
since that would lead to ghost forces and instabilities
similar to the per-vertex stiffness warping of [Müller
et al., 2002]. Moreover, the corotational method is
only required to correct artifacts due to linear strain
ε̄ = BU , and hence is not needed for (26).

For the face contributions (24) and (25) it is cru-
cial that the strains B+

f U and B−f U , which consti-

tute B{}f , are computed consistently with the strains
of the element contributions (29) of K+ and K−.
This requires to use the elements’ rotations R+

f and
R−f for correcting B+

f U and B−f U , respectively. We
therefore have to split up the stiffness matrices Kf1
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and Kf2 w.r.t. strain contributions from either K+

or K−, yielding the four stiffness matrices

K±f1 := −1
2

∫
f

HJK
f

T
NT

f C̄ B±f ,

K±f2 := −1
2

∫
f

B±f
T
C̄ Nf HJK

f ,

where (·)± again denotes either (·)+ or (·)−. These
stiffness matrices allow for a consistent warping of
a face f ’s contributions, such that we get five coro-
tated contributions:

F±f1 = R±f K±f1

(
R±f

T
X −X0

)
,

F±f2 = R±f K±f2

(
R±f

T
X −X0

)
,

F f3 = Kf3

(
X −X0

)
.

6.2. Non-Nodal Basis Functions

In order to use stiffness warping for non-nodal ba-
sis functions, we need to generalize the definition of
the vector X0 representing the undeformed state.
To this end, we have to find X0 = (x0

1, . . . ,x
0
n) sat-

isfying the identity
∑

i x
0
iNi(x) ≡ x. For nodal ba-

sis functions, this vector would contain the nodal
positions of the undeformed mesh. Since for each el-
ement K our non-nodal basis functions always con-
tain the linear polynomials (cf. Section 5), finding
X0 is trivial. For each element K, if its linear basis
functions are

NiK
(x) = x, NjK

(x) = y, NkK
(x) = z,

we simply set the corresponding coefficients to

x0
iK

= (1, 0, 0)T, x0
jK

= (0, 1, 0)T, x0
kK

= (0, 0, 1)T,

and use x0
lK

= (0, 0, 0)T for all its other basis func-
tions. This results in a vector X0 representing the
undeformed state, based on which stiffness warping
can be performed just as for nodal basis functions.

Note that for quadratic or higher order basis func-
tions, stiffness warping only removes the global ele-
ment rotation, whereas local rotations due to bend-
ing might remain. While this was not a problem
in all our experiments, such cases can easily be de-
tected and the respective elements can be refined
(see Section 9). We used stiffness warping for all 3D
examples shown in this paper, and only provide a
comparison to non-warped linear elasticity in the
accompanying video.

6.3. Warped Assembly

To formulate the assembly of the stiffness matrix
(cf. Section 4.2) in the presence of stiffness warping,
we need to first split up (29) into a term proportional
to U and a static force term as follows:

RK KK RT
K U = FK + RK KK (I3n −RT

K)X0.

Every time the element rotations change, the
warped element contributions are to be re-assembled
as follows:

Kij ← RK KK[ij] RT
K

F i ← RK KK[ij] (I3 −RT
K)X0

j

Note that contrary to the notation used previously,
RK and R±f denote 3 × 3 rotation matrices here.
The face contributions are assembled as follows:

Kij ← R±f K±f1[ij] R
±
f

T

F i ← R±f K±f1[ij] (I3 −R±f
T

)X0
i

Kji ← R±f K±f1[ij]

T
R±f

T

F j ← R±f K±f1[ij]

T
(I3 −R±f

T
)X0

j

Kij ← Kf3[ij]

7. MLS-Based Surface Embedding

When it comes to the simulation of complex mod-
els, a common approach for keeping computation
costs low is to embed a high resolution surface mesh
into a lower resolution simulation mesh. The latter
can be simulated efficiently, and its displacement
field u(x) is used to deform the surface mesh (see,
e.g., [Faloutsos et al., 1997; Müller et al., 2004b;
James et al., 2004; Sifakis et al., 2007b]). In DG
FEM, the discontinuous displacement u cannot be
applied directly to the high resolution surface, since
it would lead to gaps and self-intersections.

To remove the discontinuities we first stitch the
simulation mesh by averaging, for each node xi ∈ T ,
the different displacements u|K(xi) corresponding
to its incident elements K ∈ Ni, similar to [Botsch
et al., 2006]:

ũi =
1
|Ni|

∑
K∈Ni

u|K(xi) . (30)

This results in a deformed, continuous simulation
mesh, which is sufficient for visualizing the simula-
tion mesh itself.
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Fig. 5. Comparison of embedding techniques. Stitching the

discontinuous simulation mesh, followed by barycentric inter-
polation, leads to C0 artifacts (left). In contrast, our smooth

MLS-based embedding yields a considerably higher surface

quality (right).

The averaged nodal displacements have to be in-
terpolated within elements in order to deform the
embedded mesh. For tetrahedral or hexahedral el-
ements this amounts to simple linear or trilinear
interpolation, respectively. For more general con-
vex or non-convex polyhedra, mean value coordi-
nates [Floater et al., 2005; Ju et al., 2005] or har-
monic coordinates [Joshi et al., 2007] can be em-
ployed. All these methods, however, correspond to
a non-smooth, generalized barycentric C0 interpo-
lation, resulting in clearly visible shading artifacts
for coarse simulation meshes (cf. Fig. 5, left).

Botsch et al. [2007] employ globally supported
radial basis functions for high quality interpola-
tion, but the involved dense linear systems are
prohibitive for complex simulation meshes. To over-
come these limitations, and inspired by meshless
methods [Müller et al., 2004a; Pauly et al., 2005],
we propose a smooth embedding based on moving-
least-squares (MLS) interpolation.

If we denote by xi the nodes of the undeformed
simulation mesh, and by ũi their averaged displace-
ments, then the displacement at a material pointx is
computed by fitting an affine transformation, which
amounts to minimizing the weighted least square er-
ror ∑

i

θ(‖x− xi‖)
∥∥∥a(x)T

p(xi)− ũi

∥∥∥2

, (31)

with p(x, y, z) = (1, x, y, z)T and θ(x) a (truncated)
Gaussian weight function. Solving a 4 × 4 linear
system A(x)a(x) = b(x) yields the coefficients
a(x) for the interpolated displacement ũ(x) =
a(x)T

p(x) at the position x. This MLS-based
embedding has several interesting properties:

• The smoothness of the interpolation is determined
by the weighting kernels wi, resulting in a high

quality embedding for our choice of Gaussian ker-
nels (cf. Fig. 5, right).

• The use of linear polynomials p(x), in combina-
tion with the partition of unity property of MLS
shape functions, guarantees the exact reproduc-
tion of linear displacements u, i.e., in particular
of rigid motions [Fries and Matthies, 2004].

• Since the approach is entirely meshless it can be
used to interpolate within arbitrarily shaped ele-
ments. Choosing the support radius of wi propor-
tional to the local sampling density at x0

i (e.g.,
distances to one-ring neighbors), yields smooth
interpolations even for irregular meshes.

• An accurate approximation of higher order poly-
nomial displacements u only requires to add more
samples (x0

i , ũi) to (31), such as edge, face, or el-
ement midpoints.

• The interpolated displacement ũ(x) of a vertex x
of the embedded mesh linearly depends on a(x),
which in turn linearly depends on the ũi used in
(31), which finally linearly depend on ui through
(30) and (18). Hence, by combining these linear
relationships, the weights wi(x) as well as the set
N (x) of relevant basis functions Ni can be pre-
computed, such that during the simulation only

ũ(x) =
∑

i∈N(x)

wi(x)Ni(x)ui =:
∑

i∈N(x)

Wi(x)ui

(32)
has to be evaluated as a linear combination of ui.

8. Collisions

Since collision handling is not the focus of this
work, we restrict ourselves to simple penalty-based
collision response within the semi-implicit time in-
tegration. The basic approach is equivalent to CG
FEM, therefore we only discuss the differences due
to the discontinuous displacement u.

Suppose that in the current time-step we detect
a collision at a displaced material point xc + ũ(xc).
Since we use the interpolated displacement ũ of (32),
xc can be an arbitrary embedded point, e.g., a vertex
of the embedded surface mesh. Nodal collisions using
the stitched displacement (30) is just a special case
of this formulation.

For collision response a penalty force proportional
to the penetration depth is added to the system. For
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the semi-implicit solve this displacement-dependent
force yields f(xc) = A · ũ(xc) + b with A ∈ IR3×3

and b ∈ IR3. The corresponding penalty energy is

Ecoll(xc) =
1
2
ũ(xc)T A ũ(xc) + ũ(xc)T

b,

which after inserting the definition of ũ in (32) be-
comes
1
2

∑
i,j

uT
i Wi(xc) AWj(xc)uj +

∑
i

uT
i Wi(xc) b.

Since this collision energy corresponds to an external
force, it has to be either subtracted from the internal
potential energy 1

2U
T KU or to be added to the

external energy UTF . Hence, we can incorporate
the collision energy Ecoll into the system (27) by
updating 3× 3 blocks of the stiffness matrix K and
3-vectors of the external force F (see Section 4.2):

Kij −= Wi(xc) AWj(xc) ,
Fi += bWi(xc) ,

for all i, j ∈ N (xc), i.e., the set of basis functions
Wi, respectively Ni, influencing the collision point
xc (see (32)).

If the simulation mesh is also used for visualiza-
tion, simple nodal collisions are sufficient in most
cases, as for instance for the examples shown in Sec-
tion 9. However, for embedded simulations collisions
should be detected and handled on the vertices of
the embedded surface (cf. Fig. 6).

Fig. 6. Collision handling on the nodes of the simulation

mesh (left) and the vertices of the embedded mesh (right).

9. Results

In this section we demonstrate how the possibil-
ity to use arbitrary polyhedral elements and simple
polynomial shape functions can be exploited to de-
rive a versatile and efficient simulation technique.
Before presenting specific example applications,
which are also shown in the accompanying video, we
discuss some general advantages and disadvantages
of DG FEM compared to CG FEM.

Method Resolution #DOFs Spars. Int. Ass. Solve

BZ lin. 10×10×10 12k 0.28% 532 22 656

IP lin. 10×10×10 12k 0.62% 1437 87 734

CG trilin. 15×15×15 12k 0.58% 3750 41 641

BZ quad. 10×10×10 30k 0.28% 3062 152 7797

IP quad. 10×10×10 30k 0.64% 8344 621 8484

Table 1
Comparison of BZ and IP with linear/quadratic basis func-

tions to trilinear CG FEM for 3D elasticity. The mesh res-

olution is chosen to match the DOFs of DG and CG. The
table lists matrix sparsity and timings (in ms) for volume

integration, matrix assembly, and the solution of the linear
system (taken on an Intel Core2 Duo 2.4 GHz).

9.1. DG FEM versus CG FEM

The accompanying video provides comparisons of
CG and DG for 3D elasticity, on coarse and more
detailed simulation meshes. However, a qualitative
comparison between the two methods is generally
hard. We therefore also quantitatively compare CG
to DG, the latter using BZ/IP penalties and lin-
ear/quadratic basis functions, based on a 2D Pois-
son problem with analytically known solution (cf.
Fig. 2). In addition, Table 1 gives some statistics
and timings of the same five methods for 3D linear
elasticity. Note that even for the same mesh and ba-
sis functions DG provides more degrees of freedom
(DOFs) than CG, since nodes can “split” due to
discontinuous displacements. The plots and timings
are therefore with respect to DOFs.

As expected, the IP method converges regularly,
at a rate similar to CG for linear shape functions,
and at a faster rate for quadratic ones. By conse-
quence, the jumps decrease under element refine-
ment, eventually reconstructing the exact, continu-
ous solution [Cockburn, 2003]. The only additional
parameter compared to CG FEM is the penalty
weight η in (20),(21), which has to be sufficiently
high to guarantee stability. We simply start with a
low value and double it until K is positive definite,
which has never been a problem in our experiments
and typically leads to η in the order of 101–102. Note
that η should not be too high, since otherwise the
method resembles CG and does not exploit its ad-
ditional DOFs (Fig. 3).

The missing consistency terms of BZ (cf. (19),
(21)) allow for sparser matrices and higher efficiency.
Furthermore, the method is stable for any positive
penalty η. Although lacking theoretical convergence
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Fig. 7. Intersecting the bunny with a hex-grid generates 41
elements (left). Closeup view of a non-convex element (right).

guarantees, BZ shows a reasonable convergence be-
havior in practice and gives visually convincing re-
sults. We therefore consider it well suited for typical
graphics applications requiring physically plausible
deformations only. For more accurate simulations
the IP method is the better choice. Highly accu-
rate results can be achieved using more complex nu-
merical fluxes in combinations with nonlinear strain
measures [Ten Eyck and Lew, 2006].

Both DG methods lead to higher condition num-
bers of the linear systems, which, however, has not
been a problem in all our examples, for both the con-
jugate gradients solver as well as the sparse Cholesky
factorization.

For the same number of DOFs and basis functions
of the same degree, CG FEM can be observed to be
more accurate than DG FEM by a constant factor
(Fig. 2) and to be slightly more efficient (Table 1).
Since standard CG FEM is also easier to implement,
it will stay the preferred method for many applica-
tions. However, as soon as topological changes of the
simulation mesh are required or if complex element
shapes have to be simulated, the higher flexibility of
DG FEM pays off, as for instance in the following
examples.

9.2. Mesh Generation by Hexahedral Slicing

A challenge in simulating deformable objects is
the preservation of surface detail without introduc-
ing an excessive amount of simulation primitives.
Commonly used approaches include voxelization of
the object’s volume or tetrahedrization. While vox-
elization is simple to implement and results in well-
behaved elements, it cannot accurately represent
surface details unless a high number of elements
is used. On the other hand, tetrahedral meshes
can accurately represent objects defined by surface
meshes, but result in a higher number of elements.

Fig. 8. A bar (36 hex-elements) is dynamically refined during
bending. 1-to-8 subdivision results in 274 elements (left),

whereas 1-to-2 refinement yields 77 elements (right).

Using arbitrary elements in DG FEM gives rise to
an interesting mesh generation algorithm that de-
couples the number of elements (and thus the DOFs)
from the resolution of the surface mesh. Combining
the strengths of both voxelization and tetrahedriza-
tion, the simulation mesh is generated by intersect-
ing the object with a hexahedral grid. Each inter-
sected cell then corresponds to a finite element, re-
sulting in hexahedral elements in the interior and ar-
bitrary polyhedra at the object’s surface (cf. Fig. 7).
Note that the strain energy is integrated over the ex-
act volume of the object, whereas a pure embedded
simulation could in this case lead to an erroneous
coupling of the bunny’s ears.

9.3. Dynamic Adaptivity

In order to make optimal use of the available com-
putational resources, it is often desirable to adap-
tively enhance the resolution of a dynamic simula-
tion around a specific area of interest. Using arbi-
trary elements in a DG framework allows for easy
and flexible refinement.

We chose a simple criterion based on stress con-
centration, refining an element when its largest ab-
solute principal stress exceeds a given threshold.
For the actual topological refinement, we can, e.g.,
perform a regular 1-to-8 subdivision of hexahedral
elements, conceptually similar to [Grinspun et al.,
2002]. An interesting alternative is the more flexi-
ble 1-to-2 split along the plane perpendicular to the
principal stress direction, which generates fewer ele-
ments for the same refinement threshold (cf. Fig. 8).

Note that the refinement of an element is in no
way restricted by the refinement level of its neigh-
bors. When splitting an element, we simply copy the
parent’s coefficients for displacement ui and veloc-
ity u̇i to its children. This heuristic causes the slight
popping artifacts visible in the video, which could
be avoided by a more sophisticated technique.
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Fig. 9. A suspended cube consisting of 750 tetrahedra deforming under its own weight, simulated with linear CG FEM and

linear/quadratic DG FEM (IP method), using a Poisson’s ratio of ν = 0.3 (left) and ν = 0.499 (right). While DG gives the
expected, symmetric solution, CG shows severe locking artifacts in the nearly incompressible case, even after mesh refinement.

9.4. Cutting

Using DG FEM for cutting simulations has a
couple of advantages over existing methods. Being
able to simulate arbitrary elements avoids complex
remeshing of the simulation domain (cf. Fig. 10),
similar in spirit to [Molino et al., 2004; Wicke et al.,
2007; Sifakis et al., 2007a]. Furthermore, thanks to
the analytic integration the contributions of newly
created elements can be computed very efficiently
and accurately, avoiding the need for expensive nu-
merical integration during the simulation. By stor-
ing and reusing individual edge and face integrals,
after splitting an element we only need to recom-
pute integrals over edges and faces intersecting the
cut plane.

Poorly shaped elements with negligible volume
cause numerical problems, equivalently to CG FEM.
However, those elements can effectively be avoided
by simply merging them with neighboring elements,
exploiting the fact that our method is not restricted
to convex elements. Note that also for mesh genera-
tion and dynamic refinement we either prevent the
generation of degenerate elements, or remove them
by the mentioned sliver merging technique.

Fig. 10. Sharpening a pencil consisting of a single convex
element (left). Cutting a bunny out of a cube (right).

9.5. Locking

In the case of nearly incompressible materials, as
the Poisson’s ratio ν approaches the limit value of
0.5, standard FEM is known to exhibit an overly
stiff behavior termed locking.

An intuitive explanation for this phenomenon is
provided by the counting argument [Irving et al.,
2007]: Each element introduces an additional vol-
ume constraint in order to preserve its volume
locally. However, a continuous FEM mesh with n
nodes has only 3n degrees of freedom, while in the
specific case of a tetrahedral mesh, the number of
elements is at least 4n, resulting in an overcon-
strained system.

On the other hand, the additional degrees of free-
dom present in discontinuous Galerkin FEM allow
the method to effectively circumvent locking, as
demonstrated in Fig. 9. In this example, increasing
the number of elements will not prevent locking in
the CG FEM case. Also note that the locking CG
FEM solution is strongly influenced by the topology
of the simulation mesh, resulting in an asymmetric
solution, whereas the DG FEM solution is free of
such artifacts.

9.6. Sliver Elements

In standard FEM with nodal basis functions, the
computation of shape functions and their derivatives
typically involves the inversion of a Jacobian matrix,
causing numerical problems for ill-shaped elements.
This affects the integration of basis functions over
the element as well as other uses of basis functions
such as the interpolation of nodal quantities.
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Fig. 11. Mesh of nine elements. As the volume of the inner-
most tetrahedral element decreases, the condition number of

the global stiffness matrix increases.

This particular problem can be avoided in DG
FEM, as basis functions are defined in global coordi-
nates. However, elements of small volume still cause
problems in DG FEM. As stated in [Shewchuck,
2002], the condition number of the stiffness matrix
of a tetrahedral mesh is related to the ratio between
the volume of the largest and the smallest element.
We observe a similar behavior in DG FEM, as shown
in Fig. 11.

On the other hand, we note that in DG FEM ele-
ments with locally small features do not cause prob-
lems, as long as the total volume of the element
stays reasonably large (Fig. 12). Note that in or-
der to compute the condition number of the stiffness
matrices in those examples, appropriate boundary
constraints were introduced in order to get a unique
solution to the static problem.
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Fig. 12. Single non-convex element with a locally thin fea-

ture. Even as the height ε of the narrowed middle section
approaches zero, the condition number of the stiffness ma-

trix stays finite.

10. Conclusion

We presented a novel simulation technique for de-
formable models based on discontinuous Galerkin
FEM. The main advantage of DG FEM is the flex-
ibility to use discontinuous shape functions, which
we exploited for the efficient simulation of arbitrary
polyhedral elements. Our generalization of stiffness
warping enables physically plausible large-scale de-
formations, and our MLS-based surface embedding
allows to simulate complex models in the DG frame-
work.

We demonstrated the versatility of our approach
on conceptually simple, efficient, and robust tech-
niques for mesh generation, adaptive refinement,
and cutting. While there are successful methods for
each individual problem, our approach provides an
interesting alternative that handles all problems in
a single, consistent DG FEM framework. Promising
directions for future work include nonlinear elas-
ticity simulations of both solids and shells, which
would benefit even more from the flexibility offered
by DG FEM.
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Appendix A. Volume Integration

The following steps show how to compute∫
K
p(x) dx for an arbitrary polynomial p(x) with

x = (x1, x2, x3).

(i) Integrate p(x) formally to obtain the polyno-
mial q(x) in x:

q(x)←
∫
p(x) dx1

(ii) Perform the following three steps for i
in {1, 2, 3}, with j and k defined as j =
(i mod 3) + 1 and k = ((i+ 1) mod 3) + 1.

(a) Transform q(x) into the polynomial
q̂(x̂,n) in x̂ = (x̂1, x̂2, x̂3) with the
symbolical constant n = (n1, n2, n3) by
performing the following substitutions:

xi →
1
ni
− x̂j

nj

ni
− x̂k

nk

ni
,

xj → x̂j , xk → x̂k

(b) Integrate q̂(x̂,n) formally to obtain the
polynomial r̂(x̂, n) in x̂:

r̂(x̂,n)←
∫
q̂(x̂,n) dx̂j

(c) Integrate formally over the edge connect-
ing a = (a1, a2, a3) and b = (b1, b2, b3) to
get a polynomial in a and b:

Pi(a, b,n)←

(bk − ak)
∫ 1

0

r̂(a (1− t) + b t,n) dt

(iii) The integral over the volume can now be com-
puted as follows, where nf defines the plane of
face f as {x ∈ IR3|x · nf = 1}. df ∈ {1, 2, 3}
is the direction of projection for face f which
must be chosen such that nf

df
6= 0. x1

e and
x2

e are the nodes of edge e.∫
K

p(x) dx =
∑

f∈∂K

nf
1

nf
df

∑
e∈∂f

Pdf
(xe

1,x
e
2,n

f )
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