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Figure 1: Twwo examples displaying results from our interactive framework for video retargeting. The still images from the animated short
”Big Buck Bunny” compare the original with the retargeted one. The pictures on the right show two different rescales. Thanks to our
interactive constraint editing, we can preserve the shape and position of important scene objects even under extreme rescalings.

Abstract

We present a novel, integrated system for content-aware video re-
targeting. A simple and interactive framework combines key frame
based constraint editing with numerous automatic algorithms for
video analysis. This combination gives content producers high level
control of the retargeting process. The central component of our
framework is a non-uniform, pixel-accurate warp to the target res-
olution which considers automatic as well as interactively defined
features. Automatic features comprise video saliency, edge preser-
vation at the pixel resolution, and scene cut detection to enforce
bilateral temporal coherence. Additional high level constraints can
be added by the producer to guarantee a consistent scene composi-
tion across arbitrary output formats. For high quality video display
we adopted a 2D version of EWA splatting eliminating aliasing arti-
facts known from previous work. Our method seamlessly integrates
into postproduction and computes the reformatting in realtime. This
allows us to retarget annotated video streams at a high quality to
arbitary aspect ratios while retaining the intended cinematographic
scene composition. For evaluation we conducted a user study which
revealed a strong viewer preference for our method.

Keywords: Video retargeting, warping, content-awareness, art-
directability, EWA splatting, user study

1 Introduction

Motion picture and video are traditionally produced for a specific
target platform such as cinema or TV. Prominent examples include
feature films or digital broadcast content. In recent years, however,
we witness an increasing demand for displaying video content on
devices with considerably differing display formats. User studies

[Setlur et al. 2005; Knoche et al. 2007] have shown that, for novel
formats like mobile phones or MP3 players, naive linear downscal-
ing is inappropriate; these platforms require content-aware modifi-
cation of the video for a comfortable viewing experience. Similar
issues occur for DVD players or next generation free-form displays.
Lately, sophisticated solutions have been proposed which compute
feature preserving, non-linear rescaling to the desired target reso-
lution [Wolf et al. 2007; Rubinstein et al. 2008; Wang et al. 2008].
But despite their very promising results, these techniques focus on
particular technical elements and lack the systemic view required
for practical video content production and viewing.

Our paper complements previous work by providing a different per-
spective on video retargeting: we present a novel, comprehensive
framework which considers the problem domain in its full entirety.
Our framework combines automatic content-analysis with interac-
tive tools based on the concept of key frame editing. Within an in-
teractive workflow the content producer defines global constraints
to guide the retargeting process. This enables her to annotate video
with additional information about the desired scene composition or
object saliency which would otherwise be impossible to capture by
currently available, fully automatic techniques. This process aug-
ments the original video format with sparse annotations that are
time-stamped and stored with the key frames. During playback our
system computes an optimized warp considering both automatically
computed constraints as well as the ones defined by annotations.
This approach enables us to guarantee a consistent, art directed
viewing experience, which preserves important cinematographic or
artistic intentions to a maximum extend possible when streaming
video to arbitrary output devices.

The most distinctive technical feature of our method is a per-pixel
warp to the target resolution. We compute and render it in real-
time using a GPU-based multigrid solver combined with a novel
2D variant of EWA splatting [Zwicker et al. 2002]. The pixel-
level operations have major benefits over previous methods. Firstly,
spatio-temporal constraints can be defined at pixel-accuracy with-
out sacrificing performance. We present several novel automatic
warp constraints to ensure, for example, a bilateral temporal coher-
ence that is sensitive to scene cuts. Others retain the sharpness of
prevalent object edges without introducing blurring or aliasing into
the output video. Secondly, our warp does not require strong global
smoothness priors in order to keep the warp field consistent at the
pixel level. It thus utilizes the available degrees of freedom more
effectively and improves the automatic part of feature preservation.
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Figure 2: Conceptual components of our framework. A combination of automatic and interactive processing creates the desired output
format. We utillize 2D EWA splatting for antialisasing and high quality video rendering.

A further important benefit of our method is its elegant conceptual
approach for antialiasing. If not properly handled, aliasing arises
from the resampling step involved in the retargeting as well as from
the alterations of the video signals spectral energy distribution dur-
ing warping. We designed a 2D version of EWA forward splatting
to compute the anisotropic filter kernels for optimal reconstruction,
bandlimitation, and rendering, which produces video output at the
technically highest possible output quality. Finally, the realtime
performance of our full retargeting pipeline makes it possible to
process video streams online during postproduction for interactive
annotation. In addition, it allows for actual live streaming and play-
back by the end-user. In contrast to previous methods it is neither
necessary to store a full video cube for processing, nor do we need
to precompute multiple instances of retargeted video for different
(possibly unknown) output devices.

In summary, one major contribution of this work is the use of real-
time, per-pixel operations to resolve a variety of technical and prac-
tical limitations of previous approaches. As a second contribution,
the presented framework seamlessly integrates automatic feature
estimation and interactive guidance of the retargeting process. This
ensures a consistent scene composition across different formats and
thus renders the method most useful for everyday production envi-
ronments. We evaluated and compared our retargeting results to
previous work and linear scaling in a user study with 121 subjects.
This study revealed a strong viewer preference for our method.

2 Related Work

The important problem of adapting images or video to different for-
mats [Setlur et al. 2005; Knoche et al. 2007] has been addressed in
various ways in the literature. A variety of methods have been in-
vestigated to remove unimportant content by cropping or panning
[Chen et al. 2003; Liu and Gleicher 2006]. The required visual im-
portance of image regions can, for example, be estimated by general
saliency measures [Itti et al. 1998; Guo et al. 2008] or dedicated de-
tectors [ Viola and Jones 2004]. Limitations of these automatic tech-
niques can to some extend be alleviated by manual training [Dese-
laers et al. 2008]. Such adaptation, however, does not provide high
level control with respect to the scene composition, which is a cen-
tral feature of our design.

A different class of approaches removes unimportant content from
the interior of the images or video [Avidan and Shamir 2007; Ru-
binstein et al. 2008]. These techniques compute a manifold seam
through the image data in order to remove insignificant pixels.
While these approaches have shown very promising results for au-
tomatic retargeting they are still subject to significant conceptual
limitations. Since the seam removes exactly one pixel per scanline
along the resized axis large scale changes inevitably result in seams
cutting through feature regions. In addition, the removal of pixels
without proper reconstruction and bandlimitation results in visible
discontinuities or aliasing artifacts. We will discuss aliasing in the
context of our own method in Section 5.

The techniques that come closest to our own approach compute a
non-uniform image warp to the target resolution without explicit
content removal. The key idea of these methods is to scale visu-
ally important feature regions uniformly while permitting arbitrary
deformations in unimportant regions of the image. This idea, for
instance, has been utilized for feature-aware texturing [Gal et al.
2006]. Here, a coarse deformation grid ensures that features ro-
tate and scale only while non-feature regions follow a global, pre-
defined warp. More sophisticated constraints on the warp, specifi-
cally designed for resizing images, have been proposed in the opti-
mized scale-and-stretch approach [Wang et al. 2008]. The resulting
warp preserves feature regions well for even significant changes of
the aspect ratio. Similar concepts have been employed for image
editing [Schaefer et al. 2006] or 3D mesh resizing [Kraevoy et al.
2008]. However, the coarse resolution of the deformation grid re-
stricts the available degrees of freedom considerably, making it dif-
ficult to preserve small scale features. In contrast, our entire com-
putational framework operates on the pixel level and thus utilizes
the degrees of freedom to the maximum extend possible.

Content-driven video retargeting [Wolf et al. 2007] raises a number
of additional issues such as temporal coherence of the warp func-
tion. Wolf et al. rescale an input video stream subject to constraints
at the pixel resolution. Their technique is not capable of scaling
important image content like, e.g., the optimized scale-and-stretch
approach [Wang et al. 2008], since it tries to retain the original
size of features. This strategy produces very plausible results for
video containing human characters. At the same time, however, the
approach produces excessive crops of the input so that the overall
scene appearance is compromised. The performance of this method
can be further improved by using shrinkability maps [Zhang et al.
2008] which provide more directability, but are still limited with
respect to the supported constraints.

To the best of our knowledge, none of the prior art considers high
level, art directable control over the process, nor do they handle
signal processing issues emerging from the resampling stage. Our
work provides novel solutions to those important problems and rep-
resents the first approach to video retargeting that addresses the full
problem domain.

3 Overview

The aim of our method is to resize a video stream, i.e., a sequence of
images Io, I, ..., I; : R> — RR? in a context-sensitive and tem-
porally coherent manner to a new target resolution. This means
that we have to find a spatio-temporal warp w; : R? — RZ2,
i.e., a mapping from coordinates in I; to new coordinates in O
such that O; o w; = I; represents an optimally retargeted output
frame with respect to the desired scaling factors and additional con-
straints. Fully automatic warps most often fail to retain the actual
visual importance or output style intended by a producer or director.
Therefore, our approach combines automatic detection of features
and constraints with a selection of simple but effective tools for in-
teractive key frame annotation to compute the warp function.
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Figure 3: Postproduction pipeline for key frame editing. Output is a
sparsely annotated video stream suitable for real-time retargeting.

The conceptual components of the resulting retargeting pipeline
are illustrated in Figure 2. Given a current frame I; of the video
stream the system automatically estimates visually important fea-
tures based on image gradients, saliency, motion, or scene changes.
Next, a feature preserving warp w; to the target resolution is com-
puted by minimizing an objective function F,, which comprises
different energy terms derived from a set of feature constraints.
These energies measure local quality criteria such as the uniformity
of scaling of feature regions, the bending or blurring of relevant
edges, or the spatio-temporal smoothness of the warp (Section 4.1).
In addition we include the producer’s interactively annotated high
level features and constraints with respect to the global scene com-
position. This input refers to the position, shape or saliency of an
image region. These constraints integrate seamlessly into the over-
all optimization procedure (Section 4.2).

The warp w; is computed in a combined iterative optimization in-
cluding all target terms of the energy function (see Section 4.3).
All computational steps are performed at pixel resolution in order
to faithfully preserve even small scale image features. The rescaled
output frame O is then rendered using hardware accelerated per-
pixel EWA splatting. This technique ensures real-time performance
and minimizes aliasing artifacts (Section 5).

Since our method works in real-time and thus provides instant vi-
sual feedback, video editing and resizing can be accomplished in a
fully interactive content production workflow (see Figure 3). After
editing, the high level constraints can be stored as sparse, time-
stamped key frame annotations and streamed to the end-user along
with the original input video. This compound video stream sup-
ports a viewing experience that matches the one intended by the
video producer as closely as possible. In the following sections we
will first describe the mathematical formulation of our method and
then discuss relevant implementation details in Section 6.

4 Image Warp

An ideal warp w; must resize input video frames I; according to
user-defined scale factors s,, and sj, for the target width and the
height of the output video, respectively. In addition, it must min-
imize visually disturbing spatial or temporal distortions in the re-
sulting output frames O, and retain the interactively defined con-
straints from the content producer. We formulate this task as an
energy minimization problem where the warp wy is optimized sub-
ject to automatic and interactive constraints. This section presents
the mathematical setting and discusses our approach for combining
both classes of constraints.

4.1 Automatic Features and Constraints

Previous work offers different approaches to distinguish important
regions from visually less significant ones. Most of this work fo-

cuses on low-level features from single images. We draw upon
some of these results and employ a combination of techniques for
automatic feature detection. In addition, we propose a number of
novel warp constraints at different spatio-temporal scales that im-
prove the automatic preservation of these features considerably.

Saliency Map and Scale Constraints A common approach to
estimate the visual significance of image regions is the computation
of saliency maps. Literature provides two main strategies for gen-
erating such maps. The first class of methods estimates regions of
general interest bottom-up and is often inspired by visual attentional
processes [Itti et al. 1998]. These methods are generally based on
low level features known to be important in human perception like
contrast, orientation, color, intensity, and motion. A second class
of top-down methods uses higher level information to detect inter-
esting regions for particular tasks. Examples include detectors for
faces or people [Viola and Jones 2004].

Since our method focuses on real-time retargeting of general video,
we designed a GPU implementation of a bottom-up strategy [Guo
et al. 2008]. This method utilizes a fast, 2D Fourier transforma-
tion of quaternions [Ell and Sangwine 2007] to analyze low-level
features on different scales. The resulting real-time algorithm to
compute the saliency map Fi : R?* — [0, 1] captures the spatial
visual significance of scene elements.

Another important visual cue is motion. Therefore, processing
video requires additional estimates of the significance based on
temporal features. For example, a moving object with an appear-
ance similar to the background is classified as unimportant by spa-
tial saliency estimators for single images. When considering the
temporal context, however, such objects are stimulating motion
cues and thus are salient. We take temporal saliency into account by
computing a simple estimate of the optical flow [Horn and Schunck
1981] between two consecutive video frames. The resulting motion
estimates are added to the global saliency map F§ and provide ad-
ditional cues for the visual importance of scene elements. Figure 4
displays an example.
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Figure 4: Spatio-temporal saliency map Fis.

In order to preserve salient image regions represented by F during
the resizing process we define the constraints below for the warp
function: To simplify the notation we will remove index ¢ from now
on for non-temporal constraints. On a global level w must satisfy a
target scale constraint in order to meet the intended scaling factors
Sw and sp. Let w, denote the z-component of the warp w. The
global scale constraint yields

Owg

ox

=8y and —= = sp. (D

In feature regions of F, however, a uniform scaling factor sy must
be enforced to preserve the original aspect ratio:

ow Sf ow 0

—— = d — = . 2
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In previous methods the scale factor for feature regions across an

image may change arbitrarily. We enforce a single scale factor sy,
which ensures that all features are subject to the same change of



Figure 5: Edge bending. The top row shows the original frame
(left) and the edge map F. (right) with additional, manually added
line constraints (white). We compare the rescaling result of Wang
et al. [2008] (a) displaying considerable deformation of straight
edges with a result (b) using our automatic constraints only. A
further improvement can be achieved by manual annotation of line
constraints (c).

scale. This retains global spatial relations and the overall scene
composition much more faithfully.

We discretize the warp at the pixel level and rewrite the above con-
straints as a least squares energy minimization. Let d,(p) and
d3(p) denote the finite difference approximations of ‘?9—1: and 86“; z
at a pixel p, respectively. The global scale energy according to

Eq. (1) is

By =Y (d3(p) — sw)” + (dU(p) — sn)” 3)

P

and the uniform scale constraint Eq. (2) for salient regions becomes
2
B~ R (@)~ ")+
P
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The uniform scale parameter s for feature regions is updated after
each iteration of the optimization procedure (see Section 6).

Edge Preservation One of the most simple indicators for small
scale image features are edge detectors based, e.g., on image gra-
dients. An edge detector itself does not constitute a sophisticated
indicator for general visual importance. Its combination with our
pixel level warp, however, allows us to design local constraints for
feature edge preservation. In our current implementation an edge
map Fe is computed using a standard Sobel operator [Gonzalez
and Woods 2002] (see Figure 5). More sophisticated edge detec-
tors could of course be integrated easily.

Bending of prevalent feature edges Fe can be avoided by a spatial
smoothness constraint following [Wolf et al. 2007]:

Ow, _ Owy
oy Oz

(6))

We provide an additional constraint to avoid edge blurring or van-
ishing of detail, e.g., when enlarging an image (see Figure 6). This
can be achieved by enforcing similar image gradients for feature

5

Figure 6: Enlarged SIGGRAPH logo without (left) and with (right)
our constraint for edge sharpness Eq. (6). Note the improved edge
preservation and reduction of aliasing in the closeup on the right.

edges VI; = V(O; o wy) in order to preserve the original pixel
resolution before and after the warp:

Ow, _ Owy
or = Oy =1 ©®

The corresponding bending energy and our novel edge sharpness
energy for the warp optimization are similar to Eq. (3):

By =" F.(p) (dj(p)’ +d(p)’) and o
B =Y F(p) ((d(p) =1+ (d)(p) - 1)) . ®

Eq. (5) prevents bending of horizontal and vertical edges. However,
in combination with Eq. (6) bending of diagonals is prevented as
well. Note also that an image warp at pixel resolution is necessary
in order to realize the sharpness constraint Eq. (6) effectively.

Bilateral Temporal Coherence Temporal coherence is an im-
portant albeit non-trivial issue in video retargeting. On the one
hand, temporal stabilization is imperative in order to avoid jitter-
ing artifacts. On the other hand, the local and unilateral constraint

ow

Fr 0 ©)
employed in previous work [Wolf et al. 2007] disregards the global
nature of this problem: simply enforcing per-pixel smoothness
along the temporal dimension does not take object or camera mo-
tion, nor discontinuities like scene cuts into account. An in-depth
treatment of temporal coherence requires a pre-analysis of the full
video cube and an identification of opposing motion cues. Since we
are aiming at real-time processing with finite buffer sizes, we opted
for the following approach which balances computational simplic-
ity and suitability for streaming video.

First, an automatic scene cut detector based on the change ratio of
consecutive edge maps F. [Zabih et al. 1995] detects discontinu-
ities in the video. The resulting binary cut indicator F. yields a
value of 0 for the first frame of a new sequence and 1 otherwise.
Using this indicator and Eq. (9) a bilateral temporal coherence en-
ergy for the warp computation (similar to the concept of bilateral
signal filters) can be defined as

E.=F. Zdt(p)z. (10
P

To account for future events (like characters or objects entering a
scene) we perform a temporal filtering of the per-frame saliency
maps F’s over a short time window of [t, ¢ + k] of the video stream.
The filter thus includes information about future salient regions into
the current warp and achieves a more coherent overall appearance.
In practice, a small lookahead of k¥ = 5 frames turned out to be
sufficient in all our experiments. The introduced latency can be ne-
glected. By utilizing our indicator F. for scene cuts the saliency
integration becomes aware of discontinuities in the video as well.
In combination these two bilateral constraints effectively address
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Figure 7: (a) Automatic saliency estimators often cannot distin-
guish characters from detailed background. (b) As a result, the
characters in the warped frame exhibit unnatural deformations.
(c) With a simple interface the user can create polygonal impor-
tance masks in a few key frames and reduce the saliency of the back-
ground. (d) Utilizing this annotation and interpolation of the masks
between key frames, the warp is able to retain the proportions of
the characters much more faithfully during rescaling.

local as well as global temporal coherence. This bilateral saliency
integration is different from the previously introduced motion esti-
mates, and it improves temporal processing significantly.

Besides the presented automatic constraints it is easily possible to
add existing higher level feature estimators such as face detectors
or others. However, the above combination of automatic detectors
works very well on a broad spectrum of different video content
without introducing too many parameters.

4.2 Interactive Features and Constraints

Although automatic features and constraints are required for a prac-
tical retargeting system, they share a number of limitations: first,
automatic methods fail for insufficiently discriminating texture.
This limitation can be addressed by simple editing of the corre-
sponding feature maps. Second, automatic constraints are inher-
ently limited in the representation of global shape constraints or,
even more importantly, higher level concepts of scene composition.
A simple example is illustrated in Figure 5 where the warp bends
building edges due to the locality of the edge bending constraint.
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Figure 8: Illustration of key frame based editing and interpolation
of a polygonal importance mask. Our high level constraint editing
and propagation is based on the same concept.

Manual editing and annotation of such user defined constraints is
prohibitively cumbersome if done on a per-frame basis. Therefore,
we borrow the well-established concept of key frame video editing
and design a workflow that allows users to annotate constraints on
a sparse set of key frames. As we will explain subsequently, these
constraints will be propagated throughout the video. Figure 8 il-
lustrates the process. The depicted character has been marked as
important by the user in two consecutive key frames. The shape
of this annotated polygonal region is being interpolated linearly be-

Figure 9: Rescaled frames without (a),(c) and with (b),(d) a posi-
tional constraint for the rock. This interactively defined constraint
allows us to preserve the relative position of scene elements within
a frame, independent from the target aspect ratio.

tween the two key frames. Based on this concept we introduce the
following set of simple and intuitive tools for manual warp editing.

Feature Maps and Key Frame Definition A simple, but pow-
erful approach to guide the warp is the direct editing of the fea-
ture maps introduced in Section 4.1. Our system provides a simple
drawing interface where the user can interactively select an arbi-
trary frame from the video, label it as a key frame and modify, e.g.,
the saliency map F’s by manually specifying the importance of indi-
vidual image regions. Figure 7 shows an example of this operation.

Object Position In particular for more complex scenes the real-
ization of an intended visual composition often requires the speci-
fication of positional constraints for certain scene elements. Hard
constraints [Wang et al. 2008], however, can introduce undesirable
discontinuities when computing the image warp at pixel level as we
do in our setting. Moreover, such hard constraints would only be
valid for a particular target size and aspect ratio and not allow for
dynamic resizing of the video stream.

Instead we first let the user mark a region of interest R and then
create a relative location constraint loc € [0, 1]? for its center of
gravity cog and with respect to the input image. During the opti-
mization we recompute the center of gravity in each iteration ¢

cog’ :nZwi(p) (11)

PER

where n is a normalization factor and w* corresponds to the warp
computed in the ¢-th iteration. Next we optimize the following en-
ergy for each region R

Ep = (loc — cog’)? (12)

by adding the update vector (loc — cog’) to all pixels in R. Here,
cog’ simply corresponds to cog’ converted to relative coordinates
from [0, 1]2. Figure 9 shows an example in which the user sets a
positional constraint for a scene element.

Line Preservation Our visual perception is particularly sensitive
to straight lines, such as edges of man-made structures. Auto-
matic edge bending constraints as in Eq. (5) prevent bending lo-
cally, but cannot account for these structures on a global scope
(see also comparison in Figure 5). Hence, as a second high level
constraint we provide means to preserve straight lines globally. A
line constraint is created by simply drawing a line represented as
I : sin(a)x + cos(a)y + b = 0 in a frame of the input video. The
system estimates the intersection of this line with the underlying
pixel grid of the image, it assigns a corresponding coverage value
c(p) € [0, V2] and enforces

sin(a)wq (p) + cos(a)wy(p) +b=0 (13)



for each pixel p with ¢(p) > 0. The objective function for the least
squares optimization is

B =3 e(p) (sin(a)w.(p) + cos(a)w,

P

(p)+b)%. (14

Updates of line orientation and position can again be computed
from the derivatives of Eq. (14) with respect to « and b, similar
to the estimation of s mentioned in Section 4.1. The effect of this
constraint is displayed in Figure 5.

It is important to note that the above constraints are defined in such
a fashion that they remain valid for different aspect ratios of a re-
targeted video. Our real-time implementation enables users to in-
stantly verify the results of the warp editing process for different
target scales. Hence, the video producer can analyze whether the
intended scene composition is preserved for the desired viewing
formats.

4.3 Energy Optimization

The combined warp energy generated from all available target
terms finally yields

Ew = Eg + )\uEu + AbE‘b + AsE‘s + AcE‘c + )\PEP + ALE‘L

Interactive constraints

15)

Automatic constraints

The minimization of this energy constitutes a non-linear least
squares problem which is solved using an iterative multi-grid solver
on the GPU (see Section 6). Note that our actual implementation
allows for multiple interactive constraints. For boundary pixels of
a video frame the respective coordinates are set as hard constraints.

Of the four weighting parameters A controlling the automatic con-
straints, A, for uniform scaling of features was constantly set to
Aw = 100 for all our examples. For the remaining three parame-
ters we used default values A\, = 100, A\s = 10, and A\, = 10 for
most experiments. We will discuss the benefit of changing these
parameters for different input like real-world scenes, cartoons, or
text in Section 7. For increased flexibility the influence of interac-
tive constraints can be weighted on a continuous scale. However,
we simply used a value of 100 for both parameters Ap and Ay, in
all corresponding examples.

5 EWA Video Rendering

Once the warp w; is computed the actual output frame O; must be
rendered. The non-linearity of the warp, however, alters the spectral
energy distribution of the video frame and potentially introduces
high-frequency energy into the frame’s Fourier spectrum. For alias-
ing free imaging, such spurious frequencies have to be eliminated
from the output signal by proper bandlimitation. In addition, the
different resolution target frame requires further bandlimitation to
respect the Nyquist criterion (see Figure 10 (c)).

Some existing methods render the output frames by simple forward
mapping, e.g., by applying the warp directly to the underlying grid
of I; and by rendering the deformed grid as textured quads. This
operation can be computed efficiently, in particular for coarser grids
[Wang et al. 2008]. However, at pixel level such approaches must
resort to the graphics hardware for texture lookup and filtering. Cor-
rect backward mapping additionally requires the computation of an
inverse warp w; ', which is highly complex and due to the non-
bijectivity not possible in all cases.

The approach we chose for video rendering is based on the insight
that the aforementioned problem is most similar to the finding in

elliptically weighted average filtering [Greene and Heckbert 1986].
In short, this framework includes a reconstuction filter to contin-
uously approximate the discrete input signal. After warping the
input video signal to the output frame, an additional lowpass filter
bandlimits the signal to the maximum allowable frequencies set by
the output resolution. The EWA splatting technique [Zwicker et al.
2002] provides an elegant framework to combine these two filters
into an anisotropic splat kernel. While originally being devised for
3D rendering, we tailor this method to the case of 2D image synthe-
sis for high quality, aliasing-free output (see Figure 10 (d)). To our
knowledge, antialiasing has not been treated rigorously in previous
work on image or video retargeting.

Following the general concepts of EWA, a frame I; of the input
video can be represented as a continuous function f; using a 2D re-
construction kernel. Most often, this kernel is a radially symmetric
Gaussian basis function G' [Zwicker et al. 2002] centered at each
pixel p of the input domain x

th YGv(x —p). (16)

n(x) is the required normalization and the variance matrix V. =
vl of the 2D Gaussian is chosen such that the mutual influence of
neighboring pixels is minimal. In our implementation v is simply
set to 0.01. The continuous representation g; of the rescaled output
frame O, with output domain u is given by

gi(u) = (g o we)(x) = fi(x). a7

This function can be approximated by a forward warp of f;

th |J ¢ w(u—we(p)). (18

The warped shape of the basis functions is determined by the new
variance matrix W = JVJ7 where J is the finite difference ap-
proximation of the Jacobian of the warp w; at pixel p.

In addition to the reconstruction kernel we further bandlimit the
output signal from above with respect to the output resolution.
Hence, an additional lowpass filter h with a cutoff frequency de-
rived from the output resolution of O; is applied by convolution:

g¢(u) — g¢(u) * h(u). (19)

EWA suggests the use of a Gaussian Gy for this filter. The property
of Gaussians lets us compute the final variance matrix W of the
combined splat kernel conveniently by adding the matrices:

W =JVvJT + H. (20)

The final output frame O, can be synthesized by a regular sampling
of g:. As discussed in the next section, we utilize hardware accel-
eration to render EWA splatting in realtime.

6 Implementation

In order to achieve real-time performance we implemented our re-
targeting pipeline fully on the GPU, using CUDA [Buck 2007] for
the feature estimation and energy minimization and OpenGL [Se-
gal and Akeley 2006] for the EWA image synthesis. The different
types of feature estimation techniques described in Section 4.1 can
be transferred to the GPU in a straightforward manner. From a
technical point of view the key components of our method are a
multigrid solver for computing the warp w; and the EWA based
rendering. The following two sections will discuss implementation
details which we consider relevant for a reimplementation of our
system.
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Figure 10: [llustration of the warp discretization and rendering.
(a) The undeformed pixel grid and basis functions. (b) After com-
putation of the warp. (c) Rendering of a warped image without
anti-aliasing. (d) Result of our algorithm for EWA video rendering.

6.1 Multigrid Solver

The non-linear least squares minimization of FE,, is essentially
based on a standard coarse-to-fine multigrid method [Briggs et al.
2000] implemented on the GPU. For each frame I; the correspond-
ing per-pixel warp w; is computed by iteratively solving an equa-
tion system Aw; = b where A and b are set up from the energies
described in Section 4. Boundary pixels are set as hard constraints.

The optimal least squares solution to all constraints might include
fold-overs of the warped pixel grid so that the output image is unde-
fined in these regions. One approach [Wang et al. 2008] to address
this problem is to increase the penalty for edge bending Eq. (5).
However, this method cannot fully prevent fold-overs since the op-
timization might violate the edge bend constraint in favor of other
energy terms. Moreover, this penalty introduces a global smoothing
of the warp so that the available degrees of freedom cannot be uti-
lized to retarget the image. We found that a more robust solution is
to incorporate hard constraints with respect to the minimal allowed
size € of a warped grid cell (i.e., pixel). In our current implementa-
tion we simply chose e = 0.1. This approach prevents fold-overs
and has the considerable advantage that it does not introduce un-
desirable global smoothness into the warp (see Figure 11). As a
second advantage this size constraint prevents a complete collapse
of homogeneous regions and other singularities in the warp which
would result in visible artifacts.

Given these additional constraints the multigrid optimization starts
at the coarsest level where the corresponding equations are derived
from A and b using the so called full weighting approach [Briggs
et al. 2000]. Due to the good convergence properties of our method
the warp can be reinitialized in every frame based on the target scal-
ing factors s, and sy,. This considerably simplifies the construction
of the multigrid hierarchy. In our current implementation the solver
performs 40 iterations on coarse grid levels which are reduced to
only 5 iterations at the pixel level resolution. For the free variables
such as the uniform scale factor for feature regions sy Eq. (2) or the
line constraint parameters Eq. (13) optimized values are estimated
after each iteration [Wang et al. 2008]. In Table 3 we provide tim-
ings and framerates for different input formats.

6.2 Rendering

EWA splatting of 3D surfaces can be performed efficiently on stan-
dard GPUs [Zwicker et al. 2004; Botsch et al. 2005]. Our dynamic
2D retargeting framework with per-frame warp updates requires
slight modifications of these techniques due to the combined CUDA
and OpenGL implementation.

The undeformed pixel grid of an input frame /; and corresponding
splats representing the radial Gaussian basis functions Eq. (16) are
illustrated in Figure 10 (a). After computing the warp using our
CUDA multigrid solver the warped splat positions w;(p) and the
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Figure 11: Comparison to previous work. (a) Input frame. (b) Sim-
ple linear scaling. (c) Seam carving [Rubinstein et al. 2008]. (d)
Optimized scale-and-stretch [Wang et al. 2008]. (e) Our method.
(f) Illustration of the deformation energy.

deformed splat shapes Figure 10 (b), which are estimated from the
corresponding Jacobian J, are stored in an OpenGL vertex buffer.

In the actual rendering stage, the output frame O is generated
by implementing Eq. (18) with OpenGL shaders. From the ver-
tex buffer an OpenGL point primitive is generated at each position
wy(p) and with color I (p). In a vertex shader we then compute the
required radius r and the variance matrix W Eq. (20) for each prim-
itive. The radius r is estimated from the semi-minor axis of the el-
liptical Gaussian Gw where its function value becomes negligible.
Our implementation uses a threshold value of 0.01. In a fragment
shader we then evaluate Gw to compute the actual elliptical splat
shape and output the fragment color and a corresponding weight
using additive OpenGL blending. The normalization required due
to the truncated Gaussians and the simple additive blending is per-
formed in a second normalization pass.

7 Results

In the this section we compare our method with previous work on
image and video retargeting. In addition, we present an experimen-
tal evaluation in the form of a user study about the viewing prefer-
ences of 121 subjects. Key frame editing, additional comparisons,
and examples are further illustrated in the accompanying video.

Results and Comparisons. The instructional example of Figure 11
demonstrates the benefit of our per-pixel warp compared to the
seam carving method [Rubinstein et al. 2008] and to the optimized
scale-and-stretch approach [Wang et al. 2008]. The "E’ shapes de-
picted in Figure 11 (a) are marked as feature regions while the white
background is marked as unimportant. The rescaled images have
only 40% of the original width. Although seam carving gener-
ally preserves feature regions very well, it is limited by its itera-
tive removal of seams with exactly one pixel per scanline. Hence it
inevitably cuts diagonally through feature regions (Figure 11 (c)).
The optimized scale-and-stretch approach distributes the deforma-
tion more evenly, but it cannot scale feature regions uniformly due
to the coarse grid and the missing per-pixel edge constraints (Fig-
ure 11 (d)). Our per-pixel warp can fully utilize the available de-
grees of freedom to push the two shapes closer to each other while
preserving their overall shape (Figure 11 (e)). The corresponding
deformation energy on the pixel grid is illustrated in Figure 11 (f).

Similar effects can be observed in real-world images (Figure 12).
When rescaling the height down to 50%, seam carving is at first
able to preserve most of the features. Yet, it eventually has to cut
through feature regions to find a proper seam since it does not in-
clude any scaling (Figure 12 (a)). The optimized scale-and-stretch
approach emphasizes the center of the image and cannot bring the
two persons closer together due to the coarse deformation grid, so
that off-center features, such as the upper face, get distorted (Fig-
ure 12 (b)). Our automatic retargeting preserves all feature regions
equally well, and it retains relative proportions by distributing the



Figure 12: (a) Seam carving [Rubinstein et al. 2008]. (b) Opti-
mized scale-and-stretch [Wang et al. 2008]. (c) Our result.
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Figure 13: (a) Seam carving [Rubinstein et al. 2008]. (b) Wolf et
al. [2007]. (c) Our result.

deformation over the homogeneous regions in the background (Fig-
ure 12 (c)). This example also illustrates the benefit of computing
one single scale factor sy for all feature regions Eq. (2).

A comparison of our method to the two current state-of-the-art
methods for video retargeting, seam carving [Rubinstein et al.
2008] and the approach of Wolf et al. [2007], is provided in Fig-
ure 13. The example shows one of the main limitations of both
methods, namely their inability to scale feature regions uniformly.
Seam carving can only remove content and hence creates visible
cuts. Similarly, the method of Wolf et al. produces visible disconti-
nuities due to strong compression of image regions. The appearance
of the main character is distorted in both cases.

Figure 14 presents an additional comparison for the 3D animation
movie ’Big Buck Bunny’ and a soccer scene. Figure 14 (a) shows
the result of the seam carving approach, which again can only re-
move content, but does not allow for changes of scale. Our result
is shown in Figure 14 (b). Figure 14 (c) and (d) compare linear
scaling with a fully automatic video retargeting computed on close-
up footage of a TV sports broadcast. As can be seen, the physical
proportions of the players in Figure 14 (d) appear much more real-
istic compared to the linear scaling. The same result is obtained for
shots taken from the overview camera.

Interactive Constraint Annotation. For the Jungle Book exam-
ple we rescaled the original video linearly down to 50% separately
along the z-axis (Figure 15 (a)) and the y-axis (Figure 15 (d)). In
general, automatic saliency estimation is difficult for 2D cartoons
because characters, such as Mowgli and Baloo, are drawn by large
homogenous regions while the background artwork exhibits much
more complex structure. For this scene we applied a simple man-
ual annotation to the saliency map (Figure 15 (b)). It emphasizes
the characters and reduces the importance of the background. As
shown in Figure 15 (c) and (e) this single modification retargets the
video faithfully to considerably different aspect ratios such as those
occurring when reformatting from wide screen to DVD.

Figure 16 (a) shows a house scene which has been rescaled to 50%
of the original width in Figure 16 (b). The automatic saliency de-
tection classifies the sky as unimportant so that this region is overly
enlarged by our warp. In order to achieve a more balanced visual
appearance the user adds an additional positional constraint for the
house in Figure 16 (c). The unnatural deformation of the fence can
be eliminated by adding a single line constraint (Figure 16 (d)). Au-
tomatic retargeting of an image of a seesaw to 50% of the original
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Figure 14: (a) Seam carving result for a frame from the movie Big
Buck Bunny. (b) Our result. (c) Linear scaling of a soccer scene.
(d) Our result.
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Images (a),(c)-(e) ©Disney

Figure 15: (a), (d) Linear scaling. (b) Saliency. (c), (e) Our result.

height does not preserve the straight bars (see Figure 17 (a)). Such
problems may arise in cases where the automatic saliency estima-
tion is difficult due to prevalent global images structures. However,
by adding two line constraints as in Figure 17 (b) the bending prob-
lem is resolved. An additional example is shown in Figure 5.

Table 1: Weight presets for different scene types.

Scene type Ab As  Ac
Default 100 10 10
Animation movie 110 20 10
Sport 110 10 1

Text 100 70 10

As mentioned in Section 4.3 most results are based on a default pa-
rameter set. For some examples like fast-paced sport scenes it is
beneficial to reduce, e.g., the weight of the temporal coherence to
let the warp better adapt to fast player and camera movements. For
animation movies and cartoons, which often have dominant silhou-
ettes, we increased the weights for edge bending and edge sharp-
ness. Due to our real-time pipeline the effect of changing these
parameters can be intuitively explored by the user. The weight pre-
sets used for our results are provided in Table 1. A demonstration
of the parameter sensitivity is shown in the accompanying video.

User Study. Despite the discussed technical advantages of our
method, the most important criterion for the utility of a video re-
targeting method is whether it is actually preferred by the viewer.
Hence we conducted an experimental evaluation in the form of a
user study with 121 participants of different age, gender, and edu-
cation to evaluate viewing preferences regarding the current state-
of-the-art techniques for video retargeting. One of the most suitable
standard methods for statistical evaluation of subjective preferences
is the method of paired comparisons [David 1963]. In this method,
items are presented side-by-side in pairs to an observer, who then
records a preference for one of the members of the pair. Following
this aproach, we prepared an online survey showing pairs of retar-
geted video sequences. For each pair the viewer simply had to pick
the preferred video. We compared automatically generated results
of our method (using the default parameters and no user editing) to
the methods of Rubinstein et al. [2008] and Wolf et al. [2007] for
six input videos. Hence the survey consisted of 18 video pairs and
we received 18 x 121 = 2178 answers overall. Each individual
method was compared 2 X 6 X 121 = 1452 times. We tried to min-



Figure 16: (a) Input image of a house. (b) Automatic result.
(c) Added position constraint. (d) Line constraint for the fence.

Figure 17: (a) Automatic rescaling of a seesaw image. (b) With
two added line constraints.

imize bias, e.g., by randomizing the order of pairs and by providing
only the most necessary information, without technical details, to
the participants, since drawing attention to particular artifacts might
influence the actual viewing preferences.

Table 2: Preferences of 121 persons for 3 retargeting techniques.
For example, an entry n in row 1 and column 2 means that the result
of method 1 was preferred n-times to the result of method 2.

1 2 3 Total (2178)
1. Our method - 553 559 1112
2. [Wolf et al. 2007] 173 - 449 622
3. [Rubinstein et al. 2008] 167 277 - 444

Table 2 shows how many times the result of a particular method was
preferred by the participants. The resulting ranking shows a clear
preference for our method. Our results were favored in 76.2% (553
of 726) of the comparisons with Wolf et al. and in 77% (559 of 726)
of the comparisons with Rubinstein et al. Overall, the participants
favored our method in 76.6% (1112 of 1452) of the cases. Methods
2 and 3 were preferred in 42.8% (622 of 1452) and 30.6% (444 of
1452) of the comparisons with the respective other two methods.
The intraobserver variability, Kendall’s coefficient of consistence
¢ € [0,1], had a very high average of ¢ = 0.96 and a small stan-
dard deviation ¢ = 0.078. This indicates that each single partici-
pant had clear preferences without substantial inconsistencies (i.e.,
circular triads like 1 — 2 — 3 — 1). 80.9% of the participants had
perfectly consistent preferences with ¢ = 1. Only two subjects had
avalue of = 0.66. This, however, means that they still had consis-
tent preferences for 4 of the 6 videos. The interobserver variability,
Kendall’s coefficient of agreement, is u = 0.206 for Table 2, with
a p-value < 0.01. Hence, there is a statistically significant agree-
ment among the participants regarding the three methods. We refer
to David [1963] for a detailed explanation of these indicators.

A pairwise comparison including linear scaling would have re-
quired each participant to select 36 video preferences instead of 18.
Since this would have been a tedious procedure, we instead asked
the participants to rank the three methods and a linearly scaled ver-
sion for each of the six input videos (i.e., 726 rankings of the four
methods) from 1 (most preferred) to 4 (least preferred). The aver-
age ranks were: our method 1.66, Wolf et al. [2007] 2.49, linear
scaling 2.73, Rubinstein et al. [2008] 3.12. This result confirms the
preferences in Table 2 and also indicates that our retargeted video
is generally preferred over linear scaling. This is an important ob-
servation regarding the general utility of video retargeting.

Real-time Performance. Performance figures of our method for
different input formats are provided in Table 3. The reference sys-
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Figure 18: Limitations. (a) Linear scaling of an image with strong
structure. (b) Our result. (c), (e) Linear scaling of video with very
dynamic motion and rapid camera movement. (d), (f) Our result.

Table 3: Per-frame times (ms) and FPS for different input formats.

Input Features Opt. EWA Total FPS
320 x 180 5.6 92 32 21.1 474
480 x 270 7.5 135 40 29.8 335
640 x 480 123 225 6.6 459 218
720 x 384 11.2 213 59 432 231
1280 x 720  27.6 483 11.1 1024 9.7

tem was a 2GHz AMD Dual Core CPU with 2GB of memory and a
single NVIDIA GTX?280 graphics adapter. We break down timings
for the main computational steps such as feature estimation, multi-
grid optimization, and EWA splatting. The total figures include ad-
ditional processing steps like the streaming of video frames to the
GPU. Our method achieves frame rates of over 20 FPS at NTSC
resolution and still works at interactive rates with approximately
10 FPS for HDTYV resolutions. Furthermore, the performance is
largely independent of the output resolution.

Limitations. Prominent spatial and temporal elements like build-
ings or complex motions without sufficient homogenous regions to
absorb the deformation pose a fundamental limitation to any type
of non-linear image resizing. In these cases the warp does not have
sufficient degrees of freedom to compress regions without violat-
ing feature constraints. Our warp automatically falls back to linear
scaling in these situations (Figure 18). We believe that this is a posi-
tive property, since it does not introduce too many undesirable non-
linear deformations for this type of input. In some cases, where the
automatic saliency computation detects large salient regions, our
method (similar to previous work) tends to compress content at the
image boundary. In our system, this can be resolved by our man-
ual warp constraints. However, we think that a combination with
retargeting operators like cropping or zooming might also provide
improved, automatically generated results [Rubinstein et al. 2009].
Our current sliding window approach to handle temporal coherence
was motivated by our aim to process video in real-time. Preprocess-
ing the full video allows to keep the distortion constant across the
optical flow which results in improved temporal coherence for com-
plex motion [Wang et al. 2009]. Fortunately, such a pre-analysis
could be easily integrated into our post-production pipeline by stor-
ing and streaming the corresponding high level temporal constraints
in form of additional annotations with the video.

8 Conclusion and Future Work

In this paper we have proposed a system for video retargeting with
a number of conceptual as well as technical novelties. Our sim-
ple but powerful interactive framework combines a variety of au-
tomatic constraints with interactive annotations of streaming video.
This enables content producers to add high level constraints with
respect to scene composition or artistic intent. These constraints
remain valid across different target formats and hence allow for
an art directable retargeting process. Our major technical contri-
butions include various improvements and extensions of automatic



constraints, such as bilateral temporal coherence. In addition we
compute the warp at the pixel resolution and present an EWA based
video rendering method for high quality display and effective an-
tialiasing. A user study revealed a clear viewer preference for the
results of our method over previous approaches and linear scaling.

Our key frame based constraint annotation has been designed ac-
cording to common practice in standard video editing tools, and
we received encouraging feedback from various companies focus-
ing on video production. However, there is certainly room for im-
provement on our interaction methods. Nevertheless, our approach
demonstrates that future practical solutions will have to be semi-
automatic. It is the combination of high level, interactive control
over scene composition with low level automatic feature detection
that stands as a key requirement for production environments.

Besides addressing the limitations mentioned above, we would like
to extend our system in several respects. For example, in some ap-
plication domains certain high level constraints could be provided
automatically, like line markings on the pitch for soccer or rescaling
constraints for 3D animation movies. Finally, higher level percep-
tual metrics and more detailed studies should be used to assess the
quality of the warp and to compare different methods.
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