
Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
SCA 2009, New Orleans, LA, August 1–2, 2009.
© 2009 ACM 978-1-60558-610-6/09/0008 $10.00

Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2009)
E. Grinspun and J. Hodgins (Editors)

Visibility Transition Planning for Dynamic Camera Control

Thomas Oskam1 Robert W. Sumner2 Nils Thuerey1 Markus Gross1,2

1Computer Graphics Lab, ETH Zurich
2Disney Research, Zurich

Abstract
We present a real-time camera control system that uses a global planning algorithm to compute large, occlusion
free camera paths through complex environments. The algorithm incorporates the visibility of a focus point into the
search strategy, so that a path is chosen along which the focus target will be in view. The efficiency of our algorithm
comes from a visibility-aware roadmap data structure that permits the precomputation of a coarse representation
of all collision-free paths through an environment, together with an estimate of the pair-wise visibility between all
portions of the scene. Our runtime system executes a path planning algorithm using the precomputed roadmap
values to find a coarse path, and then refines the path using a sequence of occlusion maps computed on-the-fly.
An iterative smoothing algorithm, together with a physically-based camera model, ensures that the path followed
by the camera is smooth in both space and time. Our global planning strategy on the visibility-aware roadmap
enables large-scale camera transitions as well as a local third-person camera module that follows a player and
avoids obstructed viewpoints. The data structure itself adapts at run-time to dynamic occluders that move in an
environment. We demonstrate these capabilities in several realistic game environments.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation, K.8 [Personal Computing]: Games

1. Introduction

In any virtual environment, computer game, or other interac-
tive application, natural camera motion is crucial for a pos-
itive user experience. Successful navigation through content
strongly depends on appropriate camera movement. When
considering automatic camera control, four critical criteria
include:

Real-time. Static or precomputed viewpoints are unsuitable
since the user’s actions are not known a priori. Instead, the
camera must adapt in real-time.

Collision-free. As the camera moves through a scene, it
must not collide with objects in the environment as this lends
an unrealistic feel and lessens the sense of immersion.

Smooth. Teleporting the viewpoint from one place to an-
other may disorient the user since the continuity of the view
is broken.

Visible. Ultimately, the camera’s goal is to look at some-
thing. Thus, visibility is of utmost importance: the player or
other focus target must be kept in view and unobstructed.

Shortest path Visibility aware path

Figure 1: Our system for visibility transition planning com-
putes long camera transitions in real-time that keep a focus
point in view. A comparison between a shortest path and our
visibility-aware path is shown on the top. Our method can
perform complex camera movements that follow a fast mov-
ing player, and adapt to dynamic environments (bottom).

47

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

Classical third-person camera models that follow a player
deal with these criteria using algorithms that are inherently
local in nature. Small adjustments in position and orientation
are made based on objects in the camera’s immediate vicin-
ity. Such local camera control is effective in some situations,
but if the character dashes quickly behind corners, the local-
ity assumptions are broken and the camera may be forced to
pass through an object or teleport to an unobstructed view.
Furthermore, local camera models are not designed to per-
form large-scale transitions between viewpoints.

Our research alleviates the aforementioned problems by
computing smooth, collision-free transitions between arbi-
trary start and end points, while emphasizing the visibility of
a third focus point. We refer to this problem as visibility tran-
sition planning, since collision-free movement through an
arbitrary three-dimensional environment is naturally solved
via path planning. However, a visibility transition may de-
viate significantly from the shortest path in order to ensure
that the focus point is visible, as shown in Fig. 1. A typical
application might be the switch from a third-person view of
an avatar in a virtual city environment to an overhead view
while ensuring a clear view of the avatar throughout the cam-
era motion. Maintaining unbroken focus helps the user to
better understand position and context. Although large-scale
transitions and local camera control may seem like disparate
problems, we propose that the two are closely connected.
A local camera control module that deals with visibility in
a sophisticated way must move the camera from one point
in space to another in order to maintain or regain visibility
(Fig. 2). For certain configurations, this movement can only
be resolved with global knowledge of the scene.

Visibility computations in arbitrary three-dimensional
environments are notoriously complicated and time-
consuming. The difficulty of this problem is exacerbated by
several factors. The global nature of the transition planning
problem means that a potentially huge number of visibil-
ity evaluations must be considered. Neither the start point,
nor the end point, nor the focus point are known in advance,
making precomputation a non-trivial task. Finally, the algo-
rithm has strict, real-time requirements, with only millisec-
onds available for all computations.

We present an algorithm for visibility transition plan-
ning that can compute large, collision-free camera transi-
tions in real-time in dynamic environments. This achieve-
ment rests on several key insights. We develop a visibility-
aware roadmap data structure that allows the precomputation
of a coarse representation of all collision-free paths through
an environment, together with an estimate of the pair-wise
visibility between all portions of the environment. Once the
start, end, and focus point have been specified, our runtime
system executes a path planning algorithm using the precom-
puted roadmap values to find a coarse path that is optimal
in terms of visibility up to the resolution of the roadmap.
Next, the path is refined by computing a sequence of GPU-

assisted occlusion maps along the coarse path. The same
path-planning code is executed with these occlusion maps to
enhance visibility on a fine scale. An iterative smoothing al-
gorithm together with a physically-based camera model en-
sure that the path followed by the camera is smooth in both
space and time. All run-time computation is output sensitive,
so that the required time depends on the final path length.
The visibility-aware roadmap data structure adapts dynami-
cally to occluders that move in an environment, supporting
opening and closing doors, falling boulders, and other occlu-
sion situations in real-time.

In terms of impact, our contribution includes the first cam-
era control system that can generate large, collision-free
camera transitions customized for the visibility of a focus
point in real-time. This functionality opens up new opportu-
nities for game designers, such as dynamic target switching
between multiple characters and fly-throughs that demon-
strate a suggested path through an environment from arbi-
trary start and end points. Additionally, we present a third-
person camera routine that optimizes for visibility yet never
passes through scene geometry. Existing local camera mod-
els cannot make such claims, since some geometric configu-
rations can only be resolved using global knowledge.

Technically, we contribute the visibility-aware roadmap
data structure as well as a strategy to successfully divide
calculations between precomputation, run-time CPU calcu-
lation, and GPU computation in order to perform visibil-
ity transition planning in real-time. Precomputation requires
only seconds, run-time calculations only milliseconds, and
data structures only a few megabytes. We demonstrate how
to update this data structure dynamically to support moving
occluders. Finally, we show how the roadmap can be used
to achieve proactive camera movement that actively seeks a
position to prevent the player from escaping visibility. In de-
veloping these algorithm, a shortcoming in any single area
can eclipse the benefit of the entire system, yielding it use-
less. Thus, systemic and practical issues are extremely im-
portant, and their solution non-obvious. The realization of
our camera-control system rests on many components that
all work together interdependently without ever sacrificing
high-performance.

2. Background

A thorough overview of the state-of-the-art in camera con-
trol for computer graphics is presented by Christie, Oliver,
and Normand [CON08], and we review only a small por-
tion of this work here. Many classical third-person cam-
era models examine the local vicinity in order to resolve
occlusions. A common camera model used in computer
games casts a ray from the player to the camera and tele-
ports the camera to closest intersection in order to maintain
visibility, leading to a noticeable jump in view. An alter-
nate scheme makes occluding geometry transparent, which
avoids camera jumps but detracts from the environment’s

48

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

realism. Halper, Halbing, and Strothotte [HHS01] present
a more sophisticated local camera model that resolves oc-
clusions using point-based visibility with z-buffer hardware
back projection. While this method is able to resolve certain
local situations, it cannot find large transitions around multi-
ple obstacles. Li and Cheng [LC08] focus on finding an un-
occluded camera position, but sometimes teleport when the
camera cannot be readily moved to this vantage. These al-
gorithms handle some situations well, but their local nature
leads to inherent limitations. The camera may not adequately
follow a fast moving character or resolve a complicated vis-
ibility situation, resulting in discontinuous jumps or passing
through scene geometry (Fig. 2). In contrast, our algorithm
is global in nature which permits both large-scale camera
transitions as well as a third-person camera that follows an
avatar in a natural fashion without discontinuous jumps or
collisions with objects in the scene.

More high-level approaches to camera control focus on
virtual cinematography, in which cinematographic knowl-
edge is incorporated into the choice of camera position
and scene composition. For example, Bares and his col-
leagues [BGL98] present a constraint-based camera plan-
ner for shot composition that models different cinematic
styles, and He, Cohen, and Salesin [HCS96] encode film
making heuristics into a hierarchical finite state machine that
controls camera selection and placement. Our work com-
plements these approaches by offering a sophisticated sys-
tem for camera transitions. Cinematographic rules may pro-
vide a sequence of shot placements and focus targets, while
our system controls the actual camera motion between such
shots. Drucker and Zeltzer [DZ94] present an alternative for
advanced camera control with visibility based path optimiza-
tion. However, their approach focuses on the creation of off-
line animations and is not suitable for real-time applications.

A key aspect of our camera system is the focus on vis-
ibility during large camera transitions. Visibility problems
are fundamental to computer graphics. As shown by sur-
veys on the topic [COCSD03,Bit02,Dur00], many visibility
algorithms strive to identify which objects, lights, or other
portions of a scene are visible from a given vantage. Run-
time visibility calculations can be accelerated via precom-
putation, in which a visibility relationship between “view-
cells” in space and scene objects is established (cf. [Lai05]).
Our algorithm relies heavily on precomputation for real-time
performance. In our setting, however, the focus target is not
an object within the scene but rather a point that can be
placed anywhere within the ambient space. Our visibility-
aware roadmap (Section 3) extends the idea of precomputed
visibility with a data structure that estimates the visibility of
every region of space with respect to every other region of
space.

The problem of visibility transition planning is related to
the topic of motion planning in the robotics literature where
optimal paths are found for robot navigation [LaV06,MS07].

b) Geometry is
made transparent

Focus

a) Camera teleports
through geometry

Focus

Focus

d) Camera movement with
visibility transition planning

Focus

c) Movement from
point-based visibility

Figure 2: This simple example illustrates the different be-
haviors of commonly used methods for camera control. (a)
The raycast can result in sudden jumps. (b) The obstructing
geometry can be made transparent. (c) With point-based vis-
ibility [HHS01], the camera may pass through geometry. (d)
Our method will avoid obstacles correctly.

Many motion planning algorithms employ a roadmap con-
struction in which the free configuration space of the robot
is mapped to a graph data structure, reducing the planning
problem to a graph search [LaV06]. Some algorithms in-
corporate a notion of visibility with a sparse set of guard
nodes whose visibility region can be defined by unobstructed
straight lines in configuration space [VM05] or the ability
of a local planner to navigate without intersection [SLN00].
The related problem of target tracking strives to compute
the motion of a robot observer in order to maintain visi-
bility of a moving target. Sophisticated algorithms address
this problem in planar environments with polygonal obsta-
cles (e.g., [MCSBH04,BLAJH04,BLAJH06]). However, di-
rect extension of this work to full 3D motion is non-trivial,
partly because visibility relationships are significantly more
complex [BAJH07]. Other work on 3D tracking does not
deal with occlusions [VSK∗02], utilizes only a robot’s visual
sensors rather than global scene information [BAJH07], or
presents interesting theoretical results without demonstrat-
ing a system that matches the strict efficiency demands of
games [MCMS∗07, Laz01]. More generally, camera control
for real-time graphics has a different set of requirements
than robot navigation. A camera control system must op-
erate in complex, 3D environments. Visibility is critically
important, and computed paths should always take visibility
into consideration. The start, end, and focus point may move
continuously. The system must be extremely efficient, with
only milliseconds to compute a camera transition and react
to scene updates. While the robotics literature has explored

49

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

1) Free space sampled
with spheres.

3) Construct roadmap
from portals.

4) Compute visibility for each pair of
spheres with Monte-Carlo raytracing.

2) Compute portal regions
for overlapping spheres.

Figure 3: Overview of the creation algorithm for the roadmap. Based on an initial geometry of the environment, we first
compute a spatial discretization. A graph is then built from the overlap regions. Finally, for each pair of spheres, a visibility
probability is computed with a Monte-Carlo raytracing algorithm.

navigation in great detail, exiting work does not meet the
requirements of a high-performance game camera.

Our work is motivated by the navigation system of Sa-
lomon and colleagues [SGLM03]. In their approach, a
roadmap is created in which nodes represent an avatar’s
position, and edges connect nodes between which a local
planner can successfully navigate. Niederberger, Radovic,
and Gross [NRG04] present a navigation system using a
shortest-path search on a triangulated height-field terrain.
We build upon these ideas in several ways in order to de-
velop an algorithm that is appropriate for camera control.
First, we focus on the full ambient space, rather than just
walkable surfaces, and incorporate the notion of dense visi-
bility into the roadmap computation, yielding our visibility-
aware roadmap for complex 3D environments. Rather than a
minimal number of guard node visibility points, we favor a
dense visibility roadmap in which each node corresponds to
a local volume of space that overlaps with the volume of ad-
jacent nodes. Movement within and between these volume
bounds is guaranteed to be collision free, and an estimate
of the percentage of visibility of all other nodes within a
falloff distance is always know. Our runtime planning algo-
rithm uses the precomputed visibility values to find a coarse,
global path, and a refinement method makes fine-scale ad-
justments to improve the path shape and incorporate sub-
sphere visibility information.

3. Visibility-Aware Roadmap

The ultimate goal of our visibility transition planning algo-
rithm is to compute long, collision-free camera transitions
through a complex environment, guided by the visibility of
a focus point. Since the start, end, and focus points are spec-
ified only at runtime, they can be located anywhere in the
scene, and may even change continuously. The planning al-
gorithm may explore arbitrary parts of the environment’s
free space while continually querying the visibility of the
focus point in order to compute the best camera transition.
To meet the strict real-time constraints of games, training
simulations, and other interactive environments, our system

requires a data structure that makes these run-time queries
as fast as possible.

Motivated by these requirements, we have developed a
data-structure based on spheres and portals, which we re-
fer to as a visibility-aware roadmap (Fig. 3). Although we
explored other possible spacial data structures such as BSP-
trees, KD-trees, and octrees, [PH04], the simplicity, both
algorithmically and geometrically, of a spherical division
proved to be most efficient. The entire free space of an envi-
ronment is tessellated with overlapping spheres. A visibility
probability value is computed between every pair of spheres
and stored within the data structure. Portals are defined by
the circle of overlap between any two spheres. The roadmap
is a graph structure derived from the spheres and portals by
placing a node at the center of each portal and connecting
this node to all other portal nodes associated with either of
the two overlapping spheres. By traveling entirely within the
network of spheres (transitioning from sphere to sphere via
the portals), the camera is guaranteed never to collide with
scene geometry. As soon as a focus point is fixed, an esti-
mate of the visibility of the focus point from any query point
within the scene is known immediately by looking up the
precomputed visibility probability between the query point’s
sphere and the focus point’s sphere.

Unlike existing sphere tree representations [Bra04], our
system approximates the ambient space with a flat hierarchy
of overlapping spheres using an iterative sphere placement
algorithm. First, the scene geometry is embedded within a
three-dimensional grid with spacing ∆x. Any grid cells that
intersect scene geometry are marked as occupied. A candi-
date sphere of maximal size is constructed at each unoccu-
pied grid cell. To favor uniformity in sphere and portal size,
radii are restricted to the range [∆x/3,3∆x] and any candidate
with a portal area less than ∆x/4 is discarded. A seed sphere
is selected at random. Then, in each step of the iteration, the
algorithm selects from the candidates the sphere that maxi-
mally overlaps the previously selected spheres, creating the
largest portals. Grid cells whose center lie within the new
sphere are marked as occupied and the corresponding can-
didates are deleted. The process repeats until no candidate

50

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

Compute visibility aware path
based on the roadmap.

Construct initial path along
overlap regions.

Post-processed path within
the overlap regions.

Traverse path with camera,
recompute if the focus is moving.

Figure 4: The different steps to compute a visibility aware path based on the roadmap.

spheres remain. The size of ∆x depends on the size of fea-
tures (e.g., doorways, tunnels, etc.) within the environment
and should be chosen to be small enough so that all desired
features are resolved by the grid. Although not strictly hier-
archical, a finer grid (smaller ∆x) can first be used in areas
with smaller features (e.g., the inside of a house) followed
by a coarser grid on the surrounding scene (e.g., the streets
of a village). Although randomized sampling works well for
motion planning [YL02], we found that deterministic sphere
placement makes it particularly easy for game designers to
select appropriate parameter values. However, our method
could be adapted to include random sampling of sphere cen-
ters, either on the whole domain or, in order to maintain con-
trol over the refinement levels, within individual grid cells.

A final precomputation step estimates a visibility proba-
bility between all pairs of spheres using a Monte Carlo ap-
proach that selects a random point on the hemisphere of a
source sphere i facing a destination sphere j. A ray is shot
toward a second random point on the opposing hemisphere
of sphere j. The visibility probability pi, j between spheres i
and j is given by the fraction of rays that reach the destina-
tion sphere before hitting an obstacle. To limit the amount of
computations for very large environments, we take into ac-
count a maximal visibility distance that specifies how much
of a level are typically in view. We only pre-compute the vis-
ibilities for spheres that are not further away from each other
than the maximal visibility distance.

4. Visibility Transition Planning

Visibility transition planning refers to the problem of finding
the shortest collision-free camera transition from a start po-
sition s to an end position e such that a focus point f is visible
as long as possible. Although the extremely complex nature
of visibility in arbitrary 3D environments [Laz01] makes a
provably optimal solution to this problem intractable in real-
time, we present an algorithm to compute an approximate
solution within the strict time constraints of games. First, our
runtime system executes a visibility-based path-planning al-
gorithm on the precomputed roadmap data structure to find
a coarse collision-free path through the scene. Next, a fine-
scale refinement is performed by computing a sequence of
GPU-assisted occlusion maps in spheres of partial visibility.

A final smoothing step shortens the path length by allowing
it to hug the sphere portals tightly.

4.1. Path Planning on the Roadmap

The first stage of our runtime system computes a coarse path
from the sphere containing s to the sphere containing e along
the visibility-aware roadmap. Due to its efficiency, we use
the A* search, which is a generalized best-first search algo-
rithm [DP85]. We omit a detailed description of the algo-
rithm since it is ubiquitous in robotics and artificial intelli-
gence and implementations are readily available. A* uses an
edge cost function C and finds paths of minimal cost. A path
heuristic H provides a lower bound on the remaining cost of
a partial path and is used to accelerate the search. The typical
shortest-path A* search uses edge length as the cost func-
tion and Euclidean distance as the heuristic. We augment the
edge length cost with the precomputed visibility probability
in order to find paths that maximize the visibility of a focus
point. The cost for edge ei j between nodes i and j is given
by:

C(ei j) = d(i, j)+αd(i, j)
(
1− v(ei j)

)
, (1)

where d(i, j) is the length of the edge ei j (the Euclidean dis-
tance between nodes i and j) and v(ei j) is the visibility prob-
ability with respect to the focus point. Due to the construc-
tion of the roadmap, each edge lies entirely within a given
sphere. Thus, we use v(ei j) = pk, f , where pk, f is the pre-
computed visibility probability between the edge’s sphere k
and the sphere f containing the focus point f. This value rep-
resents the probability of seeing f while traveling along ei j.
The parameter α determines the relative cost of traveling in
regions where f is visible versus regions where it is occluded.
If α is chosen to be larger than the maximal distance of any
path through the roadmap, the algorithm will find the path
that travels as quickly as possible into the visibility region.
For the heuristic function H of the A* search, we use the eu-
clidean distance between the last point on the path and the
target: H(n) = d(n,e).

4.2. Path Refinement

The path planning algorithm yields a path P along the edges
of the roadmap, through the roadmap’s spheres. Spheres

51

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

bP

2D 3D

xi+1
P

xi
P

b

xi

xi+1bP

xi+1
P

xi
P

Figure 5: The distance traveled in the occluded region
(shown in blue above) is minimized on occlusion maps. The
left side shows the 2D plane of the occlusion map, while the
right hand side shows how the 3D positions of the points are
computed for the actual path.

with a visibility probability of either 0 or 1 are entirely out-
side or entirely inside of the visibility region with respect
to the focus point, while those with a probability between 0
and 1 are in partial visibility. The focus point may be vis-
ible from some positions within a sphere of partial visibil-
ity and hidden from other positions. We perform a detailed
refinement step in such spheres so that the computed path
navigates along positions where the focus point is actually
visible. Since the path planning edge weight favors visibil-
ity, there will be, whenever possible, few spheres of partial
visibility. Thus, the path refinement need only be performed
for a small number of spheres.

We can simplify the path refinement for spheres with par-
tial visibility from a three- to a two-dimensional problem,
since one dimension is determined by the line of sight to the
focus point. Our system builds a detailed representation of
the focus point’s visibility within the sphere in the form of
a 2D occlusion map, which contains per-pixel information
indicating whether f is visible from a given position within
the sphere. The occlusion map is rendered at runtime using
a view frustum that is tightly fit around the sphere and orig-
inates at the focus point [HHS01]. Our system performs an-
other A* search on this occlusion map. 2D path positions on
this map that change visibility are detected and reconstructed
in 3D.

Although the occlusion maps provide detailed visibility
information, rendering them at runtime for every sphere
during path planning would be prohibitively expensive be-
cause the A* algorithm may explore hundreds of nodes as
it searches for the optimal path. Thus, our system uses the
precomputed visibility probability estimates which require
only a table lookup during the coarse path planning. Once
the coarse path is fixed, only a few spheres will lie in par-
tial visibility due to the nature of the search. The algorithm
can afford to compute the more accurate occlusion maps on
these few spheres without exceeding the camera’s allotted
computation budget. Thus, the computation is spent where it
is needed most to build the best path.

The start and end points of the 2D path search on the oc-
clusion map are given by projecting the points on P that
enter and exit the sphere onto the map-plane. The entry po-
sition xi and exit position xi+1 lie on the two overlap circles
of the sphere and its predecessor and successor sphere, re-
spectively. The projected positions are denoted by xp

i and
xp

i+1 in Fig. 5. A path planning, similar to the one described
in the previous section is performed on the occlusion map
pixels, where each pixel is considered connected to its eight
neighbors. The distance d(i, j) and visibility values for C
are replaced by functions computed on the occlusion map:
d(i, j) is the 2D Euclidean distance, and v(xik) is the average
of the two per-pixel visibilities.

Once the occlusion map path has been calculated, the 2D
path positions can be reconstructed in 3D. For each pixel, the
3D position can lie anywhere on its projection ray toward the
focus point within the sphere. The reconstruction of the start
and end points, xp

i and xp
i+1, are known from the projections

of their 3D positions xi and xi+1 onto the map. Next, bor-
der points bp

i are identified on the 2D path. Border points
are points on the path where the visibility changes from oc-
cluded to visible, or vice versa. For each occluded region on
the map, such a border point is minimizing the path length
in the occluded area. This implies that the occluded part is a
straight line. That means that for the construction of the 3D
position of the border point and the path segment in the oc-
clusion region it is enough to project the border point to 3D.
Its 3D position bi is given by the closest point on its view-
line segment to either xi, or xi+1, as shown in Fig. 5. On the
other hand, the portions of the 2D path that are fully visible
do not necessarily form a straight line. To avoid errors in-
troduced by approximating visible portions of the path also
by a line between bp

i and its neighbor, additional points can
be iteratively inserted in 2D and reconstructed in 3D as the
closest point to the line formed by its 3D predecessor and
successor.

4.3. Path Post-processing

Although the coarse planning and refinement determines the
gross nature of the camera path, the actual path traversed
by the camera can be freely moved anywhere within the se-
lected portals without colliding with geometry or changing
the visibility score. Our system uses these additional degrees
of freedom to smooth the path, creating both shorter and
more natural camera movement. The final path positions xi
are computed using a constrained iterative smoothing algo-
rithm. The corrected position x′i of each point xi is first found
as the intersection of the line from xi−1 to xi+1 with the por-
tal’s plane. If the intersection point lies outside of the portal
circle, it is moved to the nearest point on the circle boundary,
as shown in Fig. 6 a. Note that due to the previous refinement
of the path in partially visible spheres, either of xi’s neigh-
bors can be a reconstructed border point. These steps are
performed iteratively for all points of the path. This update

52

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

xi-1

x i+1

x i

x’i x i-1

x j+1

x’j
x’i

x i x j

a) b)

Figure 6: The path post-processing computes smoothed
point positions x′ that lie on the portals. (a) The standard
case of smoothing on a single portal. (b) The procedure for
two overlapping portal circles.

can change the projected start and end positions on the oc-
clusion maps, so the refinement as described in Section 4.2
is re-computed in an additional pass after each iteration.

We distinguish two special cases of the post-processing.
The first one is that of two overlapping portal circles. In such
a situation, two neighboring points on P , xi and x j, can con-
verge to a single point on the intersection line of the two
circles, which prevents the points from moving further to-
ward their smoothed positions. To resolve this problem, we
perform a combined update of both points if they are closer
than a small distance ε (Fig. 6 b). The second special case
occurs when a portal is completely contained in the cylin-
drical volume of its two neighboring portal circles. As the
contained portal does not contribute to the overall volume of
the path, we simply discard it.

The final camera trajectory is determined by Hermite in-
terpolation [Far02] of the path between each pair of points.
Two consecutive portals cannot lie on the same plane, which
guarantees that a C1 continuous interpolation can be found.
The maximum curvature is bounded by the space between
the two portals. In partially visible spheres, where the pro-
jection map forces the border point onto the margin of the
sphere, there might not be enough room to add additional
control points for the Hermite interpolation. In this case, in
order to guarantee the C1 continuity of the final path, the
border point can be slightly moved toward the sphere center
to create enough room for the interpolation.

5. Applications and Extensions

In the previous sections, we have presented the basic frame-
work for visibility transition planning, which includes the
precomputed visibility roadmap as well as a runtime plan-
ning, refinement, and smoothing strategy for visibility-aware
camera transitions. This functionality is useful in many situ-
ations as-is. However, games and interactive environments
often have unique, specialized requirements, and one sin-
gle camera model cannot cater to all situations. One of the
strongest aspects of our research is that the data structure
and planning system provide the foundation and algorith-

mic tools to enable a variety of customized camera behavior
that can be specialized to the needs of a particular game. In
this section, we focus on applications and extensions enabled
by our work. Because camera motion is more easily demon-
strated with movement than with words or pictures, we refer
frequently to the video that accompanies this publication.

Large Camera Transitions. Once a large camera transi-
tion has been computed, the most basic task is to move the
camera along the path from the start point to the end point.
All camera movement is realized using a physically-based
simulation to determine the camera’s six degrees of freedom:
position, pitch, yaw, and roll. A spring is created for each
degree of freedom between the actual position or orienta-
tion and the desired one (e.g., a location along the computed
path). Our model is based on forward dynamics [BMH98]
and is integrated over time with an explicit leapfrog scheme.
This physical camera model ensures smooth camera move-
ment, at the cost of small deviations in the exact camera path.
In order to avoid collisions that could result from these de-
viations, a small safety buffer around scene geometry is in-
cluded during sphere creation.

We demonstrate such a camera move in the Urban envi-
ronment (Video Part 2), including a transition that zooms out
from a close-up view in the streets to a top down view from
above. While the shortest path quickly hides the focus point
behind a skyscraper, the visibility aware transition keeps the
target in focus until the last possible moment. Such transi-
tions could assist in way-finding tasks in virtual environ-
ments by providing a natural facility to connect egocentric
and allocentric viewpoints without losing context [BB08].

Global Planning for Local Camera Control. Our local
camera model builds upon our global planning system in
order to implement a camera that follows a moving target
while striving to maintain visibility. It is analogous to the
robotics problem of maintaining visibility and a fixed dis-
tance from a moving target [MCSBH04], except in a com-
plex 3D environment. If visibility is broken because the user
quickly ducks behind an obstacle, an unoccluded vantage is
chosen via a ray-cast. While a naïve method might teleport
the camera to the unoccluded point or make the occluding
geometry artificially transparent (Fig. 2), our path planner
finds a collision-free path to this position that regains visi-
bility as quickly as possible. We demonstrate this facility in
our Island Village level (Figs. 9 b and c, Video Part 3).

The planning computations for the camera model are con-
stantly active in a thread running parallel to the game engine,
as this decouples the complexity of the visibility planning
from the application’s frame rate constraints. For render-
ing the occlusion maps, this parallelization requires synchro-
nization of the GPU with the main rendering step. The dif-
ferent states of our local camera model are shown in Fig. 7.

Camera Target Switching. Taken together, the previous
two applications enable a target switching, where the cam-
era’s focus point switches between multiple players playing

53

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

Initialize: set
start, end and
focus position

Estimate future point
on new transition

Traverse path with
physical camera model,
until update is available

Input: set new start,
current end and focus

Compute visibility aware
transition and perform

post-processing

Camera thread

Game engine thread

Figure 7: Implementation of the local camera model. By
predicting a future start point on a given path based on the
time it took to compute it, a new start position can be esti-
mated. The new transition path is computed in parallel while
the camera travels along the current path.

at the same time. Such a system could be used in a spectator
mode where an outside spectator is observing the progress
of a multi-player game. We demonstrate this facility in the
Woodland level (Fig. 9 a, Video Part 4). The level design
includes two houses and a connecting underground tunnel,
which creates indoor regions that are completely invisible
from the outside. As the focus dynamically changes between
the two players, our visibility transition planning algorithm
results in camera transitions that bring the new player into
focus as quickly as possible. The smooth transitions give the
viewer a sense of the environment’s layout and the distance
between the two players, which would not be conveyed if
immediate camera cuts were used instead.

Risk Prediction. A purely reactive camera controller can-
not keep a fast moving player in view at all times. In order
to anticipate situations in which the player might escape the
camera’s region of visibility, our system uses an algorithm
inspired by the target tracking work of Bandyopadhyay and
colleagues [BLAJH06] and extended to 3D. Our data struc-
ture and path planning code permit an efficient implemen-
tation that adjusts the camera position in an effort to pre-
vent the player from escaping view. This risk prediction al-
gorithm uses the visibility-aware roadmap and planning ar-
chitecture to find a path to the sphere closest to the player
which is not visible from the camera’s current position. This
path represents the highest risk of escape. The camera’s cur-
rent position is rotated to a new vantage so that this escape
route is in view. The transition planning system is used to
move the camera to this new vantage point. An overview of
this process is shown in Fig. 8, as well as in the Arena level
in Part 5 of the video.

Dynamic Occluders. Often, real-time environments con-
tain dynamic elements, such as closing doors or moving ob-
stacles, and it is crucial that the camera takes these objects
into account when moving through the scene. Fully dynamic

Focus

Original
camera position

Risk aware
camera position

Sphere with
highest risk to
occlude player

Figure 8: Proactive camera movement: our algorithm finds
the closest sphere (indicated in orange) that has reduced vis-
ibility from the original camera position. After detecting a
high escape risk, the camera’s viewing direction is aligned
towards this sphere. Spheres with reduced visibility from the
original camera position are shown in darker shades of gray.

environments where every environmental feature can move
are uncommon since they invalidate acceleration structures
necessary for collision detection, lighting, and other compu-
tations. Thus, we target the most common and advantageous
case where the environment contains a small number of dy-
namic occluders.

To enable the computation of visibility transitions in the
presence of dynamic occluders, our system performs an on-
the-fly update of the information in the roadmap. Moving
objects are approximated by one or more bounding spheres.
When computing the A* search on the roadmap, our algo-
rithm marks all connections between two portal circles that
touch the bounding spheres as being occupied in order to
prevent the camera from colliding with the moving object.
To update the visibility information, our system projects
the bounding sphere of the object onto the spheres of the
roadmap from the direction of the focus point. All roadmap
spheres within this cone are marked as having an occluded
view of the focus point. During path refinement, the actual
geometry of the moving object is included in the occlusion
maps, making the camera take into account the actual shape
of the object.

We demonstrate this ability to handle dynamic environ-
ments in two examples shown in Fig. 10, as well as Part 7 in
the video. The first one covers a typical game setting where
a door to a house is closing while the camera is entering it.
Our system dynamically adapts to the changed visibility set-
ting, and takes a detour through the window of the house. In
another scene we demonstrate how the camera can find col-
lision free and unoccluded paths through multiple moving
objects.

Additional Search Criteria. In some situations an appli-
cation might have additional constraints for the search path.
For example, a path through a game level might require the
camera to move along the ground, in a similar way that a
player would do, instead of taking a short cut through the

54

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

b)a) c)

Figure 9: Three of our game environments: (a) A woodland scene with an underground corridor, where we can perform complex
transitions between two players. (b) A muti-player arena level. (c) A more complex island village environment.

b)a) c)

Figure 10: Visibility transitions in dynamic environments: (a) When the door to this house is open, our algorithm computes a
path through the door. (b) As soon as the door closes, an alternative route around the side of the house is automatically found.
(c) This camera transition avoids multiple moving obstacles.

air. We can modify our search framework to include addi-
tional constraints by modifying the cost function of the A*
search. For the example above, we could include a height
constraint, to make the camera move within a certain region
above ground. To do this, we add an additional penalty term
to Equation 1. This gives us a modified cost function

C′(ei j) = C(ei j)+α
2d(i, j)h(ei j) , (2)

where h(ei j) evaluates to zero if the edge ei j is within a given
height range and increases to one if the edge is above or
below this region. The weight of α

2 ensures that this con-
straint is prioritized over the visibility. We demonstrate this
constrained search in the Island Village (Video Part 6) with
paths along the ground instead of above the houses. This
constrained search could easily be extended by a variety of
penalty terms, such as a weight term specified by a level de-
signer to make the camera prefer landmarks in the environ-
ment seen from a certain angle or region.

Statistics. Run-time and precomputation statistics of the
environments are given in Table 1. The roadmaps we com-
pute for the different environments have between 819 and
3102 spheres. The largest roadmap, for the Island Village
level, requires only 6.36MB. The precomputation times, the
major part of which is computing the sphere visibilities, vary
from 8.1 to 61.4 seconds and directly depend on the num-
ber of spheres and visibility distance. While precomputa-
tion time is unimportant in many disciplines, it is crucial in
the design of interactive environments. Level designers must
continually iterate during the design process, testing game-

play with each modification to the level’s layout. A long
precomputation time would hinder this iteration, making the
camera control system unusable. Thus, our short precom-
putation time is critical for a practical system. The average
path search and post-processing times depend on the length
of the transitions. For the local models used in the Arena,
this takes 1.8ms on average, while the long transition with
dynamic objects demonstrated in the Tea House example re-
quires almost 30ms. The local model must be extremely fast
so that the camera will react adroitly to player movement.
However, the longer transitions require several seconds for
the camera to travel along the long path (five seconds in the
tea house example) and the transition planning is compara-
tively short. Furthermore, these path computations are per-
formed in a thread parallel to the game engine, which avoids
any changes in the frame rate.

6. Conclusion

We have presented an algorithm that enables sophisticated
camera transitions by phrasing the problem as a global
search on a precomputed visibility-aware roadmap together
with local runtime refinement. The balance between precom-
putation and runtime calculation allows our system to gener-
ate collision-free paths that emphasize visibility while main-
taining real-time performance. Because it is global in nature,
our method can generate large-scale camera transitions be-
tween distant points in a scene, even in complicated geo-
metric situations. In addition, we have demonstrated a vari-

55

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

Environment Urban Woodland Arena Tea House Valley Island Village
Polygons 90 1778 15536 8918 8388 34721
Grid resolution 30x44x41 75x25x67 75x14x68 40x6x40 75x21x76 65x21x83
Spheres 1035 2152 2008 819 1106 3102
Roadmap nodes 5911 8730 3991 3999 7953 24989
Visibility distance 100% 100% 30% 100% 100% 25%
Precomputation [sec.] 8.1 61.4 27 35 51 28
Memory roadmap [MB] 3.61 4.29 2.92 2.07 5.10 6.36
Method Transitions Switching Local Dynamic Dynamic Transitions
Avg. Path Length [# nodes] 9.1 4.8 3.5 12.0 9.6 14.7
Avg. Search [ms] 4.46 7.44 1.80 27.67 25.1 14.48
Avg. Post-processing [ms] 1.20 2.41 0.41 2.34 6.61 0.63

Table 1: Roadmap sizes, precomputation times and run-time performance measurements for the different parts of our algorithm.

ety of applications of this basic functionality. Our approach
can handle dynamic occluders, enhance third-person cam-
era models, perform risk prediction, and respect additional
constraints. The computation time is output sensitive. Large
camera transitions require tens of milliseconds, while shorter
ones used in our third-person camera are computed in one to
four milliseconds.

Limitations of our current system direct us to areas of
future work. Currently, we support only single-point focus
targets. However, we plan to extend the algorithm to keep
an entire object in view by aggregating the visibility esti-
mations for multiple focus targets during the path search,
and superimpose the occlusion maps during the refinement
phase. Currently, our system computes a fairly dense sam-
pling of the ambient space using the roadmap spheres. Ac-
curately sampling small regions of the environment may re-
quire tiny spheres. Such a sampling leads to more accurate
visibility estimations, better risk predictions, and superior
camera paths. However, extremely dense roadmaps may im-
pede performance. We plan to explore level-of-detail for the
visibility-aware roadmap, where “highways” are traveled for
large distances, and “local roads” are used for more fine-
scale movement. Additionally, the current framework only
supports dynamic occluders and cannot add new connec-
tions to the roadmap. While our system works well for en-
vironments with a limited number of dynamic objects, per-
formance might degrade for large changes in the scene. In
the future, we plan to explore techniques that propagate en-
vironmental changes directly onto the data structure, such as
elastic roadmaps [YB06], in order to allow large-scale dy-
namic scene changes.

In this work, we have focused on visibility, since achiev-
ing an unoccluded view of an object is the most fundamen-
tal goal of camera control. In future research, we wish to
include higher-level goals into our system such as cinemato-
graphic rules that influence perceptual aspects of the com-
puted transitions. While our formulation of the search ac-
commodates additional search criteria, more work is needed
to properly incorporate aesthetic guidelines to convey differ-

ent styles or moods. One particularly exciting avenue of re-
search is to generalize from artist-created camera paths dur-
ing transition planning so that greater control over the char-
acter of the transitions is given to the designer.

Acknowledgments

We would like to thank Serkan Bozyigit for his work on dy-
namic occluders, Michael Spreng for porting the precom-
putation to C++, and Theodor Mader for his help with the
graphics engine. We are grateful to Propaganda Games / Dis-
ney Interactive Studios for providing the Island Village level.
We are thankful to the members of the ETH computer graph-
ics lab, Disney Research Zurich, and the anonymous review-
ers for their helpful observations and suggestions.

References

[BAJH07] BANDYOPADHYAY T., ANG JR. M., HSU D.:
Motion planning for 3-d target tracking among obstacles.
In Proc. Int. Symp. on Robotics Research (2007).

[BB08] BYRNE P., BECKER S.: A principle for learning
egocentric-allocentric transformation. Neural Computa-
tion 20, 3 (2008), 709–737.

[BGL98] BARES W. H., GRÉGOIRE J. P., LESTER J. C.:
Realtime constraint-based cinematography for complex
interactive 3d worlds. In AAAI ’98/IAAI ’98: Proceedings
of Artificial intelligence/Innovative applications of artifi-
cial intelligence (1998).

[Bit02] BITTNER J.: Hierarchical Techniques for Visibil-
ity Computations. PhD thesis, Czech Technical Univer-
sity, October 2002.

[BLAJH04] BANDYOPADHYAY T., LI Y., ANG JR. M.,
HSU D.: Stealth tracking of an unpredictable target
among obstacles. In Algorithmic Foundations of Robotics
VI, Erdmann M. et al., (Eds.). Springer-Verlag, 2004,
pp. 43–58.

[BLAJH06] BANDYOPADHYAY T., LI Y., ANG JR. M.,

56

T. Oskam, R. Sumner, N. Thuerey, M. Gross / Visibility Transition Planning for Dynamic Camera Control

HSU D.: A greedy strategy for tracking a locally pre-
dictable target among obstacles. In Proc. IEEE Int. Conf.
on Robotics & Automation (2006), pp. 2342–2347.

[BMH98] BROGAN D. C., METOYER R. A., HODGINS

J. K.: Dynamically simulated characters in virtual envi-
ronments. In IEEE Computer Graphics and Applications
(1998), vol. 15(5), pp. 58–69.

[Bra04] BRADSHAW G.: Adaptive medial-axis approxi-
mation for sphere-tree construction. ACM Transactions
on Graphics 23 (2004), 1–26.

[COCSD03] COHEN-OR D., CHRYSANTHOU Y. L.,
SILVA C. T., DURAND F.: A survey of visibility for
walkthrough applications. In IEEE Transactions on Vi-
sualization and Computer Graphics (July 2003), vol. 9,
pp. 412–431.

[CON08] CHRISTIE M., OLIVIER P., NORMAND J.-M.:
Camera control in computer graphics. Computer Graph-
ics Forum 27, 8 (2008), 2197–2218.

[DP85] DECHTER R., PEARL J.: Generalized best-first
search strategies and the optimality of a*. J. ACM 32(3)
(1985), 505–536.

[Dur00] DURAND F.: A multidisciplinary survey of visi-
bility, 2000.

[DZ94] DRUCKER S. M., ZELTZER D.: Intelligent cam-
era control in a virtual environment. In Proceedings of
Graphics Interface ’94 (Banff, Alberta, Canada, 1994),
pp. 190–199.

[Far02] FARIN G.: Curves and surfaces for CAGD: a
practical guide. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[HCS96] HE L., COHEN M. F., SALESIN D. H.: The
virtual cinematographer: a paradigm for automatic real-
time camera control and directing. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques (1996).

[HHS01] HALPER N., HELBING R., STROTHOTTE T.: A
camera engine for computer games: Managing the trade-
off between constraint satisfaction and frame coherence.
Comput. Graph. Forum 20, 3 (2001).

[Lai05] LAINE S.: A general algorithm for output-
sensitive visibility preprocessing. In I3D ’05: Proceed-
ings of the 2005 symposium on Interactive 3D graphics
and games (2005), pp. 31–40.

[LaV06] LAVALLE S. M.: Planning Algorithms. Cam-
bridge University Press, 2006.

[Laz01] LAZEBNIK S.: Visibility-Based Pursuit Evasion
in Three-Dimensional Environments. Tech. Rep. CVR TR
2001-01, Beckman Institute, University of Illinois, 2001.

[LC08] LI T.-Y., CHENG C.-C.: Real-time camera plan-
ning for navigation in virtual environments. In Proceed-
ings of Smart Graphics (2008), pp. 118–129.

[MCMS∗07] MURRIETA-CID R., MUPPIRALA T.,
SARMIENTO A., BHATTACHARYA S., HUTCHINSON

S.: Surveillance strategies for a pursuer with finite sensor
range. Int. J. Rob. Res. 26, 3 (2007), 233–253.

[MCSBH04] MURRIETA-CID R., SARMIENTO A.,
BHATTACHARYA S., HUTCHINSON S.: Maintaining
visibility of a moving target at a fixed distance: The
case of observer bounded speed. In Proceedings IEEE
International Conference on Robotics and Automation
(2004), pp. 479–484.

[MS07] MASEHIAN E., SEDIGHIZADEH D.: Classic and
heuristic approaches in robot motion planning—a chrono-
logical review. In Proceedings of World Academy of Sci-
ence, Engineering and Technology (2007), vol. 23.

[NRG04] NIEDERBERGER C., RADOVIC D., GROSS M.:
Generic path planning for real-time applications. In
Proceedings of Computer Graphics International (2004),
pp. 299–306.

[PH04] PHARR M., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[SGLM03] SALOMON B., GARBER M., LIN M. C.,
MANOCHA D.: Interactive navigation in complex envi-
ronments using path planning. In I3D ’03: Proceedings
of the 2003 symposium on Interactive 3D graphics (2003),
pp. 41–50.

[SLN00] SIMÉON T., LAUMOND J.-P., NISSOUX C.:
Visibility-based probabilistic roadmaps for motion plan-
ning. Advanced Robotics 14, 6 (2000).

[VM05] VARADHAN G., MANOCHA D.: Star-shaped
roadmaps - a deterministic sampling approach for com-
plete motion planning. In Robotics: Science and Systems
(2005), The MIT Press, pp. 25–32.

[VSK∗02] VIDAL R., SHAKERNIA O., KIM H. J., SHIM

D. H., SASTRY S.: Probabilistic pursuit-evasion games:
theory, implementation, and experimental evaluation.
Robotics and Automation, IEEE Transactions on 18, 5
(2002), 662–669.

[YB06] YANG Y., BROCK O.: Elastic roadmaps: Glob-
ally task-consistent motion for autonomous mobile ma-
nipulation in dynamic environments. In Proceedings of
Robotics: Science and Systems (Philadelphia, USA, Au-
gust 2006).

[YL02] YANG L., LAVALLE S.: An improved random
neighborhood graph approach. vol. 1, pp. 254–259.

57

